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Pili are found on the surface of many bacteria and play important roles in cell motility,

pathogenesis, biofilm formation, and sensing and reacting to environmental changes. Cell

motility in themodel cyanobacteriumSynechocystis sp. PCC 6803 relies on expression of

the putative pilA9-pilA10-pilA11-slr2018 operon. In this study, we identified the antisense

RNA PilR encoded in the noncoding strand of the prepilin-encoding gene pilA11. Analysis

of overexpressor [PilR(+)] and suppressor [PilR(−)] mutant strains revealed that PilR is a

direct negative regulator of PilA11 protein. Although overexpression of PilR did not affect

cell growth, it greatly reduced levels of pilA11mRNA and protein and decreased both the

thickness and number of pili, resulting in limited cell motility and small, distinct colonies.

Suppression of PilR had the opposite effect. A hypothetical model on the regulation of

pilA9-pilA10-pilA11-slr2018 operon expression by PilR was proposed. These results add

a layer of complexity to the mechanisms controlling pilA11 gene expression and cell

motility, and provide novel insights into how sRNA and the intergenic region secondary

structures can work together to discoordinatly regulate target gene in an operon in

cyanobacterium.

Keywords: Synechocystis sp. PCC 6803, PilR, pilA11, pili, cell motility

INTRODUCTION

Cyanobacteria are ancient organisms that perform oxygenic photosynthesis (Waterbury et al.,
1985). According to endosymbiotic theory, plant chloroplasts originated from cyanobacteria (or
a cyanobacteria-like organism) through primary endosymbiosis. Many cyanobacteria move by
gliding, swimming, or twitching (Waterbury et al., 1985; Häder, 1987). Gliding motility is a
slow, uniform, forward motion, which parallel to the cell’s longitudinal axis on a solid surface
(Häder, 1987). This type of motion is occasionally interrupted by reversals in filamentous
cyanobacteria such as Phormidium uncinatum and Anabaena variabilis (Häder, 1987). Several
marine species of unicellular Synechococcus show swimming motility through liquids at a rate of
25µm s−1(Waterbury et al., 1985). Twitching motility is small and intermittent translocation on
a solid surface with frequent changes in direction (Henrichsen, 1972). Synechocystis sp. PCC 6803,
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a model unicellular cyanobacterium, exhibits twitching motility
on an agar plate or glass slide (Stanier et al., 1971; Ng et al., 2003).

The pilus is a hair-like appendage found on the surface of
many single-celled prokaryotes and has emerged as an efficient
device for cell motility, pathogenesis (Herrington et al., 1988;
Strom and Lory, 1993; Sauer et al., 2000), biofilm formation
(Pratt and Kolter, 1998; Barken et al., 2008), and environmental
sensing (Kawagishi et al., 1996). The genomic sequencing of
Synechocystis sp. PCC 6803 was finished in 1996 (Kaneko et al.,
1996). Since then, a number of genes (known as the pil genes)
involved in pilus biogenesis, cell motility, and transformation
competency have been revealed by mutational analysis (Bhaya
et al., 1999, 2000, 2001; Yoshihara et al., 2001), which show
homology to type IV pili biogenesis genes in many Gram-
negative bacteria. Nonflagellar appendages of Gram-negative
bacteria can be categorized into five major classes based on
their biosynthetic pathway (Fronzes et al., 2008; Lo et al.,
2013): chaperone–usher pili (Sauer et al., 1999; Waksman
and Hultgren, 2009; Busch and Waksman, 2012; Geibel and
Waksman, 2014; Pham et al., 2016), curli (Olsén et al., 1989;
Barnhart and Chapman, 2006; Green et al., 2016), type IV pili
(Bhaya et al., 2000; Merz et al., 2000; Maier et al., 2002; Busch
and Waksman, 2012; Busch et al., 2015), type III secretion
needle (Roine et al., 1997; Kubori et al., 1998), and type
IV secretion pili (Seubert et al., 2003; Schröder and Lanka,
2005). Eleven pilA-like genes are contained in Synechocystis
genome, which encode a prepilin peptide with a characteristic
sequence (Yoshihara et al., 2002; Yoshimura et al., 2002). Of
these genes, pilA10, pilA11, and slr2018 function in cell motility
(Bhaya et al., 2001), and pilA1 is essential for the formation
of thick and thin pili (Bhaya et al., 2000; Yoshihara et al.,
2001).

