
ORIGINAL PAPER

Simulating an invasion: unsealed water storage (rainwater
tanks) and urban block design facilitate the spread
of the dengue fever mosquito, Aedes aegypti, in Brisbane,
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Abstract Aedes aegypti (Linnaeus) was once highly

prevalent across eastern Australia, resulting in epi-

demics of dengue fever. Drought conditions have led

to a rapid rise in semi-permanent, urban water storage

containers called rainwater tanks known to be critical

larval habitat for the species. The presence of these

larval habitats has increased the risk of establishment

of highly urbanised, invasive mosquito vectors such as

Ae. aegypti. Here we use a spatially explicit network

model to examine the role that unsealed rainwater

tanks may play in population connectivity of an Ae.

aegypti invasion in suburbs of Brisbane, a major

Australian city. We characterise movement between

rainwater tanks as a diffusion-like process, limited by

a maximum distance of movement, average life

expectancy, and a probability that Ae. aegypti will

cross wide open spaces such as roads. The simulation

model was run against a number of scenarios that

examined population spread through the rainwater

tank network based on non-compliance rates of tanks

(unsealed or sealed) and road grids. We show that Ae.

aegypti tank infestation and population spread was

greatest in areas of high tank density and road lengths

were shortest e.g. cul-de-sacs. Rainwater tank non-

compliance rates of over 30% show increased con-

nectivity when compared to less than 10%, suggesting

rainwater tanks non-compliance should be maintained

under this level to minimize the spread of an invading

Ae. aegypti population. These results presented as risk

maps of Ae. aegypti spread across Brisbane, can assist

health and government authorities on where toSupplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/
s10530-021-02619-z.
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optimally target rainwater tank surveillance and

educational activities.

Keywords Aedes aegypti � Network model �
Invasion simulation � Population spread � Water

storage

Introduction

Large epidemics of dengue historically plagued the

east coast of Australia, where an estimated 70–90% of

the human population were infected (Lumley and

Taylor 1943). It has been suggested that large water

storage containers, called rainwater tanks, maintained

Aedes aegypti (Linnaeus) populations responsible for

these epidemics (Hamlyn-Harris 1931; Lumley and

Taylor 1943). The removal of rainwater tanks from

major urban environments is thought to have con-

tributed to the disappearance of the species from sub-

tropical locations (Russell et al. 2009; Trewin et al.

2017). However, drought conditions in the early 2000s

and subsequent government incentives, saw a rapid

rise in the number of rainwater tanks reinstalled

throughout all major Australian cities. It is estimated

that there are now * 300,000 rainwater tanks in the

south-east Queensland region, representing nearly

40% of residential dwellings (Moglia et al. 2013).

When unsealed or ‘non-compliant’ with regulations,

rainwater tanks are ideal habitat for all life-cycle

stages of Ae. aegypti and have the potential to act as a

major population source for disease vectors (Trewin

et al. 2020; Tun-Lin et al. 1995). Rainwater tanks

provide all the requirements for development of the

species; reliable larval food resources, ideal temper-

ature range and humidity, a surface for oviposition and

resting, a permanent or semi-permanent source of

water where larval density is unlikely to be restricted

and close proximity to human hosts (Trewin 2018).

The rapid rise of these permanent water storage

containers has led to an increased risk of the re-

establishment of Ae. aegypti in Brisbane, the largest

urban centre in Queensland, Australia (Heersink et al.

2015; Trewin 2018; Trewin et al. 2013).

Population connectivity is an important ecological

process that underpins the ability of an organism to

persist and spread within a landscape (Fahrig and

Merriam 1985). Connectivity is best defined as the

capacity of a landscape to facilitate or impede the

movement of organisms between resource patches

(Taylor et al. 1993). Therefore, persistence and spread

of a newly established organism can be influenced by

movement patterns and mortality as a function of

landscape structure (Ferrari et al. 2007). In medically

important species such Ae. aegypti, an understanding

of landscape connectivity guides vector management

practices (State of Queensland 2015) or optimizes

‘rear and release’ strategies such as population

replacement (Hoffmann et al. 2011) or the sterile

insect technique (Dyck et al. 2006). For instance, the

removal of larval sources, a tenet of mosquito control

for decades, aims to suppress or eliminate a population

by removing key habitat resources within a landscape

(Gorgas 1915; Gubler and Clark 1994; Trewin et al.

2017). In this way connectivity between resource

patches is disrupted, lowering population spread and

abundance, the probability of persistence and the

prevention of disease transmission. A better under-

standing of Ae. aegypti population spread, limited by

the spatial distribution of resource abundance, could

lead to improved control programs and strategies for

achieving elimination.

