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While scientific interest in understanding the grit trait has grown exponentially in recent

years, one important gap in the grit literature relates to its biological and neural substrate.

In the present study, we adopted a hypotheses-driven approach in a large sample of

young adults (N = 120) with diverse educational backgrounds and work experiences

in order to investigate the electrophysiological correlates of grit both during rest and

while performing a learning task. Additionally, we selected a measure of impulsiveness

to better understand the neural similarities and differences between grit and related

self-control constructs. Based on previous work that implicated the prefrontal cortex in

grit, we hypothesized that high grit participants would have lower frontal theta/beta ratio

(a broadly used index that reflects prefrontally-mediated top–down processes, which

might indicate better control over subcortical information). Furthermore, we expected

the perseverance of effort facet of grit to be linked to higher complexity during task

engagement because previous research has shown complexity indexes (entropy and

fractal dimension) to be linked to effort while performing cognitive tasks. Our results

revealed that although there were no differences at rest as a function of grit, the

participants with high grit and high consistency of interest scores exhibited lower frontal

theta/beta ratios during the learning task. This pattern suggests that individual differences

in grit might bemore evident when top-down control processes are at work. Furthermore,

there was a positive association between perseverance of effort and entropy at task,

which might indicate more effort and engagement in the task. Finally, no association was

found between the neural indexes (frontal theta/beta ratio, entropy, or fractal dimension)

and impulsiveness, neither impulsiveness mediated between grit and brain measures.

Finally, when controlling for impulsiveness and demographic variables (gender, age,

education, and work experience) the effects at the facet level remained statistically

significant. While there is still a long way to fully understand the neural mechanisms of

grit, the present work constitutes a step toward unveiling the electrophysiological prints

of grit.
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INTRODUCTION

In a world in which new information emerges every second, sticking with one dream can be
challenging. Indeed, not everybody chooses to strive toward a long-term goal and even fewer people
maintain their motivation until they have achieved it. Grit is the personality trait that defines
those people that do tend to pursue long-term goals with enduring passion and perseverance
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(Duckworth and Gross, 2014). This newly explored trait has
attracted the attention of researchers from different fields (i.e.,
positive psychology, motivation, and education), given that it has
been shown to be able to predict success in various domains and
contexts, such as academic (i.e., Duckworth et al., 2007; Clark and
Clark, 2019), work achievement (i.e., Mueller et al., 2017), and
personal life (i.e., Eskreis-Winkler et al., 2014).More importantly,
grit has been shown to be related to different aspects of well-being
(i.e., general well-being: Duckworth et al., 2007; Kindt et al., 2009;
Kannangara et al., 2018; Jiang et al., 2020; life satisfaction: Li et al.,
2018a; lower depression: Musumari et al., 2018; Datu et al., 2019;
reduction of risk of suicidal ideation: White et al., 2017; Kaniuka
et al., 2020). While interest in grit has grown exponentially over
the past few years, the neural processes underlying this trait still
remain largely understudied.

Grit is conceptualized as comprising two factors (Duckworth
and Quinn, 2009): perseverance of effort and consistency of
interest. The first factor, perseverance of effort, highlights the long-
term stamina or the effort maintained toward one’s superordinate
goal, whereas the consistency of interest factor taps into the
passion for one’s goal and the ability to stay committed to
interests related to it. Hence, grit is related to both self-
control and motivation (Nemmi et al., 2016). The effortful
regulation of attention, emotion, and behavior would allow self-
controlled individuals to overcome temptations in comparison
to their impulsive counterparts (Duckworth, 2011). This ability
would help these individuals to achieve long-term goals as
well. Interestingly, evidence indicates that self-control and grit
correlate moderately (r = 0.63; see Duckworth et al., 2007),
which suggests that there must be something else besides self-
control in the consecution of long-term goals (Duckworth and
Gross, 2014; Eskreis-Winkler et al., 2014; Li et al., 2018b;
Tedesqui and Young, 2018). On the other hand, motivation
is thought to contribute to how people behave, think, and
feel. Individual differences in motivation reflect the degree
of endurance in people’s needs, desires and values (Borghans
et al., 2008) and, therefore, a certain pattern of motivation
would be behind grit. In fact, there is evidence that grit is
positively linked to orientation toward engagement and inversely
associated with pursuing pleasure in Western samples (Von
Culin et al., 2014; see also: Muenks et al., 2018). In accordance
with this conceptualization, the few studies that have already
examined the neural basis of grit converge in showing that
grit is mainly associated with the function and structure of the
prefrontal cortex (PFC) and striatum, which are the key regions
for executive control (self-control) and reward (motivation)
processes (Myers et al., 2016; Nemmi et al., 2016; Wang et al.,
2017, 2018).

For example, Nemmi et al. (2016) examined brain structure
as a function of grit in 27 children and found that individual
differences in the trait were associated with differences in the
volume of the nucleus accumbens, which has been related to
reward-seeking (Tobler et al., 2014). In a resting-state functional
magnetic resonance imaging (fMRI) study with 20 children,
Myers et al. (2016) found grit to be associated with ventral striatal
and bilateral prefrontal networks. The ventral striatum was
specifically connected to medial prefrontal and rostral anterior

cingulate cortices. Importantly, all these regions are thought to
be crucial for cognitive-behavioral control, perseverance, and
emotional regulation. More recently, Wang et al. (2017) tested
resting-state fMRI in 217 healthy adolescents and found a
negative relationship between grit and the regional fractional
amplitude of low-frequency fluctuations in the right dorsomedial
PFC, which is thought to be involved in self-regulation.
Furthermore, this association played a mediating role in the link
between grit and academic performance. In a related structural
MRI study—also with adolescents—, Wang et al. (2018) found
greater volume in the right putamen and smaller volume in the
left dorsolateral PFC, both regions involved in action planning,
motivation, and self-regulation in gritty participants.