Transcriptome analyses have identified numerous noncoding
transcripts in bacteria, mainly trans-encoded RNAs and
cis-antisense RNAs (asRNAs) (Waters and Storz, 2009).
Cis-encoded asRNA transcripts appear to be dominant in
several cyanobacteria. For example, asRNAs respectively
comprise 26 and 39% of all genes in Synechocystis sp.
PCC 6803 (Georg et al., 2009; Mitschke et al., 2011a)
and Anabaena sp. PCC 7120 (Mitschke et al., 2011b).
Chromosomally encoded asRNAs may play important roles
in the regulatory networks of cyanobacteria. During the
past decade, numerous newly discovered asRNAs have been
shown to be involved in a wide range of processes (Kopf and
Hess, 2015), including stress responses, photoprotection, low
carbon responses, and carbon assimilation (Dühring et al.,
2006; Eisenhut et al., 2012; Sakurai et al., 2012; Hu et al.,
2017).

The transcriptome analysis using differential RNA sequencing
in Synechocystis sp. PCC 6803 (Xu et al., 2014; Hu et al., 2017)
revealed a low-abundance asRNA encoded in the noncoding
strand of pilA11, which was named PilR. In this study, we
determined the molecular functions of PilR by identifying its
target gene, pilA11. An analysis of mutants with either elevated
or reduced levels of PilR expression showed that PilR plays a key
role in pilus formation and cell motility by negatively regulating
pilA11 expression.

RESULTS

Characterization of PilR
Differential RNA sequencing of the Synechocystis sp. PCC
6803 (hereafter Synechocystis) transcriptome detected an asRNA,
designated PilR, with a transcription start site at the 3′ end of
the pilA11 gene, but on its complementary strand. PilR was
determined to be 210 long using Northern blot (Figure 1A)
and RACE analyses, and its transcription start site was mapped
to nucleotide nt758305 in the sequenced genome. PilR extends
from positions 677–886 in the coding sequence of pilA11
(Figure 1B), and can be folded into two extended stem regions,
with a terminal loop at each ending as predicted by the
mfold software (http://www.bioinfo.rpi.edu/applications/mfold/;
Figure 1C), such loops structures are believed to be involved in
RNA–RNA interactions and therefore functionally related to the
hypothetical trans-acting function (Dühring et al., 2006).

We further constructed background control, PilR
overexpression [PilR(+)], and PilR suppression [PilR(−)] strains
(Supplementary Figure S1) for investigating the relationship
between PilR and its target gene, pilA11. PilR appears to be a
negative regulator of pilA11 expression during the exponential
growth phase, as revealed through qRT-PCR and immunoblot
analyses of these strains (Figures 2A,E). As shown in Figure 2A,
the levels of asRNA PilR were 4.28-fold higher in the PilR(+)
strain than in the control, and 0.25-fold lower in the PilR(−)
strain than in the control (Figure 2A, white speckled bars; ∗∗P
< 0.01). By contrast, the levels of pilA11 mRNA were 0.45-fold

FIGURE 1 | Characterization of the antisense RNA PilR in Synechocystis sp.

PCC 6803. (A) Typical detection pattern of PilR and 5S rRNA by Northern blot

analysis. Five micrograms of total RNA were loaded for detection of 5S rRNA.

Fifty micrograms of total RNA were used to detect PilR. (B) Location of the

pilA11 gene within the genome. The red arrow marks the transcription initiation

site. The blue arrow marks the PilR transcription initiation site detected by the

RACE experiments. (C) The RNA secondary structure prediction for PilR.