As computer power and digital tools have

improved, so have opportunities to explore complex

biological processes such as population spread with

modelling approaches. Spatially explicit models are a

method by which the connectivity of mosquito pop-

ulations can be explored without the need for expen-

sive field experiments and data collection. In models

such as these, population dynamics and movement are

simulated across representative landscapes in order to

identify movement pathways between key resources

(Ferrari et al. 2014). Simulations of individual

mosquito movement have been used to study biting

rates between vectors and hosts (Cummins et al. 2012;

Maneerat and Daudé 2016). These models were

designed to study movement rates over limited spatial

and temporal scales but do the nature of their design

are unable to simulate movement at the population

level (Cummins et al. 2012; Maneerat and Daudé

2016). Recently, a spatially explicit model has been

applied to the spread of Ae. aegypti infected with

Wolbachia under different levels of habitat quality and

seasonal complexity (Hancock et al. 2018). Although

the authors did not incorporate barriers to movement,

the level of simulated population movement in

mosquitoes ranged from * 100 to 400 m over 2
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years, reflecting the general low dispersal of Ae.

aegypti (Hancock et al. 2018). Simulating fine scale

mosquito movement as part of a larger meta-popula-

tion is relatively new and there are a number of

knowledge gaps not addressed by previous studies. In

particular, how barriers and landscape features such as

the availability of larval habitat influence Ae. aegypti

population connectivity and spread through urban

landscapes.

Modelling approaches to addressing these issues

are complex and intractable. Here we set out to use a

spatially explicit network model, parameterized with

movement and development data from the literature,

to simulate the invasion and spread of Ae. aegypti

among rainwater tanks in Brisbane. Our modelling

approach focuses on the spread of a newly established

mosquito population as it moves through the urban

landscape, utilizing rainwater tanks as key larval

habitat. In creating our network approach, we sought

to understand what suburban characteristics influ-

enced connectivity and thus population spread. Model

scenarios were based on different rates of rainwater

tank non-compliance (sealed/unsealed to the move-

ment of mosquito adults) that are consistent with

historical entomological surveys. Considering these

landscape configurations, we sought to test the

hypothesis that greater rates of population spread

would occur in areas where higher levels of rainwater

tank were non-compliant. We discuss methods for

managing and impeding the risk of spread and

establishment of Ae. aegypti through the management

of rainwater tank non-compliance and provide insight

into key biological parameters.

Methods

Entities, state variables and scales

The network model was written in Java and the Repast

Simphony 2.4.0 toolkit for agent-based modelling

(North et al. 2013). The model consists of rainwater

tank agents within a spatially explicit urban landscape

defined primarily by roads acting as barriers to

movement. Only rainwater tanks agents that are non-

compliant (unsealed) can become infected by the Ae.

aegypti population. Local council datasets were used

to identify rainwater tank locations (Fig. 1; Brisbane

City Council 2012) and road locations from a state

geospatial database (Supplemental F1; Queensland

Government 2017). The model runs on a 2-week time

step, within which mosquito populations and move-

ment probabilities are calculated and populations reset

equally across the landscape after every 6 months, to

conservatively simulate the effect of the winter season

and a retraction back into key larval habitat: rainwater

tanks. The landscape is made up of Statistical Local

Area (SLA) boundaries (referred to interchangeably as

suburbs), the spatial measure used by the Australian

government as political and statistical boundaries

when the rainwater tank data was collated in 2011. For

statistical analysis, each model replicate was run

within selected SLAs of Brisbane, Australia, over five

years, with perimeters of each SLA considered a

discrete linear boundary (Fig. 1). It did not consider

movement between SLAs such as random dispersal

via human-mediated transport. A SLA would not be

chosen for simulation if: the only tanks available were

close to the spatial boundary, tanks within the suburb

were separated by a large geographic distance, central

tanks were isolated without chance of forming a link,

or the total number of tanks in the suburb was less than

100. These included areas such as the central business

district where results are uninformative. This resulted

in the removal of 15 suburbs that were not suitable for

modelling spread which tended to be inner-city areas

where tanks were not present or larger peri-urban areas

with residential developments on the periphery of the

suburb boundary (Fig. 1).

Given Ae. aegypti tends to exhibit low dispersal,

movement scenarios were selected to represent four

levels of landscape connectivity, and from each SLA

mosquito population spread was measured. High non-

compliance rates (90%, high connectivity) represent a

scenario when regulations were first introduced into

Brisbane 100 years ago (Elkington 1913); the half

non-compliance scenario (50%) represents the condi-

tion of rainwater tanks when the last large epidemic of

dengue occurred in Brisbane during 1925/26 (Ham-

lyn-Harris 1927), a contemporary ‘worst-case scenar-

io’ was selected at 30% non-compliance, and a low

scenario (10%, low connectivity) was chosen to

represent the condition of tanks during the last known

entomological surveys in Brisbane (Heersink et al.

2015). To ensure landscapes were generated stochas-

tically, a compliance state (yes/no) was randomly

assigned to each tank before running the model. The

selection on the initial tank infested with mosquitoes
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was chosen for each suburb; the first infected tank was

defined as the closest tank to the SLA centroid. If this

initial infestation was isolated ([ 500 m from another

point) or surrounded by main roads the next closest

tank was selected until the restrictions no longer

applied.

Network topology and movement

The processes occurring within the model are split into

two parts; a ‘population model’ within each node

(tank) and a ‘movement behaviour’ model represent-

ing links between nodes (Supplementary F2). The

mosquito population in each node is a simple logistic

growth population model (Kucharavy and De Guio

2015).

dN

dt
¼ rN

K � N

K

� �
ð1Þ

where N is the number of individuals in a population, t

is time, r is the maximum per capita growth rate and K

is the carrying capacity (Table 1). The carrying

capacity was set to less than the number of potential

Ae. aegypti adults from the maximum larvae (6,600

larvae) observed in a rainwater tank by Tun-Lin et al.