Some other attempts have been made to examine the neural
basis of grit by using electroencephalography (EEG). In this
regard, Kalia et al. (2018) recorded event-related potentials while
participants (undergraduate students) performed the attentional
network task (ANT; Fan et al., 2002). Kalia et al. (2018) found
that people with higher scores in the perseverance of effort facet of
grit were linked to reduced electrophysiological responses (N1) to
an alerting cue relative to people with lower scores. According to
the authors, this attenuated alerting effect for grittier individuals
might be a sign of their more efficient sustained attention due to
their stronger intrinsic motivation to performwell. Thus, alerting
cues were less effective as a warning signal, since they were
already more attentive to the task. More recently, Matthews et al.
(2019) included a measure of grit in a study examining the role
of worry and resilience in the performance of 68 undergraduate
students in a Unmanned Aerial simulation System including
different stress-inducing conditions and physiological measures.
Although no EEG results were reported regarding the control
condition, in the high stress condition there was an association
between (high) grit and (lower) gamma activity that the authors
interpreted as indicating that grittier individual might also show
better stress coping abilities.

While these results are compelling, a number of factors limit
the conclusions that can be drawn from them. First, some of the
studies employed very small sample sizes. Second, MRI studies
primarily focused on the brain state at rest, although it is also
possible that differences occur when gritty people engage in
a task due to differential information processing. Third, these
studies focused only on grit-related traits, leaving out other self-
control traits that could provide information regarding the neural
similarities and differences between these constructs. Fourth, all
studies focused on children, adolescents or grad students with
similar life backgrounds, thus limiting the generalizability of their
findings. Finally, most studies have used a single brain dimension,
although some authors have pointed out that it is necessary
to approach the topic using different brain measures (van Zyl
et al., 2021). Hence, more studies that use more heterogeneous
and larger samples and that employ distinct brain measures in
different conditions are required in order to better understand
the grit trait.

In addition, it is relevant to examine how different self-control
constructs relate to grit by tapping into their commonalities
and differences at the neural level. This point is of particular
importance because one major concern about the grit construct
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has been its dissociation from other concepts related to self-
control (Muenks et al., 2017; Schmidt et al., 2018; Vazsonyi et al.,
2019; Werner et al., 2019). A key self-control related concept
that is thought to be closely related to grit (specifically to its
consistency of interest facet) is impulsiveness (Schmidt et al.,
2018). Impulsiveness is defined as the tendency to perform swift
actions without conscious judgment (Patton et al., 1995) and
provides an interesting scenario to study the relation between grit
and other self-control measures. Impulsiveness is considered to
be the opposite of self-control (Duckworth, 2011), but it does
not include items related to sensation seeking (Stanford et al.,
2009) that are often included in self-control scales and that have
been demonstrated to have a distinct nature from impulsiveness
or grit (Duckworth and Kern, 2011). Although impulsiveness is
conceptually related to the absence of grit, grit is theoretically
thought as more complex than just a low impulsiveness pattern
(Duckworth and Gross, 2014). In fact, it has been shown that
the two constructs are negatively correlated (Grif et al., 2016).
However, this relationship is not very strong and the extent to
which grit differentiates from impulsiveness is still unknown.
Importantly, on some occasions impulsiveness has been shown
to predict academic performance beyond grit (Rennicks, 2018).
Hence, in the present study we considered impulsiveness when
examining the neural underpinnings of grit in order to deal with
potential confounding effects.

Furthermore, as stated, it is also convenient to employ
heterogeneous samples and take into account the demographic
background of the participants when examining the neural bases
of grit. This point is of importance because one concern about
the existing literature on the neural substrates of grit is the
similar and homogeneous samples that the few studies on the
topic included, which limits the generalizability of their findings
(van Zyl et al., 2021). For this reason, we selected participants
of different educational and work background, two variables that
have been closely (positively) related to grit (Duckworth et al.,
2007; Mueller et al., 2017), and considered these variables when
examining the neural underpinnings of grit.

Finally, to gain further understanding of the neural processes
underlying grit, a hypotheses-driven approach should be
adopted because it allows researchers to conceptually replicate
previous findings. In this vein, electroencephalography (EEG)
constitutes an adequate technique that provides high temporal
resolution and distinct indexes of brain activity, allowing for
the formulation of specific hypotheses. Hence, because grit has
a strong self-regulation component and because its expression
has been linked to activity in the PFC, we focused on a widely
used executive control index: the frontal theta/beta ratio (TBR)
(Putman et al., 2010, 2014; Angelidis et al., 2016; Syed Nasser
et al., 2019). TBR is thought to reflect prefrontally-mediated
attentional control and has broadly been used as a biomarker
for impulsiveness-related disorders, such as the attention-deficit
hyperactivity disorder (Barry et al., 2003; Snyder and Hall, 2006;
Lansbergen et al., 2007; Arns et al., 2013; Zhang et al., 2017). High
frontal TBR is usually interpreted as failure in exerting top-down
control over the automatic processing of subcortical information.
Based on previous work that implicated PFC and striatum
structures in grit, we hypothesized that high grit participants

would have lower frontal TBR, which might reflect better control
(top–down processes) over subcortical information (reward
information of the striatum). In addition, we aimed to explore
whether (1) impulsiveness mediated the possible effect between
TBR and grit, and (2) it had a particular TBR pattern dissociable
from grit. In the same vein, we also wanted to explore whether
the demographic variables of our heterogeneous sample (gender,
age, education and work experience) could partially explain the
possible association between TBR and grit.