Arrows point to the experimentally detected 5′ (red) and 3′ (green) ends.
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lower in the PilR(+) strain than in the control, and 2.06-fold
higher in the PilR(−) strain than in the control (Figure 2A,
gray bars, ∗∗P < 0.01). Similarly, the levels of PilA11 protein
were 0.55-fold lower in the PilR(+) strain than in the control,
and 1.25-fold higher in the PilR(−) strains than in the control
(Figure 2E).

As previous investigations on the expression levels of the
six genes (slr1667, slr1668, pilA9, pilA10, pilA11, and slr2018)
strongly suggested that pilA9, pilA10, pilA11, and slr2018
constitute one operon (Kamei et al., 2001a; Yoshimura et al.,
2002; Panichkin et al., 2006) to verify that PilR affects pilA11 but
no other genes in the pilA9-pilA10-pilA11-slr2018 operon, pilA9,

pilA10, and slr2018 transcript levels were also analyzed by qRT-
PCR in the mutant strains (Figures 2B–D). We found that the
mRNA levels of pilA9 were 0.87-fold lower in the PilA(+) strain
than in the control, and 1.10-fold higher in the PilA(−) strain
(Figure 2B, P > 0.05); those of pilA10 were 1.11-fold higher in
the PilA(+) strain than in the control, and 1.20-fold higher in
the PilA(−) strain (Figure 2C, P > 0.05); and those of slr2018
were 1.13-fold higher in the PilA(+) strain than in the control,
and 1.18-fold higher in the PilA(−) strain (Figure 2D, P > 0.05).
These results suggest that PilR has no significant effect on the
stability of the mRNA portions that encode pilA9, pilA10, and
slr2018, providing strong evidence that PilR, despite its relatively

FIGURE 2 | The influence of PilR on pilA9–pilA10–pilA11–slr2018 operon transcription and PilA11 protein. The expression levels of (A) PilR (white) and pilA11 mRNA

(gray), (B) pilA9 mRNA (gray), (C) pilA10 mRNA (gray), and (D) slr2018 mRNA (gray) in cells with normal (control), overexpressed [PilR(+)], and suppressed [PilR(-)]

levels of PilR in BG11 medium as measured by qRT–PCR. All data are shown as means ± SD (n = 5). (E) Immunoblot of PilA11 protein isolated from total protein of

control, PilR(+), and PiIR(−) mutant cells in BG11 medium. Significant differences between the control (CON) and test values were determined using a one–way

ANOVA. **P < 0.01 vs. CON.
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low steady-state expression level, negatively regulates the amount
of pilA11mRNA and PilA11 protein in Synechocystis.

PilA11 Localization
To visualize the influence of PilR on PilA11 protein, we
observed the in vivo localization of PilA11 protein in control,
PilR(+), and PiIR(−) strains using immunofluorescence
and confocal microscopy. PilR(+) cells exhibited weaker
fluorescence compared to the control strain, but PilR(−) cells
had significantly enhanced fluorescence compared to the control
(Figures 3, 4; Table 1, ∗∗P < 0.01), in agreement with their
protein levels (Figure 2E). When enlarged and visualized at the

FIGURE 3 | Fluorescence images showing the control, PilR(+), and PiIR(−)

cells labeled with PilA11–Alexa Fluor 488. (A) A group of individual cells. (B) A

single cell. The merged panel shows images of cells labeled with PilA11

(green) and chlorophyII (red) merged together. White bars = 2 and 0.5µm.

single cell level, the fluorescence signal could be observed clearly
at the cell surface of all strains (Figure 3), as expected given its
role in cell motility. We also observed high levels of fluorescence
in all three strains in dividing cells (Figure 4, Supplementary
Figure S2), suggesting that PilA11 protein is enriched at the cell
surface during division regardless of PilR levels.

Pilus Formation and Cell Motility of the
PilR Mutant Strains
Previous studies showed that PilA11 was an essential protein
for cell motility and thick pili formation (Bhaya et al., 2001;

FIGURE 4 | Up–regulated expression of PilA11 protein during cell division.

