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Simple Summary: Callosobruchus chinensis, a stored product pest, is difficult to control. In the study,
the goal was to explore the causes of the demographic history, dispersal path and genetic variations
underlying the spatial and temporal distribution of C. chinensis in China. The phylogeography of
C. chinensis was analyzed by distribution modelling (SDM) under six periods and the least-cost path
(LCP) based on combined mitochondrial DNA. Our data showed that the geographical isolation of
the genetic lineages and the distribution range of C. chinensis were restricted by climate in different
times. The landscape structure had influence on the genetic differentiation of C. chinensis. Although
the migration ability of C. chinensis is limited, the development of transportation and trade is helping
the insect spread, along with the beans of its host.

Abstract: Callosobruchus chinensis (Coleoptera Bruchidae), is a pest of different varieties of legumes.
In this paper, a phylogeographical analysis of C. chinensis was conducted to provide knowledge
for the prevention and control of C. chinensis. A total of 224 concatenated mitochondrial sequences
were obtained from 273 individuals. Suitable habitat shifts were predicted by the distribution
modelling (SDM). Phylogeny, genetic structure and population demographic history were analyzed
using multiple software. Finally, the least-cost path (LCP) method was used to identify possible
dispersal corridors and genetic connectivity. The SDM results suggested that the distribution of
C. chinensis experienced expansion and contraction with changing climate. Spatial distribution of
mtDNA haplotypes showed there was partial continuity among different geographical populations of
C. chinensis, except for the Hohhot (Inner Mongolia) population. Bayesian skyline plots showed that
the population had a recent expansion during 0.0125 Ma and 0.025 Ma. The expansion and divergent
events were traced back to Quaternary glaciations. The LCP method confirmed that there were
no clear dispersal routes. Our findings indicated that climatic cycles of the Pleistocene glaciations,
unsuitable climate and geographic isolation played important roles in the genetic differentiation of
C. chinensis. Human activities weaken the genetic differentiation between populations. With the
change in climate, the suitable areas of C. chinensis will disperse greatly in the future.

Keywords: Callosobruchus chinensis; mitochondrial gene; phylogeography; the distribution modelling
(SDM); least-cost path (LCP)

1. Introduction

Phylogeography is the study of the evolutionary history of species, explaining the
present and past distribution patterns of species [1–3]. Climatic conditions, geographic
isolation, and human activities are factors that have become increasingly implicated in the
genetic structure and population demographic history of multiple species [3–6].

Geographic isolation is essential for the genetic structure of populations. A population
may be physically separated when its original habitat becomes divided by natural barriers
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(e.g., mountains and rivers). These barriers prevent gene flow and result in the genetic
differentiation of isolated subpopulations [7,8]. Some studies have also demonstrated the
importance of this in the phylogeography of various species. For example, the Mississippi
River and the Appalachian Mountains in eastern North America caused genetic differentia-
tion among populations of some taxa [9–14]. Geographic isolation has resulted in strong
genetic differences between populations such as the caddisfly, in western and Eastern
Europe [15]. China has a vast territory, a wide span of latitudes, and provides a wide
diversity of climates. China’s geography is characterized by rivers and mountains, which
prevents gene flow between populations, thereby promoting genetic divergence [9,16–18].
The Qinling, Daba and Taihang Mountains have been proven to be barriers for species’
genetic communication [19–21]. The rivers (i.e., Yangtze River, Yellow River, Huai River)
also play an important role in genetic variation [21–23].

Climate conditions are closely related to the survival of insects. The Pleistocene glacia-
tions have been recent climatic cycles, usually resulting in genetic variation, which further
affect population demographics [7,24,25]. The last interglacial period (LIG, ~130–116 ka) is
considered to have been warmer than the present, and its sea level was higher than present
levels in most parts of the world [26–29]. The last glacial maximum (LGM) was about
22,000 years ago, with extreme dry and cold climatic conditions [30]. In LGM, large parts
of the Northern Hemisphere were covered by ice sheets and sea levels dropped by an
average of 120 m [31]. Many phylogeographical studies have focused on the LGM and
LIG periods, and pre-LGM expansion and post-LGM expansion have been recorded for
some species [32]. Compared to the early and late periods, the Mid-Holocene (MH, past
6000 years) was characterized by the greatest change in climatic conditions [33,34]. The
mean annual temperature in the MH was 1–2 degrees Celsius higher than at present [35].
The Holocene climate drove the expansion of many species [32,36]. However, an analysis
of the potential distribution of the herb Cytisus oromediterraneus at four periods (i.e., LIG,
LGM, MH and Current), indicated a similar potential range during MH and the present
periods [37].