Complementarily, we included a complexity-based approach
to the analysis of EEG recordings by tapping into entropy
(SampEn) and fractal dimension (HDF) brain indexes. These
indexes, based on non-linear assumptions from system theories,
are increasingly being recognized as valuable tools for capturing
complex brain signals (Costa et al., 2002, 2005; Ouyang et al.,
2010). While extreme patterns of complexity at rest can be
indicative of pathology (Ibáñez-Molina et al., 2018), complexity
indexes have been linked to effort while performing cognitive
tasks (Müller et al., 2003; Stam, 2005; Sohn et al., 2010). Given the
relationship between perseverance of effort and task values, self-
efficacy, and general effort (Muenks et al., 2017; Zamarro et al.,
2020), it is plausible to hypothesize that high grit participants
(high perseverance of effort participants in particular) might show
higher brain complexity levels during task performance as an
indicator of task engagement (Müller et al., 2003; Stam, 2005;
Sohn et al., 2010). Again, as with TBR, we explored whether
impulsiveness and demographic variables affect this relationship
between perseverance of effort and complexity indexes.

In sum, in the present study, we adopted a hypotheses-
driven approach on a large sample of young adults with diverse
educational backgrounds and work experiences in order to
investigate the electrophysiological prints of grit. Participants
completed the Grit Scale (Duckworth et al., 2007) and underwent
EEG recordings at rest and while performing a learning task.
Additionally, we selected a measure of impulsiveness to better
understand the neural similarities and differences between
grit and related self-control constructs. As mentioned, we
hypothesized that high grit participants would exhibit lower
frontal TBRs (both at rest and while performing a learning
task), which might reflect more efficient top-down control over
reward processes in comparison to their low grit counterparts.
In addition, we expected that participants characterized by high
levels of effort on the Grit Scale would also be characterized by
greater complexity as an indicator of task engagement (Müller
et al., 2003; Stam, 2005; Sohn et al., 2010). Finally, we explored
whether impulsiveness and some demographic variables were
modulating the effects between grit and the brain..

METHOD

Participants
A total of 120 people (Mage = 23.11, SDage = 4.19, Range = 18–
33, 69% female) completed the study in exchange for course
credits (0.1 credit/40min) or monetary reward (7 e/1 h).
Participants differed in educational levels and job backgrounds.
In terms of education, 17 participants had only attended
secondary school, 58 were enrolled in university courses (toward
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a variety of degrees), and 45 had already completed a university
degree. Of these graduates, 22 were enrolled in master’s courses
during the time of their participation in the study.With respect to
work experience, 54 participants reported that they did not have
any professional experience in any field, whereas 66 participants
noted that they did have professional experience (i.e., as waiters,
researchers, dancers, doctors, etc.). All participants included
in the experiment informed in a written health questionnaire
to be free from any health issue, neurological problem, drug
consumption or cognitive dysfunction diagnosis. The sample was
a part of a larger study that focused on individual differences
and other non-overlapping findings resulting from that study
have already been reported (Aguerre et al., 2020). Participants
provided their written informed consent in order to participate in
the study, following the Helsinki Declaration guidelines (World
Medical Association, 2013), and approval was obtained from the
Ethics Committee of the University of Granada.

Materials and Procedure
Participants were tested individually in two sessions that lasted
90 and 120min, respectively. In the first session, they were
administered four questionnaires: a translated version of the Grit
Scale (Duckworth and Quinn, 2009), the Spanish versions of
the Barratt Impulsiveness Scale (BISS-11; Oquendo et al., 2001)
and the Five Facets Mindfulness Questionnaire (Cebolla et al.,
2012), as well as the Mindful Attention Awareness Scale (Soler
et al., 2012). They also underwent four experimental tasks: the
Cued Task-Switching Paradigm (Chevalier et al., 2015), a Stroop-
like Conflict Task (Roelofs et al., 2006), the Operation Span
(Turner and Engle, 1989), and the AX-Continuous Performance
Task (Braver et al., 2009). The second session included MRI
and EEG recordings at rest (5 mins with eyes closed) and two
experimental tasks: Stop Signal (Verbruggen and Logan, 2008)
and a learning task (Anderson et al., 1994), with the latter
including simultaneous EEG recordings. For the present paper,
we selected the grit and impulsiveness measures as well as the
EEG recordings (at rest and at task). The remaining measures
are to be included in a forthcoming paper addressing related but
non-overlapping research questions.

Grit
We translated the original Short Grit Scale into Spanish applying
a back-translation method. The scale is an 8-item self-reported
questionnaire that assesses two grit factors: perseverance of effort
(i.e., “I am diligent”) and consistency of interest (i.e., “My interests
change from year to year”). Cronbach’s α of the factors of the
English version is in the 0.60–0.79 range (Duckworth and Quinn,
2009). Importantly, in our sample the Cronbach’s α is 0.63 for the
perseverance of effort and 0.83 for the consistency of interest facets
of grit.

BISS-11
This is a 30-item questionnaire that consists of three
impulsiveness factors: cognitive impulsiveness (i.e., “I am
happy-go-lucky”), motor impulsiveness (i.e., “I do things
without thinking”), and non-planned impulsiveness (i.e., “I

plan tasks carefully”). The Cronbach’s α of the factors in this
questionnaire is 0.83 (Oquendo et al., 2001).

Learning Task
We used an adaptation of the original selective retrieval practice
task by Anderson et al. (1994) (see Valle et al., 2019) that is
usually employed to investigate retrieval-induced forgetting. In
this task, participants were instructed to memorize a list of
words for an upcoming memory test. The task comprises 4
phases: study, practice, distraction and probe phases. In the
study phase participants were instructed to memorize a list of
category-exemplar pairs (54 Spanish words of nine different
orthography-based categories were used; i.e., CA-Camera, CA-
Casino, BA-Banana). Next, in the practice phase, they were asked
to selectively retrieve half of the items of half of the categories by
a given cue (i.e., CA-Cam). Then a distractor task was presented,
wherein participants had to solve operational problems. In the
probe phase, a recognition test was administered for all the
studied items and non-studied words of different and same
category. For the present work, we used the EEG signal recorded
during the learning phase (5 mins). Final performance in the
task was examined from the recognition index (d′) for control-
baseline items (unpracticed items of unpracticed categories).
Given the purpose of the present work, we focused on control-
baseline items to examine overall memory performance after
study rather than possible retrieval practice effects.