(A) A group of individual cells. (B) A single cell. Fluorescence images of control

and PilR(+)/(−) mutant cells labeled with PilA11–Alexa Fluor 488. Arrows

indicate cells undergoing division. White bars = 2 and 0.5µm.
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TABLE 1 | PilA11 protein fluorescence intensity in the PilR mutant cells.

Cell state CON PilR(+) PilR(−)

Interphase 14,281 ± 2,481 5,066 ± 1,547** 22,366 ± 3,809**

Cell division 51,911 ± 4,661 14,868 ± 5,945** 78,113 ± 3,194**

The fluorescence intensity of PilA11 protein was measured and calculated using the

Quantity One software package, version 4.0.0 (Bio–Rad, http://www.bio-rad.com/) in 50

individual cells for each of the three strains. All values are means ± standard deviation.

Significant differences between the control (CON) and test values were determined using

a one–way ANOVA. **P < 0.01 vs. CON.

Panichkin et al., 2006). To test the effect of PilR on PilA11 protein
function, we examined cell motility and thick pili formation
in the PilR strains. Cyanobacterial cells were grown under
normal conditions, and cells were maintained in the presence
of 20 µg·mL−1 kanamycin. However, for eliminating possible
phenotypic alterations due to the antibiotic, the final cultures
without kanamycin were used in the experiments.

We examined control, PilR(+), and PiIR(−) cells with an
electron microscope to investigate whether changes in PilR
expression affected the formation of pili. As shown in Figure 5,
the pili of PilR(+) cells were significantly thinner and fewer
than the well-developed, normal pili of the control cells. Pili of
PilR(−) cells were thicker and denser than those of the control.
The number and diameter of pili of fifty individual cells each
of the control, PilR(+), and PiIR(−) strains were examined and
the results confirmed that PilR overexpression or suppression
significantly affected pilus formation (Table 2).

To investigate the effects of PilR on cell growth and motility
in Synechocystis, we analyzed the three strains under normal
conditions in liquid culture or on agar plates. As shown in
Figure 6A andTable 3, when cultured in liquid BG11, the growth
rate and pigmentation were not affected in either the PilR(+) or
PilR(−) strains. We examined the effects of PilR overexpression
or suppression on motility by monitoring the colonies shape
formed on agar plates. The colonies of the PilR(−) strain were
larger and more diffuse than the control colonies, whereas
those of the PilR(+) strain were smaller and more centralized
(Figure 6B).

We then performed agar surface-based phototaxis assays
to clarify the differences in motility between the control,
PilR(+), and PiIR(−) strains (Figure 6C). When the cells
were dot plated and exposed to a unidirectional light source
for 7 days, the control and PilR(−) mutant strains showed
positive phototactic movement, with the latter having a stronger
phenotype. The PilR(+) mutant strain showed almost no
sign of phototactic movement (Figure 6C), suggesting that
PilR expression influences Synechocystis cell motility in a
concentration-dependent manner.

DISCUSSION

Many species of cyanobacteria move by gliding, twitching,
or swimming. Unlike Escherichia coli and Chlamydomonas
reinhardtii,which use flagella, cyanobacteria use a pilus apparatus
for motility (Waterbury et al., 1985; Häder, 1987). The

FIGURE 5 | Electron micrograph of control, PilR(+), and PiIR(−) cells. Cells

were processed by negative staining techniques and examined with an

electron microscope. The pili of PilR(+) cells were thinner than those of the

control cells, and the pili of PilR(−) cells were thicker than those of the control

cells. White bars = 1µm; black bars = 0.5µm.

TABLE 2 | Number and diameter of pili in PilR mutant cells.