Callosobruchus chinensis is widely distributed in China, breeding exclusively on many
kinds of beans, such as kidney beans, cowpeas, lentils, chickpeas, broad beans and mung
beans [38]. Due to its strong reproductive ability and the continued harm in seed storage, it
causes considerable losses in quality and quantity [39,40]. C. chinensis may be derived from
remaining populations on-site, it may be transmitted by flying or bean transportation, and
it may also come from bean processing equipment [41]. Previous studies have shown that
differences in geographical latitude and climatic conditions have resulted in differences
in spawning, hatching rate, development duration and feeding habits among various
populations of C. chinensis [42]. Therefore, the genetic structure of the C. chinensis population
is likely to be affected by geography, climate and human activity [43,44].

In this study, our main goal was to estimate the importance of geographic barriers,
climatic factors, geographic distance, and human intervention to the genetic structure and
population demographic history of C. chinensis. It is difficult to directly observe pests’
population structure and long-distance migrations. Molecular markers therefore serve as a
very useful tool to study these parameters [45]. In this paper, the predicted distribution
of C. chinensis habitat at six periods was modelled. Phylogenetic and phylogeographi-
cal analyses, as well as the least-cost path (LCP), were conducted to determine possible
structure-causing factors. This study provides dates on the mitochondrial gene data of the
C. chinensis population samples, and therefore its genetics, in the main planting areas of
mung bean. The study also provides knowledge for appropriate strategies in predicting
pest infestations.
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2. Materials and Methods
2.1. Specimen Collection

A total of 273 individuals of C. chinensis were collected from 22 mung bean planting
sites in China from 2017 to 2019 (Supplementary Table S1 and Figure S1). All samples were
preserved in 95% ethanol and stored at −20 ◦C before DNA extraction.

2.2. DNA Extraction, Amplification, Sequencing and Sequence Editing

Total genomic DNA was extracted from the thorax muscle of C. chinensis, using the
Biospin Insect Genomic DNA Extraction Kit (BIOER, Hangzhou, China). The mitochondrial
fragments of cytochrome oxidase subunit I (COI), cytochrome oxidase subunit II (COII),
cytochrome b (Cyt-b) and 12S ribosomal RNA (12S rRNA) were amplified using PCR Master
Mix. PCR-specific primers (Table 1) were designed based on the C. chinensis sequences
KY856744 from GenBank. The PCR amplification procedures were as follows: 94 ◦C for
3 min, 35 cycles of 94 ◦C for 30 s, 56 or 62 ◦C for 20 s, 72 ◦C for 30 s, and a final extension at
72 ◦C for 10 min. The PCR products were examined using 1% agarose gels with ethidium
bromide following electrophoresis. The products of COI, COII, Cyt-b and 12S rRNA were
sent to Shanghai Invitrogen for sequencing in both directions.

BioEdit 7.1.7 [46] was applied in visual proofreading. Multiple sequences check,
editing and alignment were performed using the MEGA X software. [47]. The mtDNA
(COI, COII and Cyt-b) reading frames were checked in MEGA X, which revealed no evidence
of putative nuclear pseudogenes [48,49] in the dataset.

Table 1. Primers’ sequences for amplification of four mitochondrial genes (COI, COII, Cyt-b and 12S
rRNA) for Callosobruchus chinensis.

Gene Primers Annealing
Temperature Length (bp)

