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Abstract: Monoclonal antibody (mAb) therapeutics have a promising outlook within the
pharmaceutical industry having made positive strides in both research and development as well
as commercialisation, however this development has been hampered by manufacturing failures
and attrition. This study explores the applicability of traditional in vitro toxicity tests for detecting
any off-target adverse effect elicited by mAbs on specific organ systems using hepatocarcinoma
cell line (HepG2) and human dermal fibroblasts neonatal (HDFn), respectively. The mechanism of
antibody dependent cytotoxicity (ADCC), complement dependent cytotoxicity (CDC) via complement
activation, and complement dependent cellular cytotoxicity (CDCC) were assessed. Major results: no
apparent ADCC, CDCC, or CDC mediated decrease in cell viability was measured for HepG2 cells.
For HDFn cells, though ADCC or CDCC mediated decreases in cell viability wasn’t detected, a CDC
mediated decrease in cell viability was observed. Several considerations have been elucidated for
development of in vitro assays better suited to detect off target toxicity of mAbs.

Keywords: biopharmaceutical development; in vitro tests; off target toxicity; developability;
traditional testing; monoclonal antibodies

1. Introduction

Monoclonal antibody (mAb) therapeutics currently dominate many therapeutic areas such as
oncology and rheumatism. The non-clinical safety testing of mAbs however are different and more
complex when compared to small molecules owing to innate differences in structure, clearance,
mechanism of action, and specificity of immune responses elicited [1]. The main considerations
for development of non-clinical safety testing strategies for mAbs are: co-incubation of cell line of
interest with immune responsive cells; optimisation of cell density and incubation times; and choice of
off-target organ system and assay endpoint. Furthermore, the innate complexity, diversity, and size of
mAb based therapeutics intensify the need for carefully designed in vitro systems that accounts for
the above factors.

Effector functions of mAbs such as phagocytosis, antibody dependent cytotoxicity (ADCC),
complement dependent cytotoxicity (CDC) via complement activation, and complement dependent
cellular cytotoxicity (CDCC) are regulated by the interaction between the Fc region of mAbs with the
receptors on immune cells [2,3].This requires the co culture of target cells with immune responsive
cells, such as Peripheral Blood Mononuclear Cells (PBMCs), to elicit the immune response pre requisite
for causing adverse effects that could lead to off-target toxicity. PBMCs comprise of B cells, T cells,
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monocytes, dendritic cells, and natural killer cells and these cells express various Fc gamma receptors
which bind to the Fc region of IgG mAbs and induce effector functions like ADCC, phagocytosis,
transport, and catabolism [4]. For complement activation and CDC, exposure to human serum
containing complement proteins is required [5]. A combination of PBMCs and complement protein
is used to assess potential CDCC where a primary binding to complement protein is followed by
engaging with complement receptors on natural killer cells or macrophages [2].

Different in vitro toxicity assays are in place for assessing toxicity endpoints and these have been
described in detail in multiple studies and reviews [6]. Of these assays, WST-1 assay is routinely used
for assessing cytotoxicity of compounds. WST-1 is a tetrazolium salt that is converted by mitochondrial
dehydrogenase enzymes into a soluble coloured formazan compound which can be quantified using
absorbance endpoint measured using a spectrophotometer. The absorbance values are reflective
of mitochondrial enzyme activity which is a measure of the metabolic activity of cells. Another
sensitive marker for cell viability is by measuring the adenosine triphosphate (ATP). As the cells lose
membrane integrity, they fail to synthesize ATP and any remaining ATP in the cytoplasm is rapidly
depleted by ATPases which are enzymes that catalyze the dephosphorylation of ATP into ADP. [7].
CellTiter-Glo® Luminescent Cell Viability Assay (Promega, UK) allows for detection of metabolically
active cells through quantification of adenosine triphosphate (ATP). Luciferin upon interaction with
ATP emits light in a reaction catalysed by firefly luciferase and this can be measured by recording the
luminescence. Potential cytotoxicity and reduction in ATP levels of hepatocarcinoma cell line (HepG2)
and human dermal fibroblasts neonatal (HDFn) cells following exposure to mAbs were investigated
using the methodology described in Figure 1.
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Figure 1. General Methodology for an in vitro assay to detect toxicity of monoclonal antibody (mAb)
based therapeutics. PBMCs: Peripheral Blood Mononuclear Cells. ADCC: Antibody dependent
cytotoxicity. CDC: Complement dependent cytotoxicity. CDCC: Complement dependent cellular
cytotoxicity, NK: Natural Killer, RBCs: Red Blood Cells