Pili CON PilR(+) PilR(−)

Number (per cell) 36.7 ± 4.5 7.7 ± 1.5** 57.3 ± 4.0**

Diameter (nm) 4.80 ± 0.60 3.26 ± 0.30** 6.06 ± 0.30**

Number of pili was calculated for the cross-sections of 50 cells. All values are means

± standard deviation. Significant differences between the control (CON) and test values

were determined using a one-way ANOVA. **P < 0.01 vs. CON.

oxygenic phototrophic cyanobacterium Synechocystis exhibits
twitching motility (Stanier et al., 1971; Ng et al., 2003). Two
morphologically distinct pilus types, thick and thin, exist in wild-
type Synechocystis cells. Thick pili, possibly encoded by pilA1,
are similar to type IV pili in many functional and morphological
characteristics. Thin pili with smaller diameter are shorter than
typical type IV pili (Bhaya et al., 2000). Type IV pilus biogenesis
requires a complex polypeptides assemblage, located in the
cytoplasmic membrane, the periplasm, or the outer membrane,
for post-translational modification (e.g., PilD), assembly and
export (e.g., PilC, PilQ) (Bhaya et al., 2000).. Type IV pili subunits
(i.e., PilA) have a conserved, hydrophobic α-helix domain at
the N-terminus, which consists of 20–25 amino acids that
forms the hydrophobic pilus core (Proft and Baker, 2009). pilA1
is responsible for the structure, motility, and transformation
efficiency of thick pilus (Bhaya et al., 1999; Yoshihara et al., 2001).
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FIGURE 6 | The effect of PilR on growth and motility in Synechocystis sp.

PCC 6803. (A) Growth of cells in liquid culture. OD730, optical density at

730 nm. (B) Exponentially growing cells (200 µL) were spotted onto a 1% agar

BG11 plate. The plates were placed under an incandescent light source of 30

µmol photons·m−2·s−1 and allowed to grow for 7 days. (C) Comparison of

the agar surface-based phototaxis assays. Cells were applied to the surface of

0.5% agar with a micropipette and placed in front of a unidirectional light

source of 30 µmol photons·m−2·s−1 for 7 days. The arrows indicate the

direction of light.

Mutants with disrupted pilA2, which encodes a second pilin-like
protein, are still motile with normal cell-surface pili morphology
and density. By contrast, inactivation of pilD, which encodes the
leader peptidase, or pilC, which encodes a protein required for
pilus assembly, abolishes cell motility and causes the absence
of both pilus morphotypes (Bhaya et al., 2000). In our study,
suppression of pilA11 by overexpression of its antisense RNA
PilR [PilR(+)] leads to thin, sparse pili, whereas PilR suppression
[PilR(−)] has the opposite effect (Figure 5). This indicates that

TABLE 3 | The effect of PilR on pigmentation in Synechocystis sp. PCC 6803.

Pigmentation CON PilR(+) PilR(−)

Chlorophyll a (mg/L) 4.09 ± 0.54 4.34 ± 0.27 4.02 ± 0.23

Carotenoid (mg/L) 1.46 ± 0.28 1.59 ± 0.16 1.37 ± 0.20

All values are means ± standard deviation. Significant differences between the control

(CON) and test values were determined using a one–way ANOVA.

pilA11may also contribute to thick pilus biogenesis and, indeed,
the ratio of thick pili to all pili was altered in the PilR mutant
strains.

A locus containing five genes (pilA9-pilA10-pilA11-slr2018-
slr2019) was discovered in Synechocystis in an analysis of
transposon-generated mutants (Bhaya et al., 2001). The protein
encoded by pilA10 shows weak similarity to members of the
PilA-like protein family (Bhaya et al., 1999), but the proteins
encoded by pilA11 and slr2018 lack obvious functional motifs
and have no clear homologs in protein databases. We observed
that expression of pilA11, but not pilA9, pilA10, or slr2018, is
negatively affected by its antisense sRNAPilR (Figure 2), and that
overexpression of PilR disturbs the biogenesis of the thick pilus
morphotype (Figure 5), which affects cell motility (Figure 6).
These results suggest that PilR negatively regulates pilA11 and has
an important function in cell motility.