(1995). The rate of growth is based on a published Ae.

aegypti population model where the simulation starts

with ten egg laying females and reaches equilibrium at

approximately 200 days (Dye 1984). An extinction

threshold of one individual mosquito was incorporated

into tanks to simulate population instability.

Movement within the network model takes the

isotropic Gaussian dispersal kernel framework devel-

oped within Trewin et al. (2020) and we derive

movement probabilities from the Ae. aegypti mark-

release-recapture (MRR) dataset of Russell et al.

(2005) from Cairns, Australia. From this dispersal

kernel, the probability of mosquitoes moving from one

rainwater tank to another was derived into a cumula-

tive distribution function that considers all available

rainwater tanks within the maximum distance, assum-

ing unconstrained movement (see below, Maciel-de-

Freitas and Lourenço-de-Oliveira 2009). Within the

current model, movement is based on diffusion

through the landscape (Kareiva and Shigesada 1983;

Zalucki et al. 2015). For an individual starting from the

origin, the isotropic Gaussian probability density

function (iGPDF) for the individual’s position (x, y)

after time t is implemented as:

Fig. 1 The location of rainwater tanks (Brisbane City Council

2012) and Statistical Local Areas (SLA, or suburb) within

Brisbane, Australia, used in modelling mosquito spread. Map

base layer sourced from Australian ABS digital boundary

(Australian Bureau of Statistics 2016) and licensed under

Creative Commons 2.5 (2016)
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fX;Y x; yjtð Þ ¼ 2pr2t
� ��1=2

e
� x2þy2ð Þ

r2 t ð2Þ

where r is the time varying standard deviation of the

dispersal kernel (Trewin et al. 2020). This diffusion

model is linked to the mark-recapture data by mod-

elling individual counts of adult mosquitoes in

traps,Ci, from a location ðxi; yiÞ over some interval

[a,b] as the outcome of a Poisson process with

intensity function proportional to

Ki ¼ pR
ri
R b

af xi; yijtð Þdt. Here, pR is the thinning that

is applied to the Poisson process for each road that is

present between the trap and the release location and ri
is the minimum number of roads that must be crossed

to reach the trap, so that

Ci � Poisson kKið Þ ð3Þ

where k is an empirical scaling parameter which

relates to the relative trap counts to the integral of the

Gaussian probability density function. The distance

travelled within the iGPDF model is time dependent,

thus the life expectancy will determine how far

mosquitoes will move. This component of the model

starts with estimating the average life expectancy for

Ae. aegypti (k) from probability of daily survival

(PDS) in MRR data from Cairns (Russell et al. 2005)

using the methods of Niebylski and Craig Jr (1994)

where k is 1/-logePDS (Table 1). The estimated

average life expectancy (7.1 days) is within the range

of those observed in other papers estimating Ae.

aegypti PDS (Maciel-de-Freitas et al. 2004; Muir and

Kay 1998). As the distance travelled within the density

function relies on how long an individual lives, female

Ae. aegypti life spans were randomly sampled as

m = 1,000,000 life-times, t1; . . .; tm, using an expo-

nential life-time PDF:

fT tð Þ ¼ 1

k
e�t=k ð4Þ

These samples were used to randomly generate a set

of movement coordinates (x1; y1),…, (xm; ym) using

the probability density function in Eq. 2, conditional

on each of the sampled life-times (i.e. we substitute

each of the life-times into Eq. 2, for t and then sample

a location (x,y) from the density). These coordinates

were in turn used to generate the absolute travel

distances for each sampled life-time, so that for the ith

coordinate, this was di ¼ ðxi2 þ yi
2Þ1=2.

A probability mass function (PMF) was created by

returning the absolute distance travelled at 5 m

intervals for ease of reference within the network

model (Supplementary F3). To estimate the probabil-

ity of a link forming between two nodes in the network

(facilitating two-way movement), an empirical cumu-

lative distribution function (CDF; Supplementary F4)

was integrated from the static PMF. As Ae. aegypti

tend to avoid crossing roads, the Russell et al. (2005)

dataset was used to estimate the probability of a

mosquito crossing a road over a two-week period

Table 1 Parameters and descriptions of Aedes aegypti and rainwater tank agents within the network simulation

Parameter Values Source

Movement parameters

Distance iGPDF Developed from Russell et al. (2005) dataset and

extended from Trewin et al. (2020)

Average life expectancy (k) 7.1 days Russell et al. (2005)

Time step 2 weeks

Maximum distance of travel 500 m Maciel-de-Freitas and Lourenço-de-Oliveira (2009)

Probability of crossing road (pR) 0.184 Developed from Russell et al. (2005)

Probability of staying at a node (pstay) 0.086 Developed from Russell et al. (2005)

Agent parameters (rainwater tanks)

Tank ID 1-n tanks

Infected tank Infected or uninfected

Compliance with regulations Compliant or non-compliant

r (maximum per capita growth rate) 0.4 Dye (1984)

Carrying capacity (K) 350 Dye (1984)

Tank spatial location x, y coordinate in space Brisbane City Council (2012)
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(Table 1). Roads were imported as shapefiles into the

Repast context from Queensland state geospatial

database of roads (Queensland Government 2017).