EEG Recording and Preprocessing
Participants were quietly seated with their eyes closed and the
light off during the 5-min resting state EEG recording. On the
other hand, to obtain the 5 mins of the task EEG measure, we
chose the first 5 mins of the selective retrieval task. The selected
recordings corresponded to the first 5 mins of the task during
which participants were quietly seated with their eyes open,
memorizing the category-word pairs. The EEG was recorded
using 64 scalp electrodes that were mounted on an elastic cap
using an extended 10–20 system. The continuous activity was
recorded using Neuroscan Synamps2 amplifiers (El Paso, TX)
andwas first recorded using amidline electrode (halfway between
Cz and CPz) as reference. Before data analyses, a high-pass filter
at 1Hz was applied and the 5-min recording was segmented
into 2-s epochs with 0.5 s of overlap. Artifacts were manually
removed by carefully inspecting the data using the Fieldtrip
toolbox73 on Matlab (Oostenveld et al., 2011). Bad channels,
with a high level of artifacts (always below 10% of the total for
each participant), were visually detected and interpolated from
neighboring electrodes.

Q-EEG Analyses
EEG data were analyzed using the procedures described in Prat
et al. (2016). The mean log power spectrum—between 4 and
40 Hz—was calculated by first computing each epoch’s power
spectrum using the Fast Fourier Transform, followed by log-
transforming it, and then by averaging the resulting power
spectra across all epochs. To reduce spectral leakage, a Hanning
window was applied to each epoch before computing the
corresponding Fourier transform. The mean log power was then
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separately calculated across theta (4–7.5Hz), alpha (8–12.5Hz),
beta (13–29.5Hz), and low-gamma (30–40Hz) frequency bands
for each channel and in each participant. The frontal region
of interest (ROI) was selected following Berkovich-Ohana et al.
(2012): frontal (AF3, F5, F3, F1, FC3, FC1, AF4, F2, F4, F6, FC2,
FC4). The theta/beta ratio was calculated for each participant by
dividing the absolute theta power in the frontal cluster by the
absolute beta power in the same cluster.

Complexity Analyses
The preprocessed EEG series were used as inputs for the Sample
Entropy (SampEn) and Higuchi’s Fractal Dimension (HFD)
analyses. To avoid effects of change in the stability of the
signal, these measures were estimated using a sliding window
procedure that was 2 s in length and had a 90% overlap in each
time step. The estimations were obtained from the median of
the resulting complexity series for each participant, electrode,
and experimental condition. SampEn represents the measure
of pattern randomness in the signal. The SamplEn algorithm
considers the amount of dispersion after a given time lapse
between a set of closely related points in the signal. High values
of SampEn are then related to time series with random structures
(see seminal works of Pincus and Goldberger, 1994; Richman
and Moorman, 2000). The estimation of SampEn is needed to
set two free parameters (m, p). In our study, these were selected
in accordance with the study by Richman and Moorman (2000),
which recommended values of m = 2 and p = 0.10 times the
SD of the series. On the other hand, the fractal dimension was
estimated using the HFD algorithm (Higuchi, 1988). FD can be
considered a measure of the roughness or density of the signal
as depicted in a microvolt-time plot. Simple signals resembling a
straight line would have a FD close to 1, while signals that tend to
fill the entire space would have a FD scoring around 2. The HFD
estimator of the FD takes into account the length of the signal (L)
at several scales (k). The slope of the regression model for both
log transformed variables (ln[k] vs ln[L]) represents the estimated
FD (i.e., Ibáñez-Molina and Iglesias-Parro, 2014). Hence, the
expected values for HFD are around 1.5 because 1 constitutes
the minimum (values forming a straight line) and 2 a maximum
(values randomly distributed as a random cloud of points) (for
a review see: Kesić and Spasić, 2016). It should be noted that
HFD has successfully been applied to analyses of EEG signals in
both clinical and non-clinical contexts (Kesić and Spasić, 2016;
Ruiz-Padial and Ibáñez-Molina, 2018). In this experiment, we
selected a kmax of 55 as an optimal parameter, given that the
HFD estimation approximately reached an asymptotic value for
all conditions and electrodes.

RESULTS

Data of two participants were removed from the analyses due to
artifacts during EEG recordings, while nine participants missed
relevant information on the BISS questionnaire. Previous to the
main analyses, we ran Shapiro-Wilk tests that confirmed that our
independent variables (Grit and BISS) were normally distributed.
The basic descriptive statistics are presented in Table 1. We
report the results in different sections according to the goals of

the study. Thus, in the first section, we report analyses testing
our hypothesis about the neural correlates of grit with separate
regression models in which we included the brain indexes
(frontal TBR, entropy, and FD) at rest and at task as dependent
variables and grit and its facets as independent variables. In
the second section, we examined the relation between grit and
impulsiveness in different ways. First, we report the correlation
between grit and impulsiveness and tested the possible overlap
between the two traits by testing hierarchical regression models.
Further, we report mediation analyses to explore whether the
main relationships between grit and the neural indexes were
mediated by impulsiveness. Finally, we report regression models
including the brain indexes (frontal TBR, entropy, and FD) at
rest and at task as dependent variables and impulsiveness as the
independent variable to look into the neural pattern associated
with this trait and its potential similarities with grit. In the third
section, we tested whether the different demographic conditions
differed in grit scores. Additionally, to further explore their
effects on the relationships between grit and the neural indexes,
we conducted hierarchical regression analyses with the same
structure than before (frontal TBR, entropy, and FD at rest and
at task as the dependent variables and grit and its facets as the
independent variables) but now controlling for impulsiveness,
gender, age, education and work experience. For completeness, in
the last section we report correlations between the main variables
and performance in the learning task.