COI
F: AATAAATGATTATTTTCCACTAATCATAAAGACATCGGGA

56 ◦C 1533R: TTAATTTGTTAGTAGGGGTAATTCGGAGTATCTATG

COII
F: ATTTTTACTTGAAAAACAATTCTTCTTCAAGAC

62 ◦C 688R: AAATTTTGATTATTTTAGAAATTCATTTAATAAAATAATTAGGAGT

Cyt-b F: ATGAAAATAAATTTTCGAAAAACCCACC
56 ◦C 1140R: TTAGTGGTAAATGATTTTATCTCATATTTTGTATAAAATTGA

12S rRNA
F: AAAAAATTTTATTTTGGTTATTTAATTAGATTTTTCTTGGT

62 ◦C 752R: GTCTTTCTAGGCACACTTTCCAG

2.3. Ecological Niche Modelling

This study used data on 80 occurrence points of C. chinensis in China, including 22
field collection points and 58 data points found by consulting related published literature
and the GBIF (Global Biodiversity Information Facility) (Supplementary Table S2 and
Figure S2). Species distribution modelling (SDM) was performed to evaluate the potential
distribution of C. chinensis throughout the late Quaternary, current and future periods.
The variables of 19 climate factors (Supplementary Table S3) for current conditions, for
future conditions, and for three time slices of the late Quaternary, were retrieved from
the WorldClim database version 1.4 (http://www.worldclim.org, accessed on 23 October
2021) [50]: (1) Last Inter-Glacial (LIG), about 120,000 to 140,000 years ago; (2) Last Glacial
Maximum (LGM), about 22,000 years ago; (3) Mid-Holocene (MH), about 6000 years ago;
(4) Current, 1975 (average value from 1960–1990); (5) Future, 2050 (average value from 2041–
2060); (6) Future, 2070 (average value from 2060–2080). Except for the spatial resolution of
the raster data of the last glacial maximum of 2.5 arc minutes (5 km × 5 km), that of the
other five periods were all 30 arc seconds (1 km × 1 km). Pearson correlation analysis was
used to test the correlation between the 19 climate factors in ArcGIS 10.4.1 (Esri, Redlands,
CA, USA) and IBM SPSS Statistics 20.0 for Windows (IBM Corp, Armonk, NY, USA). When
the correlation coefficient of two factors was greater than 0.85, one of them was omitted.
Finally, nine factors were selected for suitability analysis: annual mean temperature (BIO1);

http://www.worldclim.org
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mean diurnal range (BIO2); isothermality (BIO3); temperature seasonality (BIO4); mean
temperature of wettest quarter (BIO8); mean temperature of warmest quarter (BIO10);
mean temperature of warmest quarter (BIO13); precipitation of driest month (BIO14); and
precipitation of warmest quarter (BIO18). The maximum entropy modeling of species
geographic distributions was analyzed in MaxEnt 3.4.1 software [51]. The parameters of the
current periods in the model were set as follows: the proportion of test data was 25%, the
regulation multiplier was 1, the maximum iterations were 1000, the convergence threshold
was 0.00001, and it was run 10 times to achieve the best result. At the same time, area
under the curve (AUC) of the receiver operating characteristic (ROC) was analyzed and
calculated. The AUC values were higher than 0.8 of all ten runs, indicating the better and
reliable predictions of the model. The distribution model under current conditions was
projected to the LIG, LGM, MH, 2050 and 2070. Finally, the six habitat suitability layers
were loaded in ArcGIS 10.4.1. Then, the data of the six periods were used to perform a
pairwise comparison of the binary SDMs to predict the distributional changes of C. chinensis
between two adjacent time periods (from LIG to LGM, from LGM to MH, from MH to
Current, from Current to 2050, from 2050 to 2070) by SDMtoolbox 2.4 [52].

2.4. Genetic Polymorphism Analysis and Isolation by Distance

The number of segregating sites (S), number and distribution of haplotypes (Hap),
haplotype diversity (Hd), nucleotide diversity (Pi), standard deviation of haplotype diver-
sity; standard deviation of Pi, and mismatch distributions of pairwise nucleotide differences
were analyzed using DnaSP 5.0 [53]. Recent expansion led to unimodal mismatch distri-
butions in populations. Arlequin 3.5 [54] was used to calculate molecular Pairwise ΦST
(PhiST), Tajima’s D and Fu’s Fs. The values of Tajima’s D and Fu’s Fs were significantly
negative, which indicated recent demographic expansions for species. To test a hypothesis
of isolation by distance (IBD), we used a Mantel test which was calculated with the matrix
of genetic distance (ΦST/(1 − ΦST)) versus the matrix of geographical distance (ln km) in
the GenAlEx 6.501 software [55].

2.5. Phylogeographical Analysis

PopART 1.7 [56] was used to construct a median-joining network (MJ) with default
settings. Two methods were applied to study genetic structure and potential geographic
barriers of C. chinensis, using the concatenated mitochondrial genes. BAPS 6.0 [57] was
used to calculate population structure for spatial clustering. The K value corresponding
to log (ml) value was used as the optimal value of the population space grouping. Mon-
monier’s maximum difference algorithm in BARRIER 2.2 [58] was applied to identify major
biogeographical barriers in population samples.

2.6. Reconstructions of Divergence Time and Historical Demography

To investigate the lineage divergence of C. chinensis, we reconstructed an intraspecific
phylogeny based on concatenated mitochondrial haplotypes, with a set make up of a
constant population size coalescent model, a relaxed uncorrelated lognormal molecular
clock and a GTR (General Time Reversible) substitution model in BEAST 2.6.3 [59]. Since
there were no fossil records and no clear biogeographic events for the calibration of the
trees, we employed an estimated rate of 0.0115 substitutions/site/MY and a standard
deviation of 0.0005 [60–62]. This rate is the standard arthropod rate [63], which may be
different for C. chinensis, but was similar to rates obtained based on fossil and biogeographic
events in some Coleoptera for the combined mitochondrial genes [64,65]. Six independent
MCMC analyses were run for 100,000,000 generations. Tracer 1.7 [66] was used to confirm
stationarity, and then TreeAnnotator 2.6 [67] was used to construct a maximum credibility
tree. A Bayesian skyline plot (BSP) was generated in BEAST 2.6.3 and reconstructed in
Tracer 1.7. When the ESS (effective sample size) value was larger than 200, the result was
available.
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2.7. Visualization of Dispersal Corridors