Previous studies indicate that following immunogenicity, hepatotoxicity and dermal toxicity
are the two main adverse effect categories associated with mAbs [8]. This report aims to assess the
suitability of traditional toxicity assays to investigate potential organ/system related adverse effects of
mAbs that could lead to hepatotoxicity and dermal toxicity using hepatocarcinoma cell line (HepG2)
and human dermal fibroblasts neonatal (HDFn), respectively.
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The mAbs used in this case study are rituximab and trastuzumab. Rituximab is an AntiCD20
chimeric monoclonal antibody, with an IgG1 heavy chain and kappa light chain, used for therapeutic
indications such as Non-Hodgkin’s lymphoma, chronic lymphocytic leukaemia, rheumatoid arthritis,
granulomatosis with polyangiitis, and microscopic polyangiitis. It has been shown to elicit
hepatobiliary and skin related adverse effects in addition to immunogenicity and hypersensitivity [9].
Trastuzumab is an AntiHER2 humanised monoclonal antibody, with an IgG1 heavy chain and
kappa lights chain, indicated for breast cancer and gastric cancer. It has shown to cause infusion
related reactions, hypersensitivity as well as hepatobiliary, and skin related adverse effects [10].
The concentrations of mAbs chosen were based on their relevance to in vitro testing perspective as
they will be lower than the recommended dosing in clinic. The recommended dosing for trastuzumab
and rituximab vary for different forms of administration as well as therapeutic conditions. For
rituximab cells containing CD20 surface markers the half maximal inhibitory concentration (IC50) is
around 0.2 µg/mL [11] and for trastuzumab it is 24 µg/mL for gastric carcinoma cell lines [12]. The
concentrations chosen in this study are around these ranges to assess the off target toxicity and have
been used in previous studies that assessed CDC, CDCC, and ADCC effector mechanisms of mAbs in
in vitro studies [13].

2. Materials and Methods

2.1. Materials and Reagents

Freshly isolated peripheral blood mononuclear cells (PBMC), human universal AB serum,
rituximab (stock 100 mg/mL) and trastuzumab (600 mg/mL) were kindly provided by Alcyomics
Ltd., Newcastle upon Tyne, UK. Dulbecco’s Modified Eagle Medium (DMEM, high glucose,
with bicarbonates), Fetal Bovine Serum (FBS), Pencillin-Streptomycin (10,000 units penicillin and 10 mg
streptomycin/mL), Phosphate Buffered Saline (PBS), Trypsin Ethylenediaminetetraacetic acid (EDTA)
solution, Minimum Essential Medium (MEM) non-essential Amino acids, L-glutamine solutions 200
mM and Sodium Pyruvate Solution, tissue culture flask, 96 well F-bottom plates and WST-1 (Cat.
No: 05015944001) were purchased from Sigma Aldrich, Dorset, UK. CellTiter-Glo® Luminescent
Cell Viability Assay was purchased from Promega, Southampton, UK. All kits will be used as per
manufacturers’ instructions.

2.2. Cell Culture and Maintenance

HepG2 (ATCC® HB-8065™) and HDFn (ATCC® PCS-201-010™) cells, kindly provided by the
Newcastle University BioBank, Newcastle Upon Tyne, UK. were grown as an adherent culture in
complete growth media (Dulbecco’s Modified Eagle’s Media supplemented with 10% Fetal Bovine
Serum, 1% Penicillin/Streptomycin, 1% Non-Essential Amino Acids, 1% L-Glutamic acid and 1%
Sodium Pyruvate) in T75 tissue culture flasks at 37 ◦C with 5% CO2, all of the consumables were
purchased from Sigma, Dorset, UK. The cells were subcultured 3 times a week using the following
procedure: The spent medium was removed and the cells were given a Phosphate Buffered Saline
wash following which 1× diluted Trypsin was added to gently lift the cells. The cells were then
re-suspended in 1:15 dilution in T75 tissue culture flasks.