Electrophysiological Prints of Grit
To test our hypotheses that high grit scores were related to
lower frontal TBR at rest and at task and that the perseverance
of effort facet of grit would be related with higher complexity
during task, we first ran linear regression analyses over the
different neural indices (frontal TBR, entropy, and FD) at rest
and at task with grit and its facets as predictors (see Table 2).
The analyses showed a negative association between frontal TBR
and overall grit score and consistency of interest (facet of grit)
while performing the task. On the other hand, the analyses of
complexity measures revealed a reliable (positive) association
between entropy and perseverance of effort while performing
the learning task. These associations were not evident at rest.
Figure 1 plots the association between grit and lower frontal TBR
at task (for a similar figure at rest see Supplementary Material 1).

Grit and Impulsiveness
As expected, there was a negative correlation between
impulsiveness and grit (r = −0.70, p < 0.001; see also Table 7).
We examined whether the associations between brain indexes
and grit were influenced by impulsiveness, by performing
hierarchical regression analyses for the different neural indices
(frontal TBR, entropy, and FD) at rest and at task with grit and
its facets as predictors and controlling for impulsiveness (see
Table 3). These analyses indicated that both the negative relation
between frontal TBR at task and consistency of interest and the
positive association between entropy at task and perseverance of
effort were still statistically significant. In contrast, the association
between frontal TBR at task and global grit score did not reach
significance after controlling for impulsiveness. Additionally,
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TABLE 1 | Descriptive statistics for the main variables.

Score Minimum Maximum

Grit 3.35 (0.71) 1.75 4.87

PE 14.4 (2.88) 7 20

CI 12.47 (3.7) 4 20

BISS 46.41 (13.74) 18 85

Rest

Global q-EEG at rest 2.17 (0.31) 1.49 2.98

Theta q-EEG at rest 2.55 (0.32) 1.8 3.53

Beta q-EEG at rest 2.26 (0.34) 1.52 3.06

Entropy at rest 2.11 (0.04) 1.97 2.17

Fractal dimension at rest 1.69 (0.08) 1.25 1.84

Task

Global q-EEG at task 2.05 (0.25) 1.41 2.69

Theta q-EEG at task 2.55 (0.23) 1.82 3.16

Beta q-EEG at task 2.09 (0.28) 1.39 2.79

Entropy at task 2.07 (0.05) 1.90 2.16

Fractal dimension at task 1.68 (0.06) 1.48 1.88

Recognition (d′) in the final stage of the selective retrieval task 1.81 (0.62) −0.36 3

The first column refers to means and standard deviations (SD).

TABLE 2 | Linear regression analyses of grit and its two factors over neural indices (frontal TBR, entropy, and FD) during rest and during the task.

R2
1F B SE β p

Grit

F TBR rest 0.00 0.05 0.11 0.48 0.02 0.82

Entropy rest 0.00 0.02 −0.78 1.72 −0.04 0.65

FD Rest 0.00 0.00 0.01 0.79 0.00 0.99

F TBR task 0.04 4.67 −0.85 0.39 −0.19 0.03

Entropy task 0.02 2.81 2.4 1.43 0.15 0.09

FD task 0.01 1.1 1.16 1.1 0.1 0.29

PE of Grit

F TBR rest 0.00 0.17 0.81 1.96 0.04 0.68

Entropy rest 0.01 1.33 −8.08 7.01 −0.11 0.25

FD rest 0.01 1.03 −3.22 3.17 −0.09 0.31

F TBR task 0.00 0.58 −1.23 1.62 −0.07 0.45

Entropy task 0.04 5.11 12.96 5.73 0.21 0.026

FD task 0.01 1.03 4.55 4.48 0.09 0.31

CI of Grit

F TBR rest 0.00 0.00 −0.14 −2.53 −0.01 0.96

Entropy rest 0.00 0.01 0.99 9.08 0.01 0.91

FD rest 0.01 0.69 3.41 4.09 0.08 0.41

F TBR task 0.06 7.13 −5.42 2.03 −0.24 0.009

Entropy task 0.01 0.69 6.25 7.53 0.08 0.41

FD task 0.00 0.49 4.05 5.78 0.07 0.48

we performed a mediation analysis to also examine whether the
association between grit and the brain indexes was mediated by
impulsiveness. These analyses indicated that impulsiveness was
not a mediating factor (seeTable 4). Finally, the regressionmodel
over the neural indexes with impulsiveness as the predictor failed
to show any significant relationship (see Table 5).

Grit and Demographics
Because grit has been previously related to demographic variables
such as education (Duckworth et al., 2007) and work experience
(Mueller et al., 2017) among others, we examined first whether
such variables were linked to grit scores, and then if they could
be driving the relation between grit and the neural indexes.
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FIGURE 1 | Topographical distribution of the TBR index during task performance as function of the grit group, calculated as 1 SD from the mean (A), and frontal TBR

as a function of grit continuous scores (B).

TABLE 3 | Hierarchical regression analyses of grit and its two factors over neural indices (frontal TBR, entropy, and FD) during rest and during the task controlling for

impulsiveness.