SDMtoolbox 2.2 in ArcGIS 10.4.1 was used to create the least-cost paths of C. chinensis.
This involved, first, creating a friction layer by inverting SDM, and second, using shared
haplotype data of mitochondrial genes (COI + COII + Cyt-b + 12S) of the C. chinensis
population samples to calculate the cost of the diffusion path between geographic locations
of different population samples. Third, we set the classification values of the lowest cost
values 0.05, 0.02 and 0.01, which were shown in different colors in the diffusion connectivity
layer. Finally, we summarized and standardized all the reclassified paired corridor layers,
and determined the scattered corridors of C. chinensis in a clear landscape.

3. Results
3.1. MaxEnt Model Evaluation

Evaluations of the MaxEnt model showed that, the AUC values of all the training
samples and test samples were higher than 0.8 under the current climatic conditions.
The best AUC value of the training date and test date were 0.900 and 0.857, respectively,
indicating that the prediction result on potential distribution of C. chinensis was accurate
and reliable (Supplementary Figure S3).

3.2. Prediction of the Range and Change in Habitat Suitability of C. chinensis

The prediction results of the habitat suitability of C. chinensis in China under six
different periods are shown in Figure 1. From LIG to 2080, this beetle had experienced
population shrinkage and expansion with environmental changes in different periods. For
high suitability regions, the distribution of C. chinensis was mainly in the southeast of China
under LIG scenario; these showed a significant reduction under the LGM scenario. The
distribution of C. chinensis was mainly in Shandong, Anhui, Henan and Jiangsu from LGM
to 2070, and the scope was constantly increasing. The low and medium suitability regions
were enlarged successively under the six periods in North China. The changes in habitat
suitability of C. chinensis are shown in Figure 2. Between the LIG and LGM periods, the
habitat suitability had a significant contraction in the southeast of China. Comparison of
the LGM and MH periods showed that the habitat suitability had a significant expansion
in the middle-east of China, and then, around the original sites. Under LGM climatic
conditions, only the east (parts of Jiangsu and Anhui) and the south of China (the coastal
areas of Hainan, Guangdong and Guangxi) provided potential refuges for C. chinensis.

3.3. Genetic Polymorphism Analysis

In this study, mitochondrial sequence dates were obtained from 273 individual C. chi-
nensis beetles, which provided a data matrix of 2803 bp, comprising 12S (549 bp), COI
(845 bp), COII (600 bp) and Cyt-b (809 bp) gene fragments. A total of 56 haplotypes were
identified based on the concatenated mitochondrial genes. The concatenated mitochondrial
haplotype diversity (Hd) ranged from 0.378 to 1, only the values of HB2 and GZ were less
than 0.5, and especially the value of GZ was much smaller than the others. The nucleotide
diversities ranged from 0.00021 to 0.00084. The values of SCW, SYQ, SD2, HL, HB2, TJ and
GZ were less than 0.0005; however, the values of SJT and JX were higher than other popula-
tions (Table 2). Fifteen of the 56 haplotypes were found in at least two of 22 populations
and the remaining 41 haplotypes were found only in one population. Hap-3 and Hap-4
were present in the largest number and proportion of population samples, with Hap-3
being more prevalent in populations in the south of China, and Hap-4 being more frequent
in the northern regions, such as the Shanxi populations.
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Figure 2. Predicted changes in the distribution areas of suitable habitat for Callosobruchus chinensis in
China between two adjacent time periods. “-1” represents the expansion areas, which is the green
region in figures; “0” represents the areas where the species did not exist, which is the white region in
figures; “1” represents the areas where the distribution had not changed, which is the yellow region
in figures; “2” represents the areas where the distribution was decreased, and this is the gray region
in figures.
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Table 2. Nucleotide polymorphisms among 2803 bp of mtDNA sequence from Callosobruchus chinensis
beetles in population samples across China.

