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Fanconi syndrome is a complex of renal tubular dysfunctions defined by glycosuria without
diabetes, aminoaciduria, phosphaturia, and renal tubular acidosis. It is often associated with
hypokalemia, hypophosphatemia, and rickets or osteomalacia. Although it is usually found in the
setting of other well-established non-renal diseases, Fanconi syndrome may present without
identifiable etiology or association. Very infrequently a patient with idiopathic Fanconi syndrome
will progress to chronic renal failure. This case report details the course of such a patient over the
20 years since his diagnosis and discusses the syndrome's genetic background, clinical features,
putative pathophysiology, and therapeutic options, including transplantation.

INTRODUCTION

DR. M.J. BIA: The Fanconi syndrome (FS) is a metabolic disorder characterized by
renal glycosuria, phosphaturia, and generalized aminoaciduria in association with
hypophosphatemia and rickets or osteomalacia. Systemic acidosis, hypouricemia, and
hypokalemia from renal wasting of bicarbonate, uric acid, and potassium are other
common features. A variety of genetically determined disorders, systemic diseases, or
exogenous toxins can produce this complex of renal tubular abnormalities, or the
syndrome may be idiopathic without identifiable etiology. Although the syndrome is
relatively rare, knowledge of its metabolic consequences is important for proper patient
management. Furthermore, continued work with experimental models designed to
evaluate the etiologies of the syndrome has shed new light on the physiologic functions
of the proximal and distal nephron. The following case, recently presented at Renal
Grand Rounds at Yale, provides an opportunity to review the salient clinical aspects of
Fanconi syndrome and discuss the most recent theories concerning its etiologies.

CASE HISTORY

DR. W.S.. LONG: The patient's disease was first detected in 1968 at age 21 during his
evaluation for the Navy, when his urine contained both protein and glucose, although
his blood sugar was normal. Two years earlier as a university student, the patient had a
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TABLE 1
Laboratory Data

Serum Urinary Excretion/24 Hours

Na K Cl HCO3 Creata BUN' Urate Glucose AAb Proteinc GFRd
Date mEq/L mEq/L mEq/L mEq/L mg/dL mg/dL mg/dL g mM mgm ml/minute

1968 147 4.1 109 24 1.8-2.3 22-42 2.2-5.2 19 65 900 42-53
1979 141 4.Oe 114 16 2.3 14
1983 143 3.9 114 10 2.9
1988 144 5.4 114 17 5.0 48 2.7 23 65 1,600 20

aCreat, creatinine; BUN, blood urea nitrogen
bAA, amino acids (normal, <10 mM/day)
cNormal, <150 mg/day
dGFR, glomerular filtration rate, estimated as creatinine or inulin clearance
eValues obtained on potassium supplements

urinalysis as part of a routine physical; the results caused no comment and he presumes
that it was normal. In 1968 the patient appeared robust and had a normal physical
exam when examined by his local physician; however, laboratory values at that initial
evaluation included an elevated serum creatinine of 1.8 mg/dL, serum phosphate 2.6
mg/dL, "massive aminoaciduria," proteinuria, and glycosuria (3 g/day) with a normal
blood glucose.

His local physician referred him to Dr. Leon Rosenberg at Yale's Department of
Human Genetics, where a thorough history for hereditary disorders or systemic
diseases provided few clues. He was currently taking bicarbonate supplements pre-
scribed by his local physician. He denied hematuria, dysuria, polyuria, frequency, or
edema. During the summers he had worked as a camp counselor, mailman, waiter, and
as a sorter in the sample room of a battery factory.

Family history revealed hypertensive cardiovascular disease on both sides of his
family and a paternal uncle with adult-onset diabetes mellitus. His parents and one of
his sisters subsequently tested negative for Fanconi's syndrome with a urinary amino
acid screen. His remaining sister was not screened but has not been reported to have
renal disease.
On his initial exam at Yale (July 1968), he was five feet eight inches tall with normal

posture, weighed 150 pounds, and had a blood pressure of 130/90. Except for bilateral
sustained clonus of unknown etiology, his physical exam was unremarkable. Labora-
tory values at the time of first evaluation here are included on Tables 1 and 2. The
normal bicarbonate level was maintained with supplementation. His urinalysis showed
severe generalized aminoaciduria, 2+ proteinuria, and 2-4 + glycosuria despite
normal serum glucose levels. Tests within normal limits included complete blood count
(CBC), calcium, phosphate, ceruloplasmin, serum protein electrophoresis (SPEP),
audiometry, and urinary mercury, arsenic, and lead. Intravenous pyelogram (IVP)
revealed normal-sized kidneys with a 1 cm stone on the left and a 2 mm stone on the
right. Bone radiographs showed general demineralization. Bone marrow was unremark-
able, and neither bone marrow nor eye exam revealed cystine crystals.
On renal biopsy in 1968, many tubular cells were swollen and distorted with

granular vacuolated cytoplasm. Elsewhere tubular epithelia were flattened. Some
glomeruli were hyalinized; most appeared normal. Interstitial fibrosis was more
striking in the medulla than in the cortex.
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TABLE 2
Calcium, Phosphorus, and Bone Studies

1,25 25
Alk Vitamin Vitamin

Ca P Phos° UCaVb UpVc PTHd D3e D3e
Date mg/dL mg/dL mU/ml mg/day mg/day pM/L pg/ml pg/ml

1968 9.7 2.6 126 732 1,298
1979 8.9 1.9
1987 7.6 4.3 142
1988 8.8 5.6 37 119 1,460 145 46 51