R2
1F B SE β p

Grit

F TBR rest 0.00 0.01 0.00 0.02 0.01 0.9

Entropy rest 0.00 0.49 −0.00 0.00 −0.07 0.49

FD rest 0.00 0.00 0.00 0.01 0.01 0.95

F TBR task 0.03 3.39 −0.04 0.02 −0.17 0.07

Entropy task 0.01 1.28 0.01 0.01 0.11 0.26

FD task 0.01 1.57 0.01 0.01 0.12 0.21

PE of Grit

F TBR rest 0.00 0.6 0.00 0.00 0.02 0.8

Entropy rest 0.01 1.57 −0.00 0.00 −0.1 0.29

FD rest 0.01 0.89 −0.00 0.00 −0.9 0.35

F TBR task 0.00 0.31 −0.00 0.00 −0.05 0.58

Entropy task 0.04 4.62 0.00 0.00 0.2 0.03

FD task 0.02 2.17 0.00 0.00 0.14 0.14

CI of grit

F TBR rest 0.00 0.96 0.00 0.00 −0.00 0.96

Entropy rest 0.00 0.06 0.00 0.00 −0.02 0.81

FD rest 0.01 0.66 0.00 0.00 0.08 0.42

F TBR task 0.05 5.9 −0.01 0.00 −0.23 0.02

Entropy task 0.00 0.01 0.00 0.00 0.01 0.9

FD task 0.01 0.42 0.00 0.00 0.08 0.42

To answer this question, we performed Pearson correlations
between age and education and grit, and then t tests comparing
men (N = 37) and women (N = 81) and people with work

experience (N = 66) and without (N = 54) in their grit scores,
after checking that grit was normally distributed in all groups.
Results showed no association of grit with age (r= 0.14, p= 0.12),
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TABLE 4 | Mediation analyses of consistency of interest and frontal TBR at task with impulsiveness as a mediator; and perseverance of effort and entropy at task with

impulsiveness as a mediator.

Estimate SE z-value p

CI of Grit

Direct effects

Consistency of Interest → Task_F_TBR −0.01 0.00 −2.52 0.01

Indirect effects

Consistency of Interest → BIS → Task_F_TBR 0.00 0.0 0.82 0.41

Total effects

Consistency of Interest → Task_F_TBR −0.01 0.00 −2.69 0.01

PE of Grit

Direct effects

Perseverance of effort → EN_Task 0.00 0.00 2.27 0.02

Indirect effects

Perseverance of effort → BIS → EN_Task −6.13e −4 9.54e −4 −0.64 0.52

Total effects

Perseverance of effort → EN_Task 0.00 0.00 2.28 0.02

TABLE 5 | Linear regression analyses of impulsiveness (BISS) over neural indices (frontal TBR, entropy, and FD) during rest and during the task.

R2
1F B SE β p

BISS

F TBR rest 0.00 0.00 0.00 0.00 0.03 0.75

Entropy rest 0.02 0.02 0.00 0.00 0.14 0.15

FD rest 0.02 2.35 −0.00 0.00 −0.15 0.13

F TBR task 0.01 1.06 0.00 0.00 0.1 0.30

Entropy task 0.00 0.3 0.00 0.00 −0.05 0.58

FD task 0.00 0.46 0.00 0.00 −0.07 0.50

education (r = −0.01, p = 0.94), or gender [t(106.66) = −0.9,
p = 0.56;MMales = 3.16;MFemales = 3.51]. However, people with
work experience showed higher grit scores than people without
work experience [t(106.66) = 2.68, p = 0.01; MExperience = 3.51;
MNon−experience = 3.16]. Next, we ran separate hierarchical
regression analyses over the different neural indices (frontal TBR,
entropy, and FD) at rest and at task with grit and its facets
as predictors, now controlling for impulsiveness, gender, age
and education and work experience (see Table 6). The results
of these analyses showed that the negative relation between
frontal TBR at task and consistency of interest and the positive
association between entropy at task and perseverance of effort
remained reliable.

Task Performance
Finally, we performed Pearson correlation analyses between
the neural indexes (TBR, entropy, FD) at task and memory
performance (an index of sensitivity at recognition: d′) in
the baseline condition of the selective retrieval task. These
correlations did not reach statistical significance (see Table 7).
We also correlated personality traits (grit and its facets, and
impulsiveness) with performance, but these correlations also
failed to reach statistical significance (see Table 7).

DISCUSSION

In the present study, we aimed to explore the electrophysiological
prints of grit during rest and while performing a learning task.
One important gap in the grit literature relates to its biological
and neural substrates as only a few studies have been carried out
to determine its neural mechanisms. Interestingly, despite the
fact that there is little research in this area, the results converge
to implicate the PFC and striatum, regions systematically
associated with executive-control and motivation processes, in
the expression of grit. Considering these precedents, we selected
an EEG index of executive control—the frontal theta/beta ratio
(TBR)—to examine its potential relationship with grit at rest and
while engaged in a (learning) task. Furthermore, we selected two
complexity indexes—entropy (SampEn) and fractal dimension
(HDF)—to explore the possible increase in the dimensional
complexity of brain activity during task performance as a
function of effort employed by gritty participants. Finally, we
also looked into the association between the above-mentioned
EEG indexes and impulsiveness in order to determine the
similarities and differences of the neural activity underlying grit
and impulsiveness. Our results revealed that while there were
no differences at rest as a function of grit, neural differences
emerged while participants were engaged in the task. Higher
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TABLE 6 | Hierarchical regression analyses of grit and its two factors over neural indices (frontal TBR, entropy, and FD) during rest and during the task controlling for

impulsiveness, gender, age, education and work experience.