For each link formed between nodes (tanks), the

number of roads is counted along the link and the

probability of mosquitoes moving across the road is

modified by the number of roads they cross. Major

roads are displayed within the Repast geography as

two single parallel roads, thus halving the probability

of mosquitoes crossing them.

Once links in the network had been generated, the

proportion of the population leaving and staying at the

current node was based on the equations:

p i;NjjN
� �

¼
ð1� pstayÞp i;Nj

� �
� p

R i;Njð Þ
RPn

k¼1 p i;Nkð Þ � p
R i;Nkð Þ
R

ð5Þ

And

p i; ið Þ ¼ pstay ð6Þ

where i is a node that is a source of infestation, N ¼
N1; . . .;Nnf g is a set of neighbouring nodes connected

to i that represent non-compliant tanks, of which Nj is

a member, p i;Nj

� �
is the proportion of the population

that move from node i to node Nj and pstay is the

proportion of the population that stays at node i

(Table 1, see description below). p i;Nkð Þ is the un-

normalised proportion moving the distance between

node i andNk in the absence of roads, pR is a parameter

that represents the probability that a mosquito crosses

a road, R i;Nkð Þ; the number of roads that must be

crossed in order to move between node i and node Nk.

p i;Nkð Þ was equal to the PMF obtained for the

probability of travelling the distance between tank i

and neighbour Nk.

Once all potential links have formed to surrounding

nodes, each mosquito at a node is randomly selected to

stay at the node for this timestep (with probability

pstay) or to move to one of the neighbouring nodes

(with probability 1� pstay). One the random number

of moving mosquitoes has been established, fixed

proportions of these individuals were then moved to

neighbouring nodes, so that the proportion of moving

mosquitoes that transitioned from node i to neighbour

Nj was
p i;NjjNð Þ
1�pstay

. The parameter pR was calculated as

pR = 0.184 (95% Confidence Interval Upper 0.187,

Lower 0.181). Using Eq. 5 for the observed data, the

scaling parameter, k, the standard deviation,r; and the

road thinning parameter, pR, can be estimated through

maximum likelihood with optimization carried out via

a Nelder-Mead simplex method via the optim() routine

in R. Although r and k are only applied when deriving

the PMF, these were determined as 79.01 and -

109.11, respectively.

We defined pstay as the probability of a mosquito

travelling at most half the length of a typical residen-

tial property in Cairns (approximately 20 m). The

proportion of the population staying within this

distance is then defined by the CDF (pstay, Table 1;

Supplemental F4). At the end of each time step in the

model, each tank’s mosquito population is updated to

reflect the internal tank population increase, the

mosquitoes that emigrated to a new tank, and those

that immigrated to the current tank. Within the display

network of the model, a link is formed between the two

nodes where movement was successful. This process

happens for each tank populated with mosquitoes at

each time step.

Outputs

The three main outputs of the model at each time step

were:

(1) whether a node (rainwater tank) has mosquitoes;

(2) the number of mosquitoes within each rainwater

tank; and .

(3) the total number of links from a source rainwater

tank to recipient tanks (out-links).

For each suburb and scenario of non-compliance

the model was run 30 times. Mosquitoes infest non-

compliant rainwater tanks (as nodes) as they move

through the network. The complete network topology

for each suburb is added to the Repast context for

display at the end of each simulation step and all

results were output to.csv files for analysis.

Statistical analysis

To mitigate the effect of the modifiable-areal-unit

problem, results were reported at the largest areal unit

available, in this case the suburb. The full list of

covariates used in analysis were extracted using

ArcGIS (ESRI 2017) at the suburb level and included

total rainwater tanks, tanks per square kilometre, total

area of suburb (km2), total properties (lot and plan
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from cadastre), mean property size (m2), properties per

square kilometre, total cadastral plans, mean plan size

(m2), total roads, total road length (km), roads per

square kilometre, mean road length (km2), total

population, population density (km2) and socio-eco-

nomic decile (Supplemental T1). Correlation coeffi-

cients were calculated and predictors with values over

0.75 were removed to avoid collinearity (Supplemen-

tal F5). Datasets were provided by the (Brisbane City

Council 2012), Australian Bureau of Statistics (Aus-

tralian Bureau of Statistics 2011a) and the Queensland

government (Queensland Government 2017).

The percentage, arithmetic mean and standard

deviation of infested, non-compliant tanks, the mean

number of non-compliant tanks and the maximum

number of infested tanks were calculated for model

runs over a 5-year period. To test which scenarios

resulted in the largest number of infected tanks, one-

way ANOVA was used to compare each of the four

non-compliance scenarios across all suburbs. To

satisfy the assumption of equal variance, the numbers

of infected tanks were square root transformed,

replications were reduced to 10 to reduce the degrees

of freedom in the analysis, and Tukey’s honestly

significant difference test was used for multiple

comparisons between non-compliance scenarios.