Population
Code N Hap S Hd ± SD Pi ± SD Tajima’s D Fu’s Fs

SJT 10 Hap-1(5), Hap-2(1), Hap-3(1), Hap-4(2),
Hap-5(1); 6 0.756 ± 0.130 0.00084 ± 0.00017 0.45768 −0.23033

SCQ 10 Hap-3(3), Hap-4(2), Hap-6(1), Hap-7(1),
Hap-8(1); 4 0.857 ± 0.108 0.00056 ± 0.00013 0.08124 −1.69431

SCW 14 Hap-4(1), Hap-9(1), Hap-10(1); 2 1.000 ± 0.272 0.00048 ± 0.00016 0 −1.2164

SLZ 10 Hap-4(6), Hap-11(1), Hap-12(1),
Hap-13(1), Hap-14(1); 10 0.667 ± 0.163 0.00082 ± 0.00023 −1.53448 −0.27358

SXX 10 Hap-2(5), Hap-4(1), Hap-15(2), Hap-16(1),
Hap-17(1); 6 0.756 ± 0.130 0.00066 ± 0.00017 −0.53927 −0.78721

SXH 10 Hap-1(1), Hap-2(5), Hap-4(3), Hap-18(1); 6 0.711 ± 0.117 0.00067 ± 0.00019 −0.49593 0.44029
SYQ 10 Hap-3(5), Hap-4(1), Hap-19(1), Hap-20(1); 3 0.643 ± 0.184 0.00033 ± 0.00012 −0.81246 −1.38724

SSY 10 Hap-1(2), Hap-3(1), Hap-4(5), Hap-21(1),
Hap-22(1), Hap-23(1); 8 0.800 ± 0.114 0.00078 ± 0.00019 −0.8324 −1.33144

SD1 10 Hap-3(2), Hap-4(4), Hap-22(4), Hap-24(1); 5 0.764 ± 0.083 0.00073 ± 0.00011 0.73905 0.80985
SD2 10 Hap-3(1), Hap-15(1), Hap-25(1); 2 1.000 ± 0.272 0.00048 ± 0.00016 0 −1.2164

HL 13 Hap-26(6), Hap-27(5), Hap-28(1),
Hap-29(1); 4 0.679 ± 0.089 0.00049 ± 0.00007 0.25198 0.19892

HB1 12 Hap-3(4), Hap-10(1), Hap-19(1),
Hap-30(2); 4 0.750 ± 0.139 0.00054 ± 0.00010 −0.12075 −0.42156

HB2 17 Hap-3(8), Hap-4(1), Hap-20(1), Hap-31(1); 4 0.491 ± 0.175 0.00026 ± 0.00011 −1.71166 −1.4146

SW 14 Hap-3(4), Hap-4(1), Hap-15(2), Hap-32(1),
Hap33(1), Hap34(1); 6 0.844 ± 0.103 0.00054 ± 0.00013 −1.18946 −2.60454

JX 16 Hap-3(5), Hap-6(1), Hap-15(2), Hap-35(1),
Hap-36(1); 11 0.756 ± 0.130 0.00084 ± 0.00034 −1.76515 −0.23033

AH 11 Hap-4(5), Hap-37(3), Hap-38(1),
Hap-39(1), Hap-40(1), Hap-41(1); 5 0.803 ± 0.096 0.00057 ± 0.00010 −0.11051 −1.92425

TJ 12 Hap-3(5), Hap-4(4), Hap-42(1), Hap-43(1); 3 0.709 ± 0.099 0.00032 ± 0.00007 −0.38482 −0.93979

NM 12 Hap-3(1), Hap-44(7), Hap-45(2),
Hap-46(1), Hap-47(1); 9 0.667 ± 0.141 0.00058 ± 0.00024 −1.83035 −0.69537

SC 11 Hap-3(2), Hap-9(3), Hap-26(3), Hap-48(1),
Hap-49(1); 5 0.844 ± 0.080 0.00067 ± 0.00011 0.27556 −0.73268

HJ 23 Hap-3(8), Hap-30(1), Hap-50(1),
Hap-51(1), Hap-52(1); 7 0.576 ± 0.163 0.00055 ± 0.00022 −1.3042 −0.83145

JS 14 Hap-3(13), Hap-33(2), Hap-53(4),
Hap-54(1), Hap-55(1); 14 0.595 ± 0.108 0.00065 ± 0.00033 −2.04699 0.51876

GZ 14 Hap-4(8), Hap-41(1), Hap-56(1); 3 0.378 ± 0.181 0.00021 ± 0.00012 −1.56222 −0.45861
ALL 224 58 0.876 ± 0.016 0.00085 ± 0.00006 −2.24496 −26.7717

N: number of sequences of different geographic populations used in this study; S, number of segregating sites;
Hap, haplotype distribution; Hd ± SD, haplotype diversity ± standard deviation of haplotype diversity; Pi ± SD,
nucleotide diversity ± standard deviation of Pi.