R2
1F B SE β p

Grit

F TBR rest 0.00 0.08 0.00 0.02 0.03 0.78

Entropy rest 0.00 0.34 −0.00 0.00 −0.06 0.56

FD rest 0.00 0.01 0.00 −0.00 0.00 0.98

F TBR task 0.04 3.67 −0.03 0.02 −0.14 0.15

Entropy task 0.01 1.44 0.01 0.01 0.12 0.23

FD task 0.02 1.64 0.01 0.01 0.12 0.2

PE of Grit

F TBR rest 0.00 0.42 0.00 0.00 0.06 0.52

Entropy rest 0.01 0.96 −0.00 0.00 0.09 0.33

FD rest 0.00 1.08 −0.00 0.00 −0.1 0.3

F TBR task 0.00 0.00 0.00 0.01 0.02 0.98

Entropy task 0.05 5.48 0.00 0.00 0.22 0.02

FD task 0.02 2.13 0.00 0.00 0.14 0.15

CI of Grit

F TBR rest 0.00 0.00 0.00 0.00 0.00 0.97

Entropy rest 0.00 0.02 0.00 0.00 0.01 0.9

FD rest 0.00 0.58 0.00 0.00 0.07 0.45

F TBR task 0.05 6.32 −0.01 0.00 −0.23 0.01

Entropy task 0.01 0.67 0.00 0.00 0.08 0.42

FD task 0.00 0.58 0.00 0.00 0.07 0.45

TABLE 7 | Pearson correlations of the main brain variables, the Grit and BISS scores and performance in the task.

Grit PE CI BISS Recognition (d′)

BISS −0.7*** −0.51*** −0.67***

Recognition (d′) in the final stage of the selective retrieval task 0.05 −0.07 0.12 −0.17

Rest frontal TBR 0.02 0.04 −0.00 −0.04 0.01

Task frontal TBR −0.19* −0.07 −0.24** 0.08 −0.04

Entropy at rest −0.04 −0.11 0.01 0.12 −0.09

Entropy at task 0.15 0.21* 0.08 −0.06 −0.13

Fract. Dim. at rest −0.00 −0.09 0.08 −0.17 −0.07

Fract. Dim. at task 0.1 0.09 0.06 −0.07 −0.05

*p < 0.05, **p < 0.01, ***p < 0.001. Asterisks represent statistically significant correlations after controlling for multiple comparisons with the Banjamini-Hochberg method with false

discovery rate at 0.25 (Benjamini and Hochberg, 1995).

overall grit and higher scores in the consistency of interest facet
of grit were associated with lower frontal TBRs during the
learning task. In addition, we observed an association between
perseverance of effort and entropy at task, indicating that the
higher the facet of grit scores are, the higher the complexity of
the EEG recording is. Importantly, impulsiveness (as measured
via the BISS) did not mediate any of the previous associations
neither it was found to correlate with any of the neural indexes
at rest or while performing the task. Finally, controlling for
impulsiveness and demographic factors (age, gender, education
and work experience) reduced the associations with overall grit
scores that, however, remained statistically significant at the
facet level, which highlights the relevance of these facets of grit
as predictors.

The link between frontal TBR and grit during task
performance is in line with results from previous studies,
supporting the implication of prefrontally-mediated executive
control in the grit trait (Myers et al., 2016; Wang et al., 2017,
2018). However, it is remarkable that such an association was
not present at rest in our sample. TBR is an EEG index of
executive control that is widely used (Arns et al., 2013; Angelidis
et al., 2016; Syed Nasser et al., 2019). The ratio of theta band
power (4–8Hz) and beta band power (15–30Hz) is thought
to reflect cortical-subcortical interactions (Schutter and Van
Honk, 2005; Arns et al., 2013), so that increased frontal TBR
might result from a greater need for top-down control over
subcortical structures (i.e., due to the triggering of inappropriate
automatic responses). A large body of research suggests that
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mid-frontally generated theta activity is linked to activity in
the anterior cingulate cortex (ACC) (i.e., Asada et al., 1999;
Scheeringa et al., 2008), which is associated with more difficult
situations or when reward is less than expected (Schutte et al.,
2017). On the other hand, beta oscillatory activity seems to reflect
active inhibitory processes involved in maintaining the current
cognitive state (Engel and Fries, 2010) and is thought to be in
charge of transmitting “fast-motivational signals” to downstream
brain structures (Marco-Pallarés et al., 2015). Because this view
aligns with the long-term-maintainedmotivation of gritty people,
TBR could be thought of as a marker of prefrontally-mediated
executive control over reward processes that are essential to
grit. Such a relationship would be similar to the one reported
with other subcortical processes (i.e., emotional processing, see
Putman et al., 2014), although we recognize that future studies
(i.e., by analyzing ERPs that are sensitive to individual differences
in executive control) should more precisely determine to what
extent this interpretation of the association between TBR and grit
is appropriate. Interestingly, it was the consistency of interest facet
of grit that was related to decreased frontal TBR at task, which is
in line with the notion that this brain index is particularly related
to the control of reward or intrinsic motivation (Putman et al.,
2014). Long-term consistency of interest has been associated with
more attention allocation to the current context (Aguerre et al.,
under review)1, which might allow gritty people to be more “on-
task” and to avoid reward override andmind-wandering (van Son
et al., 2018, 2019).

Among other results, Wang et al. (2018) found smaller
gray matter volume in the left dorsolateral PFC, a region
involved in self-regulation, in participants scoring high in
grit. According to these authors, a reduction in gray matter
would result from optimal synaptic pruning and myelination
during development, which would lead to greater efficiency in
corresponding psychological process (Blakemore and Robbins,
2012). Nevertheless, this finding is blind in relation to the
direction of the association between grit and synaptic pruning
so that grit could be either an antecedent or a consequence
of greater synaptic pruning. Additionally, Wang et al. (2017)
found a negative association between spontaneous brain activity
in the right dorsomedial PFC and grit, which may also
indicate a more efficient use of a relevant neural hub for self-
regulation. Importantly, these associations were found at rest,
while our study showed that differences associated with grit were
particularly relevant during task performance. However, contrary
to our expectations, we did not observe decreased frontal TBR
in gritty participants at rest (when, in principle, there is no
need for executive control). Instead, gritty participants (in their
consistency of interest facet) exhibited lower TBR during the
learning task when top-down control processes may be more
crucial to keep themselves motivated. Hence, our results can also
be interpreted in terms of more efficient executive functioning.
When taken as a whole, our results are theoretically convergent
with previous findings.