To determine which suburbs represented the high-

est risk of mosquito spread through non-compliant

rainwater tanks, analyses were performed on model

outputs. To determine which suburbs facilitated

mosquito spread, model outputs were chosen to

represent the 90% rainwater tank non-compliance

scenario. This scenario represented the highest poten-

tial for mosquito spread between nodes. As the size of

a mosquito population within each suburb was highly

correlated with the number of rainwater tanks con-

taining mosquitoes, the number of infested tanks was

chosen for analysis. The total and mean number of

infested rainwater tanks per suburb (over 30 replicated

five-year simulations, rounded to the nearest integer)

were calculated. Due to over dispersion in infested

rainwater tank counts across different suburbs, where

the variance was considerably larger than the mean, a

generalized linear model with negative binomial

errors for prediction was applied. The glm.nb() with

a log link function ‘MASS’ library for R was applied

during analysis. Residuals were normally distributed

and a forward selection methodology was applied to

choose optimal predictors, improve model fit and

minimize AIC. Model predictions were used to

identify which suburbs contained the greatest mean

number of infested rainwater tanks.

To estimate the rate of mosquito spread across

different compliance scenarios we selected (in this

case total infested tanks over 5 years), ten high ([ 90th

percentile), medium (50th percentile) and low risk

(\ 10th percentile) suburbs as predicted by the

negative binomial model. Replicates were extracted

from each suburb for the 10%, 30% and 90% non-

compliance scenarios. The spread profiles of each

suburb as predicted were ranked into quartiles,

displayed using ArcGIS and ten suburbs with the

highest and lowest spread were highlighted (see results

Fig. 3).

To predict which suburbs consistently had the

highest connectivity or ‘‘hubs’’ within the tank

network, we derived the maximum number of out-

links for each suburb, per compliance scenario, and

model replicate. Multiple regression was then applied

to maximum out-links for the 90% rainwater tank non-

compliance scenario, as this provided the greatest

potential for nodes with high connectivity. No trans-

formation of the dependant variable was necessary as

residuals were normally distributed and the lm()

function was applied from the base R package for

analysis.

A forward selection methodology was applied to

choose predictors and improve model fit using the

multiple R2 value. We considered independent vari-

ables to be significant at the P = 0.05 level for all

models. To visualize connectivity within selected

areas from high, medium and low risk suburbs (as

predicted by the infested tanks risk statistical model)

heat maps were created in ArcGIS using the kernel

density tool within the Spatial Analyst toolset. This

tool was applied to visualize groups of nodes within

the landscape with high mean out-links after five

years. Output cell size was set to one metre, search

radius 75 m, with output values as densities and the

planar method was applied.

To understand the area that a mosquito invasion

may spread through the urban landscape, suburbs from

high moderate and low risk categories were selected.

Fifteen additional replicate invasions proceeded for

five years under each scenario of non-compliance

within the model. The area of spread across the

landscape, measured as an ellipse, was used to give an

estimated area of spread for each compliance scenario.
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As widths and heights of invasions were never

constant, the mean ellipse area was calculated for

fifteen iterations of each model run in km2. As the

assumptions of ANOVA were not met, a Kruskal–

Wallis test and pairwise Wilcox test with Bonferroni

correction were used for group and pairwise compar-

isons, respectively. All analyses were performed in R

v3.5.1 (R Core Team 2018).

Results

Infested rainwater tanks

There were significantly higher infestations in the 90%

non-compliance scenario when compared with all

other scenarios (F(3,36) = 17,495, p\ 0.001). A post

hoc Tukey test revealed significant differences in

mean infestation level between all paired scenarios.

Interestingly, the 50% non-compliance scenario rep-

resented the highest percentage of infested tanks when

compared with other scenarios (Table 2). The 10%

non-compliance scenario represented a lower percent-

age and mean number of infested tanks than all other

scenarios (Table 2). Results of the negative binomial

model predicting total infested rainwater tanks

showed a three-way interaction between the covari-

ates; tanks per km2, the mean size of a property and the

mean road length of suburbs (Table 3).

Maximum out-links and connectivity

To understand which landscapes promoted the highest

mosquito population connectivity, nodes that were

most frequently represented in the top 1% of nodes

with high out-links (within the 90% non-compliance

scenario) were examined. Of these ‘‘hubs’’ with total

out-links of between 9 and 18, 15% were primarily

identified as nodes where the original invasion began.

After thirty replications these nodes represented 48%

of all nodes with high out-degrees in the top 1% of

hubs. Heat maps revealed groups of nodes within the

landscape with high connectivity (Fig. 2). Low risk

suburbs (Fig. 2 A/B) had considerably lower connec-

tivity and area of spread than medium (Fig. 2 C/D) and

high-risk suburbs (Fig. 2 E/F). Mosquito population

connectivity was best explained in suburbs by the

interaction of high tank density, small yard size and

high human population density (Table 4).

The total number of infested tanks were used to

estimate and display which suburbs within Brisbane

represent the highest risk of spread. In the 90% non-

compliance scenario, the high-spread suburbs tended

to be predicted by a large densities of rainwater tanks,

followed by the mean area of residential properties,

and these suburbs tended to be aggregated spatially

within Brisbane (Fig. 3).