3.4. Phylogenetic and Phylogeographical Analyses

The BARRIER analysis showed eight boundaries (Figure 3). BAPS analysis showed
that the NM population had high genetic differentiation (Figure 4). Network analyses
showed there were obviously two clades on the whole, but with lots of subdivisions
(Figure 5). The haplotype networks showed a star-like topology typical of recent population
expansion, with two common haplotypes (Hap-3 and Hap-4) and many local rare ones.
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3.5. Isolation by Distance

Mantel tests detected no positive correlations among the 22 populations of China,
denoted by pairwise ΦST/(1 − ΦST) and geographical distances between populations
for concatenated mitochondrial (12S + COI + COII + Cytb) genes (r = 0.069, p = 0.310)
(Supplementary Figure S4).

3.6. Intraspecific Divergence Time and Historical Demographic Reconstruction

The results from the BEAST analysis showed that the two big branches began to
diversify at 0.1005 Ma (Figure 6). The first one had four clades, named Clade I, Clade II,
Clade III and Clade IV, and the divergence of the four clades occurred at 0.0713, 0.0785,
0.0791 and 0.0856 Ma, respectively. The second branch had five clades, called Clade V,
Clade VI, Clade VII, Clade VIII and Clade IX, and the divergence of five clades occurred at
0.0562, 0.0648, 0.0689, 0.0732 and 0.0752 Ma, respectively (Figure 6). The divergence time
of the populations were mainly between 0.05 Ma and 0.11 Ma. The unimodal mismatch
distributions, and the significant negative values of Tajima’s D and Fu’s Fs, indicated that
C. chinensis populations have experienced a recent expansion (Table 2 and Figure 7a). The
Bayesian skyline plots (BSP) indicated the demographic history of C. chinensis in China
(Figure 7b). It also showed that the population of C. chinensis may have experienced three
main periods: the first stage was a prolonged phase of demographic stability; the second
stage was a recent population expansion during 0.0125 Ma and 0.025 Ma; the third stage
was a prolonged phase of demographic stability after 0.0125 Ma (Figure 7b).
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Figure 7. (a) Mismatch distribution curves of the entire samples for Callosobruchus chinensis. Ob-
served and expected mismatch distribution are the red and green lines, respectively. (b) Historical
demographic trends of the entire samples of Callosobruchus chinensis in China were implemented by
Bayesian skyline plots (BSP), using an estimated rate of 0.0115 substitutions/site/MY and a standard
deviation of 0.0005. The historical time (Ma) is displayed on the x-axis, and the effective population
size is shown on the y-axis. The black solid line represents the median of population size, and blue
areas represent 95% HPD.
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3.7. Visualization of Dispersal Corridors and Gene Flow Estimation

The LCP analysis of C. chinensis based on shared haplotypes showed the putative
dispersal corridors for the six periods (Figure 8). Change in the climate in the six periods
has resulted in drastic changes in the genetic connectivity of the C. chinensis population
(Figure 8). In the LIG period, high genetic connectivity occurred in the southeast of China.
In the LGM period, the scope enormously shrank, and the high genetic connectivity of
C. chinensis mainly occurred in Jiangsu, Anhui and Henan. In the MH period, there was
a huge expansion around the sites of Hebei, Shandong, Shaanxi, Jiangsu, Anhui, Henan
and Hunan. In the present period, the high genetic connectivity of C. chinensis mainly
occurred in the region of Shanxi-Henan-Hebei. Finally, in the future of 2050 and 2070,
the landscape connectivity revealed that C. chinensis will disperse widely in north China
(Beijing, Tianjin, Hebei, Shanxi), east China (Shanghai, Jiangsu, Zhejiang, Jiangxi, Anhui,
Fujian and Shandong), central South China (Henan, Hubei, Hunan, Guangdong, Guangxi
and Hainan), southwest China (Chongqing, Sichuan, Guizhou and Yunnan) and Shaanxi.
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4. Discussion

Molecular markers have proven to be very useful in solving the genetic structure of
beetle populations [68]. In this study, we collected samples of C. chinensis from 22 geo-
graphic sites in China. These C. chinensis beetles were analyzed for their patterns based
on concatenated mitochondrial sequences (COI, COII, Cyt-b, and 12S rRNA). Our results
showed that the genetic diversity (Hd) was seemingly high among populations, which
was consistent with other Coleopterans, i.e., Cosmopolites sordidus (Germar 1824), Sitophilus
zeamais (Motsch.), Callosobruchus maculatus (Fabr., 1775) [68–70]. The high haplotype di-
versity (Hd > 0.5) and low nucleotide diversity (Pi < 0.005) indicated that the C. chinensis
population had experienced a bottleneck effect. The results of multiple analysis (unimodal
mismatch distributions, significant negative values of Tajima’s D and Fu’s Fs, scattered
network and prediction of habitat suitability) indicated that C. chinensis then underwent
expansion and genetic variation. At the same time, it also showed that C. chinensis had high
environmental adaptability [44].