2.3. Cell Seeding and Exposure to mAbs

The HepG2 and HDFn cells were seeded at a density of 5000 cells/well onto a Greiner 96-well
F bottom tissue culture plate (Sigma, Dorset, UK). 50 µL of rituximab (R) and trastuzumab (H) were
added to the test wells at final concentration of 0.1, 1 and 10 µg/mL upon which the plates were
incubated for a further 3 h at 37 ◦C with 5% CO2. Details of the final mAb concentration and volumes
associated are shown in Table A1. Appropriate volumes of media were added to the control wells to
compensate for volume differences arising due to addition of mAbs and effector cells/serum. A final
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concentration of 10 µg/mL of human IgG was used as isotype control. 5% (v/v) of ethanol was used
as the positive. Target control refers to the target cells (HDFn or HepG2) in media.

2.4. Complement Dependent Cytotoxicity (CDC)

Following incubation with varying concentrations of rituximab and trastuzumab, 50 µL of human
universal AB serum were added to the test wells. The plate was incubated overnight at 37 ◦C
with 5% CO2 [14,15]. The layout of the 96-well plate for CDC experiment is outlined in Figure A1c
(Appendix A).

2.5. Antibody Dependent Cellular Cytotoxicity (ADCC)

Following incubation with varying concentrations of rituximab and trastuzumab, 50 µL of PBMCs
at a density of 50,000 cells per well were added to the test wells to achieve an effector to target ratio of
10:1. The plate was incubated overnight at 37 ◦C with 5% CO2 [14,15]. The layout of the 96-well plate
for ADCC experiment is outlined in Figure A1a.

2.6. Complement Dependent Cellular Cytotoxicity (CDCC)

Following incubation with varying concentrations of rituximab and trastuzumab, 50 µL of human
universal AB serum and 50 µL of PBMCs at a density of 50,000 cells per well were added to the test
wells to achieve an effector to target ratio of 10:1. The plate was incubated overnight at 37 ◦C with 5%
CO2 [14,15]. The layout of the 96-well plate for ADCC experiment is outlined in Figure A1b.

2.7. WST-1 Cell Proliferation Assay

Following exposure of cells to the test compounds for 24 h, 10 µL of WST-1 reagent were added per
well and the plates were incubated for an additional 4 h at 37 ◦C with 5% CO2. Endpoint measurements
of absorbance were taken at 480 nm and 600 nm (background) on FLUOstar®Omega multimode
microplate reader (BMG Labtech, Cary, NC, USA). Cell viability was expressed as a percentage of the
target control.

2.8. CellTiter-Glo® Luminescent Cell Viability Assay

Following exposure of cells to test compounds for 24 h, the plate and its contents were equilibrated
at room temperature for approximately 30 min. Volume of CellTiter-Glo® Reagent equal to the volume
of cell culture medium present in each well (e.g., 100 µL of reagent to 100 µL of medium containing cells
for a 96-well plate) was added. Contents were mixed for 2 min on an orbital shaker (VWR microplate
shaker, St Neots, UK) to induce cell lysis. The plate was allowed to incubate at room temperature for
10 min to stabilize luminescent signal. Luminescence was recorded in FLUOStar Omega multiplate
reader (BMG Labtech, Cary, NC, USA).

2.9. Statistical Analysis

Statistical analysis was carried out using Minitab 17 software (Minitab Inc., State College, PA,
USA) [16]. Statistically significant results were reported based on a one way analysis of variance
(ANOVA) test followed by post hoc tests (Tukey’s/Fishers/Dunnett’s) [17,18]. All values are expressed
as percentage of target control with mean ± standard error (SE).

3. Results

3.1. mAb Induced Effect on in Cell Viability

HepG2 cells were treated with varying concentrations of rituximab and trastuzumab. Cell viability
was expressed as percentage of Target control which are wells containing only HepG2 cells. Effector
cells/serum blank refer to those wells which contain only PBMCs for ADCC, serum for CDC and
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PBMCs + serum for CDCC assays to measure background absorbance for the effector cells and/or
serum for the respective endpoint. Neither a concentration dependent effect on cell viability nor an
effector/serum dependent response were observed for either of the tested mAbs as shown in Figure 2,
2.5% (v/v) of ethanol (final concentration) was used as the positive control. Figure 2b–d represents the
pooled responses from four donors for CDC, CDCC and ADCC tests.
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Figure 2. (a) Control conditions without effector cells/serum (b) CDC (c) CDCC, and (d) ADCC assay
results of rituximab and Trastuzumab based on the WST-1 assay. Results represent pooled responses
from four donors (n = 4). All values are expressed as Relative Absorbance Units (RAU) of control
(mean ± SE). R: Rituximab and H: Trastuzumab. Positive control is 5% (v/v) of absolute ethanol.
HepG2: hepatocarcinoma cell line.