Population spread

Once suburbs representing the highest areas of pop-

ulation spread were identified through replication, the

model was additionally run to simulate five years and

the area of invasion under each non-compliance

scenario measured. The greatest area of spread was

observed in the 50% non-compliance scenario, with a

mean area of 0.842km2 (SD ± 0.096), followed by the

30% (mean = 0.722km2, SD ± 0.152), 90%

(0.703km2, SD ± 0.088) and 10% (0.216km2, SD ±

0.031) scenarios, respectively (Fig. 4). There were

significant differences between non-compliance sce-

narios within suburbs of high (H(3) = 42.2,

P = \ 0.001), moderate (H(3) = 36.5,

P = \ 0.001) and low (H(3) = 44.9, P = \ 0.001)

spread. However, pairwise comparisons revealed no

significant differences between the 30% and 90% non-

compliance scenarios in the high and moderate spread

suburbs and between the 30% and 50% scenarios in

the moderate spread suburb (Fig. 4). There were

significant differences between suburbs when com-

paring the effect of non-compliance on population

spread in the 90% (H(2) = 16.4, P = \ 0.001), 50%

(H(2) = 26.0, P = \ 0.001), 30% (H(2) = 30.4,

P = \ 0.001) and 10% (H(2) = 25.9, P = \ 0.001)

scenarios, respectively. Pairwise comparisons

revealed no significant difference between high and

medium risk suburbs in the 90%, 30% and 10% non-

compliance scenarios.

Discussion

Rainwater tanks represent ideal mosquito larval habi-

tat and non-compliant tanks can be a key driver of

mosquito establishment, spread, and subsequent dis-

ease transmission (Trewin et al. 2017). Our findings

suggest that although mosquito population spread

within the landscape is enhanced when tank density
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and non-compliance rates increase, this relationship is

not linear and only really evident when compliance is

lower than 30%. We observed a rapid increase in the

area of populations between the 10 and 30% scenarios

before spread plateaued at higher levels of non-

compliance. This suggests there may be a threshold of

non-compliance that dramatically affects the spread of

a population within urban environments.

To lower the risk of establishment and spread of

invasive mosquitoes like Ae. aegypti, it will be

important to maintain a high level of rainwater tank

regulatory compliance within major Australian cities.

Within the 10% non-compliance scenario, larval

habitat was highly fragmented and due to the low

dispersal of female Ae. aegypti, population spread was

limited. It is interesting to note that non-compliance

levels of * 10% were recorded in Brisbane around

the time Ae. aegypti was driven to extinction in the

mid-1900s (Trewin et al. 2017) and rainwater tank

non-compliance levels of\ 10% do not correlate with

the native container inhabiting mosquito, Ae. noto-

scriptus, distribution or larval abundance (Heersink

et al. 2015). Furthermore, it is possible that non-

compliance rates under a 10% threshold could lower

the risk of establishment and spread of a newly

invading population, particularly if sealed tanks are

acting as population sinks (Trewin 2018). Ensuring

tanks remain sealed could act much like the

Table 2 Descriptive statistics of model outputs including the mean number of infested tanks, mean number of non-compliant tanks

and the maximum number of infested tanks over 5 years under different rainwater tank non-compliance scenarios

Non-compliant rainwater tank

scenarios (%)

Mean infested non-compliant

tanks (%)

Standard

deviation

Mean non-compliant

tanks

Max # infested

tanks

10 5.8 (12.2) 0.4 63.6 22

30 29.4 (18.9) 0.6 190.6 93

50 52.5 (21.0) 1.3 317.9 160

90 82.8 (19.1) 0.7 571.7 210

Table 3 Results of negative binomial analysis with coefficients predicting the simulated number of infested tanks (90% non-

compliance scenario) over 5 years from 140 suburbs within Brisbane.

Coefficients Estimate Std Error z value P value

Intercept 4.191 0.344 12.179 \ 0.001

Tanks/km2 - 0.002 0.003 - 0.863 0.388

Mean (x) property size (km2) - 78.198 2.830 - 0.713 0.476

Mean road length (km) - 2.019 26.584 - 2.942 0.003*

Tanks/km2: Mean road length 0.029 0.024 1.226 0.220

Mean road length: Mean property size 167.331 67.766 3.744 \ 0.001*

Tanks/km2: Mean property size 4.637 1.239 2.469 0.014*

Tanks/km2: x Road length: x Property size - 21.841 9.664 - 2.26 0.024*

Null deviance: 274.99 on 139 degrees of freedom

Residual deviance: 132.50 on 132 degrees of freedom

AIC: 681.65

Number of Fisher Scoring iterations: 1

Theta: 12.99

Std. Err. 4.85

2 9 log-likelihood: - 663.65

*indicates significance at P\ 0.05
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epidemiological theory called the ‘‘mass-action prin-

ciple’’ and is the theory underlying herd immunity

(Fine 1993). This principle would suggest that infes-

tation frequency is related to the product of proportion

infested multiplied by the number of non-compliant

tanks (Paul 1979). It would be prudent if authorities

could limit non-compliance levels to less than 10%,

particularly in suburbs which are at high risk for

establishment and spread.