In China, the influencing factors on the phylogeographic structure of many species,
such as Hyalessa maculaticollis (Motschulsky, 1866), Camaena cicatricosa (Müller, 1774), Metro-
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coris sichuanensis (Chen and Nieser, 1993) and Scythropus yasumatsui Kono et Morimoto,
have been studied [7,45,71,72]. Genetic variation of agricultural insects can be affected by
several factors, including geographical barriers, climate factors, climate oscillations of the
Quaternary, human activities, etc. [42].

Previous phylgeographic studies indicated that mountains have acted as geographical
barriers to drive speciation in geographically-isolated populations [73–76]. For example,
the genetic divergence exhibited by many insects, e.g., Leptinotarsa Decemlineata (Say),
Carabus solieri, and Epipyropidae, is due to geographical barriers [77–79]. In this study, the
haplotypes among population samples demonstrated that most haplotypes only exist in a
specific geographic area, and Hap-4 was more frequently in Shanxi populations, suggesting
that there was a degree of genetic differentiation among different locations. The result from
the BARRIER analysis showed there were obstacles among Shanxi populations (SLZ, SJT,
SXX, SCQ, SCW, etc.) and other populations, which indicated gene exchange among them
was limited. Shanxi, which lies on the Loess Plateau, west of the Taihang Mountains, locates
on the second step of Chinese topography. On the Loess Plateau, Shanxi is dominated by a
high gully density landscape [80], which become natural barriers for species in migration.
The results of SDM (Figures 1 and 2) showed that ecological niches in Shanxi were suitable
for the survival of C. chinensis, which suggested that climate conditions are not an effective
biogeographic barrier for Shanxi populations. In this study, these results indicated that
the Taihang Mountains and Loess Plateau should be natural barriers of Shanxi (SLZ, SJT,
SXX, SCQ, SCW, etc.) to restrict gene exchange. Their function of geographical isolation
has been found in other species, e.g., S. yasumatsui [72]. Moreover, the Taihang mountains
have acted as a geographical barrier in Sitodiplosis mosellana (Géhin) (SM) [81].

Climatic conditions have been considered to be a fundamental factor underlying
population differentiation [73,82–85]. For insects, climatic conditions play an even more
important role in shaping the population structure of insects such as Stomoxys calcitrans
(L.) and Stomoxys niger niger Macquart [86]. This is especially so for climatic conditions
unfavorable to insect development [86–88]. In the case of C. chinensis, the BAPS and
BARRIER analysis indicated that the NM population had high genetic divergence. The NM
population samples was collected from Hohhot, a region characterized by long and cold
winters. The isolation by distance (IBD) analysis showed no relationship between genetic
differentiation and geographic distances among the 22 populations. This indicates that
genetic isolation may have been caused by other factors than geographical distance between
population samples. Indeed, climatic conditions of a species’ habitat are often barriers
to dispersal. These results suggest that climate played an important role in preventing
migration between populations, which were consistent with the prediction results of the
habitat suitability of C. chinensis in China. Temperature is the primary variable affecting
the distribution and population dynamics of species [89,90]. BIO1, BIO8 and BIO10 were
considered to be the important factors affecting the habitat adaptation of C. chinensis
(Supplementary Figure S5), which further confirmed the influence of temperature on
genetic variation of C. chinensis populations. Rising temperatures are the most remarkable
element of climate change, leading to the increase in insect pests [91,92]. Researchers have
shown that there is a trend of gradual expansion of some insects to the north of China [8,33].
According to the results of this work, the suitable distribution areas for C. chinensis will
significantly increase not only in northern China but also in other regions, and there will be
a tendency to spread across the country. Consequently, the management of C. chinensis will
become even more difficult.