SpkA and the ATPase PilT are required for motility in
Synechocystis (Kamei et al., 2001b; Okamoto and Ohmori,
2002). Bhaya et al. showed that the pilA10, pilA11, and slr2018
genes were essential for cell motility (Bhaya et al., 2001).
This study found that on 1% agar-solidified plates the pilA11
asRNA overexpressor PilR(+) colonies are small and distinct,
whereas the suppressor PilR(−) colonies are large and diffuse
(Figure 6B). spkA::Cmr mutant cells, in which the pilA9-pilA10-
pilA11-slr2018 operon is down-regulated, also form distinct
colonies similar to PilR(+) (Panichkin et al., 2006). The observed
phenotype of PilR(+) mutant strains is consistent with a previous
analysis showing that the putative pilA9-pilA10-pilA11-slr2018
operon in Synechocystis might be involved in the formation
of thick pili (Panichkin et al., 2006). However, the effect that
expression of the operon has on Synechocystis cells has not been
deciphered until now.

sRNAs regulate gene expression from polycistronic messages
through a variety of mechanisms (Balasubramanian and
Vanderpool, 2013), which can alter expression of select genes in
an operon by inhibiting the translation of genes or by altering
the stability of mRNA, resulting in discoordinate regulation of
the target mRNA (Møller et al., 2002; Kalamorz et al., 2007;
Desnoyers et al., 2009). Alternatively, they can affect expression
of all genes in an operon by sRNA-mRNA interactions, causing
coordinate regulation (Rice and Vanderpool, 2011; Lu et al.,
2012). The 210 nt sRNA PilR was identified as an asRNA by
repressing expression of pilA11 gene, but not pilA9, pilA10, or
slr2018, in Synechocystis (Figure 2). It is speculated that PilR
prevents pilA11 gene expression by selective mRNA degradation.
This type of regulation represses pilA11 gene expression, but
allows continued synthesis of other Type IV pilin-like proteins.
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FIGURE 7 | Hypothetical model on the regulation of

pilA9-pilA10-pilA11-slr2018 operon expression by PilR. (A) A secondary

structure of the intergenic region between pilA11 and slr2018 cistrons

(represented by hairpin structure in panel B) as determined by the mfold

software (http://www.bioinfo.rpi.edu/applications/mfold/). (B) Normally,

single-stranded pilA9-pilA10-pilA11-slr2018 mRNA is translated into three

type 4 pilin-like protein, PilA9, PilA10, PilA11 and the unknown protein Slr2018

(upper panel). While the degradation of pilA11 mRNA is typically triggered by

sRNA PilR base pairing to the target mRNA, and results in translational

silencing and promoted degradosome-dependent endonucleolytic cleavage of

the pilA11 portion of the mRNA (middle panel). The degradosome is stopped

and discharged by the hairpin structure between the pilA11 and slr2018

cistrons and thus selectively prevents the slr2018 mRNA from degradation

(lower panel).

To further elucidate the discoordinate regulation mechanism
of the cis-type PilR transcript to pilA11 gene, a closer sequence
inspection is needed in both target gene pilA11 and asRNA
PilR, their cleavage by RNases. By sequence analysis, a strong
secondary structure (Figure 7A) in the intergenic region between
the pilA11 and slr2018 cistrons was predicted. Add up to
the present understanding of the function of PilR in the
regulation of pilA11 gene expression, a hypothetical model on
the regulation of pilA9-pilA10-pilA11-slr2018 operon expression
by PilR was proposed (Figure 7). Normally, single-stranded
pilA9-pilA10-pilA11-slr2018 mRNA is translated into three type

IV pilin-like protein, PilA9, PilA10, PilA11 and the unknown
protein Slr2018 (Figure 7B, upper panel). While the degradation
of pilA11 mRNA is typically triggered by sRNA PilR base
pairing to the target mRNA, and results in translational silencing
and promoted degradosome-dependent endonucleolytic cleavage
(Kaberdin et al., 2011; Balasubramanian and Vanderpool, 2013)
of the pilA11 portion of the mRNA, presumably by RNase E
(Figure 7B, middle panel). The degradosome is stopped and
discharged by the hairpin structure (Figure 7A) between the
pilA11 and slr2018 cistrons and thus selectively prevents the
slr2018 mRNA from degradation (Figure 7B, lower panel). The
suggested model provides novel insights into how sRNA and
the intergenic region secondary structures can work together to
discoordinatly regulate target gene in an operon in Synechocystis
(Figures 2A,E).