With respect to complexity measures, our results reveal that
increased entropy during task performance is linked to a higher

1Aguerre, N. V., Gómez-Ariza, C. J. and Bajo, M. T. (under review). The relative

role of executive control and personality traits in grit.

perseverance of effort facet of grit, but no evidence of association
between the fractal dimension index and grit emerged. Entropy
is a measure widely used to study self-organization and pattern
formation in the complex neuronal networks of the brain (Stam,
2005). Complexity has been shown to increase during task
performance (Stam et al., 1996; Bizas et al., 1999; Lamberts, 2000;
Micheloyannis et al., 2002; Müller et al., 2003) as a function of
the task complexity (Jie et al., 2014). Brain complexity measures
have also been linked to a higher number of simultaneously
activated cell assemblies, understood as representational units of
thoughts and ideas (Mölle et al., 1999). Considering this evidence
from previous studies, higher entropy while performing the
learning task might be indicative of more effort and engagement
in the task, leading to an increase in the number of activated
representational units (and their corresponding cell assemblies)
while memorizing a list of words. This would also fit with the idea
that gritty individuals show higher general sustained attention
during task performance (Kalia et al., 2018) and give support
to results from previous studies using different techniques that
also found perseverance of effort to be linked to physiological
responses of effort during task (Silvia et al., 2013). In any case, we
found this relationship with only one of the complexity indexes
(entropy), which may be a result of the sensitivity of the measure
or of these distinct measures tapping into different aspects of
brain complexity (Raghavendra and Dutt, 2010; Kreuzer et al.,
2014). The absence of a relationship between EEG complexity
measures at rest and grit is in line with the notion that, while there
probably is a stable print of grit at rest as reported by previous
research (Myers et al., 2016; Nemmi et al., 2016; Wang et al.,
2018), gritty people also exhibit a different and unique functional
pattern that is observed only while they are engaged in a task.

On the other hand, the fact that impulsiveness did not mediate
any of the associations between grit and neural indexes and that
impulsiveness failed to show any relation with such indexes is
also remarkable. Even when both grit and impulsiveness relate to
self-regulation (Duckworth et al., 2007; Duckworth, 2011) (and
they do correlate with one another, see Table 7), they exhibit
a different neural pattern so reinforcing the view that they are
separable constructs (Duckworth et al., 2007). On the other hand,
our results concerning impulsiveness suggest that in healthy
participants this trait may not involve the executive control-
related neural differences that psychopathological conditions
(i.e., attention-deficit hyperactivity disorder) may bring (Arns
et al., 2013; Zhang et al., 2017). While higher TBR has frequently
been found in impulsivity disorders, its relationship with the
impulsiveness trait in healthy participants is much less clear
(Lansbergen et al., 2007; Threadgill and Gable, 2018). It has
been proposed that ADHD may represent the extreme end of
the impulsivity continuum, characterized by increased frontal
TBR, while high impulsiveness in healthy adults would involve
more middle-placed positions of the continuum, characterized
by average frontal TBRs (Lansbergen et al., 2007). Finally, the
fact that controlling for impulsiveness and the demographic
variables made global grit effects disappear but not the effects
of the two facets of grit that remained significantly linked to
distinct brain indexes, lends support to the different nature of
the facets of grit (Credé, 2018). While this dissociation would
seem to fit well with the hypotheses of the present study,
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consistency of interest correlated with a brain activity index that
others have interpreted as a marker of enhanced control over
reward processes (Putman et al., 2014), and perseverance of effort
correlated with an index thought to reflect effort during the task
(Stam, 2005), which is in line with the results of previous studies
that used different techniques (Silvia et al., 2013), this pattern also
points to the relevance of incorporating a facet level of analyses
in future studies.

While consistent with the association between executive
control, task engagement, and grit trait, the present findings
should be taken with caution because this is one of the very first
studies reporting on the electrophysiological signatures of grit. In
addition, there are some considerations for future studies. First,
although the TBR is an index with a relatively long history (Arns
et al., 2013), its interpretation in terms of interactions between
cortical and subcortical brain processes related to grit requires
more research. Second, the cross-sectional design used here does
not allow us to determine the direction of the association between
brain indexes during task and grit. Future studies that employ
longitudinal/experimental designs could help address this issue.
Third, we only used self-reported measures of the traits of
interest. One intriguing possibility for future studies would be
to add multiple methods to assess these traits. Convergence of
findings with self-reported and performance measures would be
of special relevance. In this sense, future studies could add “on-
task checks” and “effort checks” to experimental tasks. This could
help to determine whether it is (subjective) effort that is exerted
during the task and not only the general perseverance of effort of
participants, which positively relates to entropy at task.

In sum, the present study is one of the first to unveil
the electrophysiological prints of grit. Our results indicate
that gritty people have a different neural signature during
task, mediated by lower frontal TBR and higher entropy,
which may reflect a more efficient involvement in the task. It
should be noted that these results that were obtained from a
large sample of young individuals with different educational
and life backgrounds converge with those obtained in studies
that involved children and adolescents, which goes a step
further toward the generalization of findings regarding brain
mechanisms of grit. While there is still a long journey ahead
in order to fully understand the neural mechanisms of grit,
continuing in this direction will deepen our understanding of
the trait and, more importantly, potentially provide us with the
empirical evidence needed to develop targeted programs and
strategies to improve grit.
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