It has been demonstrated that Quaternary climate change has had a huge influence on
many species’ distributions and population structures [4,15]. Our analyses (i.e., mismatch
distributions, Tajima’s D, Fu’s Fs, network of haplotypes, BEAST analysis and BSP) all
indicated a recent expansion, and also showed that the divergence time of C. chinensis
populations mainly occurred in Quaternary glaciations. The habitat ranges of C. chinensis
populations, from the LIG to the present periods, have experienced demographic expan-
sions (pre-LGM expansion and post-LGM expansion) and a contraction. The expansions
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agree with historical events, corresponding to the warming climate under the LIG and MH
periods. Pre-LGM expansion has also been found in other plants and animals [27,93,94].
A rapid expansion in C. chinensis occurred during the MH period, which was also found
in C. maculatus [70]. In this study, it was concluded that Quaternary climate fluctuation
affected the distribution pattern and genetic diversity of C. chinensis. The theory says
that the separation and expansion of populations with climate fluctuations lead to gene
exchange via lineage admixture [4,95,96]. During ice ages, C. chinensis may retreat to shel-
ters in eastern and southern China. After climate warming, these surviving C. chinensis
populations are likely to expand rapidly and trigger gene flow between regions. Amusingly,
the haplotypes distribution and Barrie analysis showed that AH population samples had
genetic differentiation with adjacent populations and a higher value of Hd, which are
also the potential refuges for C. chinensis. Moreover, the values of Hd and Pi of the GZ
population were the smallest of all the populations. The location of the GZ population was
far from the two refuges. Therefore, it is speculated that the pattern of genetic diversity of
the GZ population may be largely due to the founder effect. The haplotypes distribution
was related to the suitable distribution of C. chinensis during the late Quaternary, which
confirmed the profound influence of changing climate on the present pattern of this weevil.
The potential distribution of C. chinensis throughout the late Quaternary supported the
hypotheses that the origin and dispersal of C. chinensis derived from South China and then
spread from south to north. Similar patterns of origin and spread have been reported in
other pests such as Carposina sasakii Matsumura and Grapholita molesta (Busck, 1916) [42,97].

Finally, human activities promote the long-distance dispersal of insects, and facilitate
gene flow to weaken the genetic differentiation between populations [98–100]. The results
(the haplotype network, BAPS analysis and BARRIER analysis) showed the Hap-3 and Hap-
4 haplotypes shared by some populations, and many populations were genetically related
closely, which revealed most of the populations may come from common origins or freely
mating among populations. China has a vast territory with complicated topography and cli-
mate, which have hindered gene flow among C. chinensis populations. However, C. chinensis
is highly migratory during a series of production, processing and commodity circulation
processes, such as seed cultivation, harvesting, storage and transportation [41,44,100,101].
Therefore, there was frequent gene flow among different geographical populations, which
reduced the genetic divergence among populations but enhanced the genetic diversity
within populations [44]. As anthropogenic interventions in nature become stronger and
stronger, the influencing factors of population structure are also changing. With the use of
various pesticides, and the transport and trade of legumes, the genetic population structure
of C. chinensis is increasingly influenced by anthropogenic intervention.

C. chinensis is widely distributed in China, and is an important and harmful beetle. In
the future, global temperatures will be higher than they are now, due to the greenhouse
effect. In recent years, some works have increasingly forecasted species’ distribution
patterns under a future climate, which showed there is a trend of gradual expansion of
some insects to the north of China [33,72]. The predication of suitable areas under future
climatic conditions indicated that C. chinensis will spread widely in China. The survival
rate of C. chinensis may increase in winter, and the number of generations of C. chinensis
may increase. The prevention and control of this beetle is imperative. Several methods
of analysis (DNA markes, MaxEnt model and LCP) have been employed to predict high
suitability areas (Shandong, Hebei, Shanxi, Henan, Anhui, Jiangsu and Shaanxi) and a high
genetic connectivity region (Shanxi-Henan-Hebei), which need to be monitored. Given the
evidence from this study that there is potential gene flow between geographic populations
due to human factors, it is important to ensure that there are no C. chinensis (e.g., larva and
adult) before the bean seeds are transported and traded.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects13020145/s1, Figure S1: Occurrence Data from field col-
lection; Figure S2: Data on 80 occurrence points of Callosobruchus chinensis used in this study in
China; Figure S3: The best AUC value of model prediction with ROC curves under current conditon;

https://www.mdpi.com/article/10.3390/insects13020145/s1
https://www.mdpi.com/article/10.3390/insects13020145/s1


Insects 2022, 13, 145 15 of 19

Figure S4: Correlation analysis between pairwise linearized ΦST/(1 − ΦST) values and the logarithm
of geographic distance in Chinese populations of Callosobruchus chinensis based on concatenated
mitochondrial genes; Figure S5: The results of the jackknife test on AUC for Callosobruchus chinensis
in China to estimate environmental variable significance performed by Maxent; Table S1: Information
on the 22 sites from which C. chinensis were collected; Table S2: Data on 80 occurrence points of
Callosobruchus chinensis used in this study in China; Table S3: Indice of 19 environmental variables
in Worldclim. References [102–112] are cited in the Supplementary Materials.
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