It was expected that the area of mosquito popula-

tion spread would be highest in suburbs with a 90%

rainwater tank non-compliance level. However, we

observed the greatest level of spread within 30% and

50% non-compliance scenarios. There are likely two

Fig. 2 Heat maps representing connectivity (mean out-links) of nodes within low (a, b), medium (c, d) and high (e, f) risk SLAs under a
90% non-compliance scenario. Yellow circle represents node of initial infestation
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reasons for why this may have occurred. First,

distances between non-compliant tanks would be

greater in the 30% and the 50% non-compliance

scenarios relative to the 90% scenario, but not so far

that mosquitoes consistently die when attempting

movement (such as would be the case in the 10% non-

compliance scenario). One mechanism to explain this

could be related to the probability of movement within

the PMF, where the probability of movement does not

vary greatly between 20 and 90 m, allowing for large

jumps where possible. A second mechanism may

relate to the 30% and 50% non-compliance scenarios

observing a greater number of mosquitoes moving to a

smaller number of potential nodes. With 20% of

mosquitoes attempting to disperse staying at the

original infected tank (under 20 m) and the remaining

Table 4 Results of multiple regression analysis comparing the maximum number of simulated out-links in each SLA (or suburb;

90% non-compliance scenario) over 5 years within Brisbane

Coefficients Estimate Std. error t value P value

Intercept 5.64 1.60E–01 35.36 \ 0.001

Tanks/km2 1.27E–02 9.66E–04 13.09 \ 0.001

Mean (x) property size/km2 - 6.11E ? 01 4.56 - 13.40 \ 0.001

Human population/km2 2.64E–05 5.85E–05 0.45 0.65

x Propertysize:tanks/km2 3.570 5.86E–01 6.10 \ 0.001

x Propertysize:population/km2 - 1.79E–01 3.79E–07 - 3.64 \ 0.001

Population/km2:tanks/km2 - 1.38E–06 4.40E–02 - 4.06 \ 0.001

Tanks/km2: x propertysize: population/km2 1.34E–03 3.92E–04 3.41 \ 0.001

Residual standard error: 2.11 on 4166 degrees of freedom

Multiple R-squared: 0.37, Adjusted R-squared: 0.37

F-statistic: 354.8 on 7 and 4166 DF, P value:\ 0.001

Fig. 3 Map indicating which Statistical Local Areas represent

where high (red), moderate (yellow) and low (dark green) spread

of mosquitoes would occur under a 90% rainwater tank non-

compliance scenario. For increased visualization of low/high

spread, we have included the ten highest and lowest risk SLAs as

separate colours
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80% attempting to disperse over distances greater this

this, the number of mosquitoes distributed into nearby

available non-compliant tanks depends on the number

of links formed. A large number of links forming to

infected tanks close to the tank of origin would result

in small numbers of individuals moving between

tanks—a function of the dispersing population, the

number of links formed, and how the 80% attempting

to disperse are split between dispersing links. How-

ever, a low number of connected nodes may lead to

larger number of mosquitoes successfully ‘jumping’

between nodes, initiating destination populations with

a greater number of individuals. In this case, popula-

tions in newly infested nodes would increase more

rapidly when colonized by a larger number of

mosquitoes, thus allowing for larger dispersal events

through the landscape. A combination of these mech-

anisms may have enhanced the spread of populations

within the model landscape at lower rainwater tank

non-compliance levels.

When landscape conditions are sub-optimal, mos-

quitoes may need to move further to seek out

favourable habitat. This has been supported by

modelling by Otero et al. (2008) and observed in field

experiments (Bugher and Taylor 1949; Honório et al.

2009;Wolfinsohn and Galun 1953). Otero et al. (2008)

suggest that in areas of sub-optimal habitat (such as

temperate areas), populations of Ae. aegypti may

prevent local extinction by dispersing over larger

distances to new habitat. Thus, when population

sources are sparsely distributed through a landscape,

it may act to increase the distance of mosquito

dispersal and movement. We have not included any

lingering effects of sub-optimal periods such as

overwintering or when a tank infection goes extinct.

This is primarily due to the highly variable rate at

which populations re-emerge due to climatic factors or

mosquito control processes which are not considered

in the current model. Our results support the assertion

that dispersal is driven by the availability (or density)

of oviposition sites (Reiter et al. 1995;Wolfinsohn and

Galun 1953). Conversely, when conditions are

favourable within the landscape, such as in the 90%

non-compliance scenario, Ae. aegypti is unlikely to

move large distances from where adults emerge

(Edman et al. 1998; Harrington et al. 2005). Although

spread was still relatively high within this scenario, it

did not result in the largest area of invasion. It seems

that mosquitoes in the 90% non-compliance scenario

were more likely to move within a group of tanks than

make large jumps, thus lowering the speed of spread

across the landscape. These results may be a limitation

to our model in its current form, as it is possible that

human mediated transport (which was not tested

within the model) at high mosquito densities could

Fig. 4 Plot of invasion area (km2) for each scenario of non-

compliance (10%, 30%, 50% and 90%) in suburbs identified to

contain a high (red), medium (orange) and low (blue) risk of

spread over a period of 5 years. Large points represent mean and

error bars one standard deviation
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increase the rate of population spread across barriers

and unfavourable habitat (Benedict et al. 2007).