Cis-encoded asRNA transcripts typically regulate target
gene expression either negatively, as is the case for IsrR
(Dühring et al., 2006) and As1_flv4 (Eisenhut et al., 2012), or
positively, as is the case for PsbA2R, PsbA3R (Sakurai et al.,
2012), and RblR (Hu et al., 2017). These asRNAs are involved
in various processes (Kopf and Hess, 2015), but prior to this
study, no asRNAs related to cell motility were known. Our
results show that the asRNA PilR is encoded by the antisense
strand of the pilA11 gene and negatively regulates its expression
through complementary base pairing. Downregulation of this
member of the putative pilA9-pilA10-pilA11-slr2018 operon
reduces the number and thickness of the pili, affecting cell
motility. These results add a new layer of complexity to the
regulatory mechanisms controlling pilA11 gene expression and
function and hence cell motility.

EXPERIMENTAL PROCEDURES

Strains and Growth Conditions
Wild-type Synechocystis was cultured as described previously
(Hu et al., 2017). Solid medium supplemented with 1% (w/v)
or 0.5% (w/v) agar is used to observe colony morphology for
motility evaluation. After generating mutant strains (see below),
kanamycin (20µg/mL) was added to the growth medium to
identify the transformed cells. Antibiotics were excluded during
phenotyping to avoid interactions. The colonies were trained for
7 days under lateral illumination with a white fluorescent lamp
(∼30 µmol photons·m−2·S−1).

RNA Extraction and Northern Blot Analysis
Total RNA extraction was performed as described previously
(Hu et al., 2017). Northern blot analysis was performed
as previously described (Hu et al., 2014). [γ-32P] ATP
(PerkinElmer, USA) was used for the labeling of probes. DNA
oligonucleotides used for the Northern blot analysis are listed in
Table 4.

5′- and 3′- Rapid Amplification of cDNA
Ends (RACE)
The 5′ end and 3′ end RACE was performed according to Hu
et al. (2014). All oligonucleotides and primers used in the RACE
analysis are listed in Table 4.
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TABLE 4 | Oligonucleotides used in this study.

Name Sequence (5′
−3′) Experiment

PilR-R TTGGAGTTACGGGAAACCTTAC PilR probe

3′ linker phosphorylated-AAGATGAATGCAACACTTCTGTACGACTAGAGCAC-NH2 RACE

3′ RTrevlinker GTGCTCTAGTCGTACAGAAGTGTTGCATTCATC RACE

3′ PCRrevlinker GTGCTCTAGTCGTACAGAAGTGTTGCATTCATC RACE

PilR-rev TAATAATTACACTGCCGGCGG 5′ RACE, first PCR

PilR-rev2 ACGGGGCTATCGCCTCAA 5′ RACE, second PCR

PilR-rev3 GCAAGCAACTATTGATGGGGT 5′ RACE, third PCR

PilR-fw1 GGAAGAAGTCTAGTGCAATCGGA 3′ RACE, first PCR

PilR-fw2 ATTGAGGCGATAGCCCCGTTC 3′ RACE, second PCR

PilR-qRT-F GAAGTCTAGTGCAATCGGAAGG qRT-PCR

PilR-qRT-R TTGGAGTTACGGGAAACCTTAC qRT-PCR

pilA9-qRT-F TAGTCGTGGTGGTGATTGGC qRT-PCR

pilA9-qRT-R TGCCCTAGTTCTAGCGGTCT qRT-PCR

pilA10-qRT-F TGAGTTGGACGCCCAGTTAG qRT-PCR

pilA10-qRT-R GGAACAAGTCCCGTTGGGAT qRT-PCR

pilA11-qRT-F CTGAAATTCCTCCCGCTGGT qRT-PCR

pilA11-qRT-R TGCCCATTGCCGTTGTAGAT qRT-PCR

slr2018-qRT-F TCTCCGGTTTGTTGGTAGCC qRT-PCR

slr2018-qRT-R ATTCAGGGCTCCTTCTGCAC qRT-PCR

5′rnpB AATGCGGTCCAATACCTCC Mutagenesis (overlap extension PCR)