3.2. mAb Induced Effect in ATP Levels

HepG2 and HDFn cells were treated with varying concentrations of rituximab and trastuzumab.
ATP content was expressed as percentage of target control which are wells containing only HepG2
cells or HDFn cells. A final concentration of 5% (v/v) ethanol was used as the positive control. Effector
cells/serum blank refer to those wells which contain only PBMCs for ADCC, serum for CDC and
PBMCs + serum for CDCC assays to measure background absorbance for the effector cells and/or
serum for the respective endpoint. Figures 3 and 4 represent pooled responses from four donors
for ADCC, CDC, and CDCC tests. Neither a concentration dependent effect on ATP content nor
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an effector/serum dependent response were observed for either of the tested mAbs on HepG2 cells
(Figure 3).Antibodies 2018, 7, x FOR PEER REVIEW  6 of 13 
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Figure 3. (a) Control conditions without effector cells/serum, (b) CDC, (c) CDCC, and (d) ADCC assay
results of rituximab and trastuzumab based on the ATP content compared to control in HepG2 cells
exposed to mAbs. Results represent pooled responses from four donors (n = 4). All values expressed as
relative luminescence units (RLU) compared to control (mean ± SE). R: Rituximab and H: Trastuzumab.
Positive control is 5% (v/v) of absolute ethanol.

The HDFN cells seem to be slightly more sensitive to the responses evoked by mAbs when
compared to HepG2 cells. Figure 4a depicts the response elicited by mAbs without the influence
of PBMCs and/or serum. The response is generally lower than the target control, which contains
only HDFn cells. When assessing responses resulting from CDC (Figure 4b), all concentrations of
trastuzumab tested have lower responses when compared to the control. A similar trend can be
observed for rituximab, however the variation is higher when compared to trastuzumab (Figure 4b).
Neither a concentration dependent effect on ATP content nor an effector/serum dependent response
were observed for either of the tested mAbs resulting from ADCC and CDCC (Figure 4c,d). HDFn cell
seem to be more sensitive to responses elicited by mAbs.
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Figure 4. (a) Control conditions without effector cells/serum, (b) CDC, (c) CDCC, and (d) ADCC assay
results of rituximab and Trastuzumab based on the ATP content compared to control in HDFn cells
exposed to mAbs. Results represent pooled responses from four donors (n = 4). All values expressed as
relative luminescence units (RLU) compared to control (mean ± SE). R: Rituximab and H: Trastuzumab.
Positive control is 5% (v/v) of absolute ethanol.

3.3. Effect of Donor Variability and Intrinsic Variation

The PBMCs used in the assay were obtained from four different donors and the corresponding
responses were varied and non-specific both in terms of the mAb used as well as dose. Figure 5 shows
the intrinsic variability in the ADCC and CDC assays owing to donor variability. This variability could
be due the specificity of the immune response evoked by each individual which depends on many
factors such as genetic make-up and environmental exposure. This intrinsic variation in the assay
could potentially confound the outcome of any adverse effect elicited by mAbs.
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Figure 5. Intrinsic variation in responses owing to donor variability in ADCC and CDCC assay results
of rituximab and Trastuzumab based on the ATP content compared to control in HepG2 cells exposed
to mAbs for (a) Donor 1, (b) Donor 2, (c) Donor 3 and (d) Donor 4 All values expressed as relative
Absorbance Units (RAU) compared to control (mean ± SE). R: Rituximab and H: Trastuzumab. Positive
control is 5% (v/v) of absolute ethanol.

4. Discussion

The in vitro systems selected in this study were based on the two main adverse effects associated
with mAb based therapeutics: hepatotoxicity and dermal toxicity. Rituximab and trastuzumab elicit
an immune mediated reaction to neutralize tumour cells via ADCC, CDC, and/or CDCC [5,15].
The traditional toxicity tests used here are routinely used for assessing safety and toxicity of compounds
in multitier toxicological assessment studies [6]. The objective of the assay used here was to observe
any adverse effects of mAbs on HepG2 and HDFn cells upon exposure to naïve PBMCs i.e., detection
of any off-target toxicity elicited by mAbs. Both Rituximab and trastuzumab have shown hepatobiliary
and skin/infusion related adverse effects in clinical trials [9,10].