In Brisbane, the prevalence of rainwater tanks in

households is currently greater than 40% in many

suburbs, which is our primary predictor of increased

spread. Simulated infested tanks were used to under-

stand how spatial covariates associated with each

suburb can predict the models estimate of mosquito

spread between tanks and allow for a comparison of

suburbs with different risk profiles. As one would

expect, our results suggest that higher rates of

population spread are driven primarily by the density

of non-compliant rainwater tanks in the landscape.

Ideally, surveillance of rainwater tanks and mosquito

vectors should target these high-risk suburbs. While

some of the predictors used in statistical analysis were

not directly included in the network model, the

spatially explicit network topology we derived from

real-world data can be considered a function of a larger

number of empirical covariates. These covariates (eg.

property size and population density) would therefore

affect link formation indirectly and were used in

analyses. Furthermore, road width is likely to vary

both within and between landscapes and as such,

recommendations would benefit from sensitivity test-

ing of parameters, in particular the influence of roads

on population spread over time.

Simulations show that high tank density, moderate-

to-large property size and small road lengths resulted

in the largest number of infested tanks. Suburbs with a

high tank density are likely to represent areas of

residential housing further than 7 km from the centre

of the city, have the space to contain a rainwater tank

and require greater volumes of water for garden use.

Within Brisbane, these areas represent residential

neighbourhoods with a mean property size

of * 800–1,000 m2, which were settled primarily

during the 1970s and 80 s, and are dominated by cul-

de-sac designs. In these suburbs, blocks tend to be

shaped with the landscape, thus increasing the number

of houses that can fit into oddly shaped tracts (eg. to

the edge of rivers) such as the suburb of Westlake in

western Brisbane. A non-uniform block shape enabled

higher connectivity within the landscape and

increased spread without forcing populations to cross

roads to invade new habitat. The design of these urban

environments provides a continuous space for popu-

lation spread before individuals were required to cross

a road and establish another infestation (Fig. 2).

Although these landscapes represent the highest rates

of spread, they may not increase risk of establishment

as modern house designs in these suburbs incorporate

window screening and ducted air-conditioning which

have been shown to influence disease transmission and

vector abundance (Ramos et al. 2008; Reiter et al.

2003).

Our modelling suggests that all scenarios with a

non-compliance rate over 30% had a similar influence

on the rate of mosquito spread in suburbs. While our

results focus on the random variation of non-compli-

ant rainwater tanks between suburbs, it is likely that

distributions of key larval habitats within suburbs

(such as lower socio-economic areas) will vary across

large cities. Future applications of this modelling

framework should consider this intra-suburb variation

on the rate of invasion spread at finer spatial scales.

Our findings are conservative, however, as it was

assumed the species could not persist long-term in

Brisbane until recently (Trewin et al. 2019). Over a

5-year period, invasions extended to a radius of

approximately 500 m and area of 0.7–0.9km2, a

conclusion which concurs with results from other

modelling approaches with seasonal variation (Han-

cock et al. 2018). Aedes aegypti has not been observed

in the city for over 60 years, despite ongoing city-wide

surveillance and small populations found just 150 km

to the north. Our findings may have implications for

the ability to detect an incursion of Ae. aegypti within

Brisbane and may require surveillance with a fine

resolution if authorities are to detect an invasion early.

If Brisbane were divided into square kilometre units

(roughly the area estimated by the model that an Ae.

aegypti population would spread after 5 years) then

one would need to monitor 16,000 ovitraps a year (1

trap per km2) to be certain of no establishment across

the city. Unfortunately, surveillance of this magnitude

is not always an efficient use of resources, both in

terms of the time taken to deploy traps and manually

identify specimens. However, with a combination of

citizen science and the number of highly efficient,

sensitive and cheaper genetic testing, detecting incur-

sions of Ae. aegypti at the scale of a city may soon be

possible (Montgomery et al. 2017).
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Conclusion

High rainwater tank non-compliance influences the

rate at which Ae. aegypti populations spread through

an urban landscape. Aedes aegypti is one of the most

invasive species of disease vectors, as it is highly

adapted for urban environments. Even low levels of

non-compliance may rapidly increase the risk of

establishment and spread of the species in suburbs

containing high densities of rainwater tanks. This can

be exacerbated when rainwater tanks are more highly

connected, such as suburbs where the landscape is

dominated by a cul-de-sac design. In the absence of

any appropriately scaled surveillance program in

Brisbane, and given the dispersal parameters of the

vector, incursions are likely to go undetected. Govern-

ments and communities want to avoid the establish-

ment of invasive vectors such as Ae. aegypti and Ae.

albopictus (Skuse) and subsequent spread of dengue,

chikungunya and Zika viruses. With the installation of

over 300,000 rainwater tanks over the past 16 years

and current non-compliance levels in Brisbane likely

to be between 10 and 30% (Brian Montgomery,

Queensland Health, pers. comm.), rainwater tanks

may be approaching ideal conditions for re-establish-

ment and rapid spread of invasive vectors. Our results

inform areas to target for future management actions

in south-east Queensland and provide a pre-emptive

approach that supports planning by health authorities

for targeted surveillance for invasive mosquito

vectors.
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