3′rnpB/kana GTTACCCA TGATATCTCTTTTTCTAGTGTGCCATTG Mutagenesis (overlap extension PCR)

5′kana/rnpB CTAGAAAAAGAGATATCAGTTGGGTAACGCCAGGG Mutagenesis (overlap extension PCR)

3′kana CACTTTATGCTTCCGGCTCG Mutagenesis (overlap extension PCR)

slr0168-F ACCTCTCCACGCTGAATTAGA Mutagenesis (slr0168, upstream)

slr0168-R TAATACCCACCGCACTGACC Mutagenesis (slr0168, downstream)

PilR(+)-F GAAGTCTAGTGCAATCGGAAGG Mutagenesis (PilR, upstream)

PilR(+)-R TTGGAGTTACGGGAAACCTTAC Mutagenesis (PilR, downstream)

PilR(−)-F TAGAAGAACGGGGCTATCGC Mutagenesis (anti-PilR, upstream)

PilR(−)/oop ter-R GGAATAAAAAACGCCCGGCGGCAACCGAGCGTTGAAGTCTAGTGCAATCGGAAGG Mutagenesis (anti-PilR, downstream)

0168-F CCCTGAAGTTAGCCAGTTTAATTG PCR

0168-R GTCACTGAAGCGGTCTAACTTAGC PCR

The 3′ RACE analysis was performed prior to 5′ RACE. All PCR primers for 5′ RACE were designed according to the results of 3′ RACE. fw, forward; rev, reverse.

qRT-PCR Validation
The qRT-PCR analysis was done by standard procedure using
cDNA as previously described (Hu et al., 2014, 2017). All data
are shown as the mean ± SD (n = 5). All primers used for the
analysis are listed in Table 4.

Mutagenesis
Mutant strains PilR(+), and PilR(−) were created as previously
described (Golden et al., 1987; Hu et al., 2017). All primers used
for this analysis are listed in Table 4.

Protein Gel and Immunoblot Analysis
Protein gel and immunoblot analysis were performed as
previously described (Hu et al., 2014). The membranes were
probed with rabbit primary anti-PilA11 antibodies (1:5,000;
QWbio, http://www.qwbio.com Beijing).

Electron Microscopy
Specimens were prepared for electron microscopy using
the conventional negative staining procedure (Bhaya
et al., 1999) with the following modifications. Briefly, a
200 µL drop of sample solution was adsorbed onto a glow-
discharged carbon-coated copper grid for 10min, stained
with two drops of freshly prepared 2% phosphotungstic
acid (pH 7.0), and examined using a Hitachi HT7700
microscope.

Immunofluorescence Microscopy
Microscopy analysis of cells grown in liquid BG11 medium was
carried out using a confocal scanning microscope (Leica TCS
SP8, Wetzlar, Germany). PilA11 localization was performed as
previously described (Miyagishima et al., 2005; Zhan et al., 2016).
The fluorescence intensity wasmeasured and quantified using the
Quantity One software package, version 4.0.0 (Bio-Rad, http://
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www.bio-rad.com/) in 50 individual cells for each of the three
strains.

Measurements of Chlorophyll a and
Carotenoid Contents
Chlorophyll a and carotenoid contents were measured as
described (Zhang et al., 2013). Chlorophyll a (Ca) and total
carotenoid (Cc) contents were calculated according to Equation
(1) (Harmut and Lichtenthaler, 1987).

Ca = 16.72A665.2 − 9.16A652.4

Cc = (1000A470 − 1.63Ca)/221 (1)

Calculating the Number and Diameter of
Pili
Number and diameter of pili were calculated for the cross-
sections of 50 cells of electron microscopy using ImageJ
software. All values are means ± standard deviation.
Significant differences between the control (CON) and test
values were determined using a one-way ANOVA. ∗∗P < 0.01
vs. CON.
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