However, as seen from the results shown in Figures 2 and 3, no dose dependent effect on cell
viability or ATP levels were observed for either of the mAbs for HepG2 cells. The antigens for rituximab
and trastuzumab are CD20 and HER2, respectively. As the potential off target effects were investigated,
both cell lines were chosen such that they do not possess these antigens as surface markers. As HepG2
and HDFn cells do not express the antigen for either rituximab or trastuzumab ADCC and CDCC
modes of decrease in cell viability were not observed owing to lack of direct cross target binding
associated toxicity. While rituximab has shown to elicit higher CDC mediated responses, the CDC
mediated effect of trastuzumab is comparatively lower [15]. This has shown to be due to the influence
of membrane-bound complement regulatory proteins such as CD46, CD55, and CD59 which are
overexpressed in tumour cells [19]. CD46 is indeed overexpressed in HepG2 cells and this could be
an additional reason why CDC mediated effect was not observed in HepG2 as compared to HDFn
cells [20]. For HDFn cells a decrease in ATP compared to control was observed for all concentrations
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of trastuzumab tested and a similar trend was observed for rituximab but with higher variability,
for CDC mediated response (Figure 4b).

Variability in donor responses will be a confounding factor affecting the potential to detect any
off target adverse effects, as intra donor variability is quite high owing to the specificity of immune
responses elicited (Figure 5). The clinical immunogenicity associated with rituximab and Trastuzumab
are between 1–23% and 1%, respectively, and this variation is reflective of clinical trials. [21].

Exposure time is another possible reason for the lack of response for these assays. Immune specific
reaction could take 5–7 days to develop and this could lead to depletion in the target cell number
and hence wouldn’t be feasible in this context without a continuous culture in place. This has been
shown in T cell proliferation assays for monoclonal antibodies wherein the early phase effects were
identified at 20 h and late phase effects at 7 days [21]. However, this requires additional measures in
place for continuous maintenance of the PBMCs to maintain them at least a minimum 90% viability.
In the case of traditional toxicity tests used to assess off target effects, a continuous maintenance of
PBMCs would confound the ability of the test to detect any decrease in cell viability. The percentage
viability of PBMCs compared to control at the end of the 72 h testing period was below 40% as seen
from Figure 2c,d and Figure 3c,d for HepG2 based testing and this distorts the effector target ratio
essential for achieving a response. The percentage viability of PBMCs compared to control was around
70% for ADCC and around 85% for CDCC as seen in Figure 4c,d for HDFn cells.

The hallmarks of state of the art non-clinical safety testing tools that would facilitate the accelerated
growth of the biopharmaceutical market would be: high throughput; rapid and cost effective; highly
reproducible and allow for early stage screening. They would also provide an alternative to animal
testing considering the various drawbacks of in vivo systems as seen in the case of TGN1412 [22].
The evolution of simple 2D systems to complex in vitro systems such as 3D spheroidal co-cultures,
organs on chips as well as whole blood systems are platforms that are better representations of immune
responses elicited in humans [23]. Receptor binding studies are also considered to be indicative of
biological activity of mAbs as binding to different FcγR receptors elicit different effector functions [24].
These studies can either be cell based or conjugated beads based such as αscreen™ technology [25,26].
Immunogenicity testing of mAb based therapeutics using T cell proliferation and cytokine assay have
been reported previously for rituximab and trastuzumab [21]. Hypersensitivity reactions have been
assessed using Skimune™, a non-artificial human skin explants based assay for safety and efficacy
assessment of novel compounds and drugs, developed by Alcyomics Ltd., Newcastle upon Tyne,
UK [27]. Immunoinformatics is another promising area which allows for assessing the presence of
potential T cell and B cell epitopes that could lead to formation of anti-idiotype antibodies as well as an
aggravated immune response [28,29]. These advancements may contribute to enhanced non-clinical
safety testing strategies for mAb developability.

To summarize, this study looked at the applicability of traditional in vitro toxicity tests to assess
potential off target hepatotoxicity and dermal toxicity of mAbs using HepG2 and HDFn cell based
assays. Though these assays are routinely using for assessing toxicity of compounds, they deemed to be
unsuitable in this case due to several factors and thus, no apparent dose or mAbs specific cytotoxicity
or decrease in ATP levels were observed. Therefore, novel assays would be more suitable for detecting
potential immune related adverse effect elicited by mAbs.
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Figure A1. Layout of (a) ADCC, (b) CDCC and (c) CDC experiment. NC: Negative Control, PC: 
Positive Control, IC: Isotype Control, AICC: Antibody independent cellular cytotoxicity, EC: Effector 
Control. 
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