'Alk Phos, alkaline phosphatase (normal, 30-135 mU/mL)
bUC.V, urinary calcium excretion per day (normal <300 mg per day; decreases with renal failure)
cUPV, urinary phosphorus excretion per day (normal <800 mg per day; increases with renal failure)
dPTH, parathyroid hormone (immunoassay of intact PTH) (normal, <25 pM/L)
el,25 (OH)2 Vitamin D3 (normal, 20-65 pg/ml)
25 (OH) Vitamin D3 (normal <5 pg/ml)
Levels of Vitamin D3 and of PTH measured while patient on Vitamin D3 supplements

The patient was thought to have idiopathic Fanconi syndrome because of the
absence of known causes of acquired Fanconi syndrome (Table 3). He was followed
twice a year and remained stable except for a modest decrease in glomerular filtration
rate (GFR) and an increase in excretion of glucose, phosphate, and amino acids. On
X-ray in 1976, he had slight demineralization of the spine and extra-articular bones in
his hands. Overall, his mineral status had improved, and his bone pain had resolved. An
abdominal X-ray (KUB) showed no change in his stones. He was maintained on
bicarbonate, phosphate, potassium chloride (KCI), and a thiazide diuretic for hyperten-
sion.
The patient married, and in 1981 a son was born. In 1983, the patient complained

of thirst, polyuria, and occasional nocturnal cramps. Figure 1 illustrates persistent
worsening of his azotemia, starting about ten years after his diagnosis. At this time he
was also acidotic, due to episodic noncomplicance with bicarbonate supplements.
Renal scan revealed kidneys of normal size and without obstruction but with some
diminution of flow in the right kidney. In 1987 the patient was evaluated for a renal
transplant because of progressive azotemia (Fig. 1). Although he was still a robust
athletic man, working full-time as a high school teacher and exercising several times a
week in the gymnasium, he noted increased muscle pain and weakness. The patient was
now on calcium and 1 ,25(OH)2 Vitamin D3 therapy along with potassium phosphate,
atenolol, and bicarbonate. He was normotensive and weighed 149 pounds. Laboratory
values at that time are included in Tables 1 and 2.

Despite decreased glomerular filtration rate, he still had markedly elevated excretion
rates of amino acids and proteinuria, which consisted mainly of proteins of small
molecular weight on urine electrophoresis. Bone densitometry in 1987 was 137
mg/cm3, at the lower limits of normal. A computed tomogram (CT) of his wrist
showed marked decreases in both cortical and trabecular bone mass.

Bone biopsy demonstrated mixed renal osteodystrophy with moderate signs of both
osteitis fibrosa cystica from hyperparathyroidism and osteomalacia with increased
inactive osteoid surfaces. Repeat IVP now revealed persistent kidney stone only in the
left kidney with no obstruction. Both kidneys were reduced in size.
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TABLE 3
Etiologies of Fanconi Syndromea

Genetic [2] Acquired [3,4]

Wilson disease (AR) [5] Heavy metals [22,23] (cadmium, uranium, lead,
mercury)

Glycogen storage disease (Type 1) (AR) [6,7] Toxins (Lysol [24], toluene [25], paraquat [26])
Galactosemia (AR) [8] Drugs (outdated tetracyclines [27], cisplatin [28])
Hereditary tyrosinemia (Type 1) (AR) [9] Nephrotic syndrome [29,30]
Hereditary fructose intolerance (AR) [10] Vitamin D deficiency/secondary hyperparathy-

roidism [31]
Cystinosis (AR) [ 1 1] Immunoglobulin disorders (multiple myeloma [32],

amyloid [33], light chain disease [33], mono-
clonal gammopathy [34])

Oculo-cerebro-renal syndrome (XLR) [12] Rejection episodes post-renal transplant [35-38]
Idiopathic (AD) [13-20] Anti-tubular basement membrane antibodies [39]

aFigures in brackets denote reference numbers.
AR, autosomal recessive trait
AD, autosomal dominant trait
XLR, X-linked recessive trait

In summary, the patient is a 42-year-old white male with a 20-year history of
Fanconi syndrome and progressive renal failure. With appearance of Fanconi syn-
drome in his son (see below), a familial cause for his primary Fanconi syndrome
seemed likely.

FANCONI SYNDROME IN THE PATIENT'S SON

DR. N.J. SIEGEL: The child was first seen at Yale in July 1986, when he was five years of
age. He had been previously hospitalized in Newington for orthopedic problems related
to cerebral palsy. During that hospitalization, he was noted to have 3 + glucose with a
blood glucose of 110 mg/dL. Other than glycosuria and cerebral palsy, the child
appeared perfectly healthy. He was normotensive and quite active.
He had diffuse aminoaciduria, renal glycosuria, and uric acid of 2.5 mg/dL, which is

low even for a child. His phosphate was 3.5 mg/dL; for a five-year-old this would be a
slightly low value, since phosphate tends to run a little higher in children during their
growth period. The most common cause of Fanconi syndrome in children is cystinosis
[1]. It was clear that at his age he didn't have infantile nephropathic cystinosis, but
there is an intermediate form, which is not as severe as the nephropathic form, and we
thought that he might fall into that category. So we re-evaluated the child for cystinosis
but found no evidence for that disease. When the father's record was reviewed, it
became clear that the child had a familial form of idiopathic Fanconi syndrome.

GENETICS OF FANCONI SYNDROME

DR. M.R. SEASHORE: There are a limited number of cases in the literature with
transmission of Fanconi syndrome over two, three, and, maybe in one family, over four
generations. The "classic" Fanconi syndrome shows increased renal excretion of amino
acids, phosphate, proteins, and uric acid, along with type 2 renal tubular acidosis;
however, people can present without all those findings.
What are the known single gene disorders with associated renal tubular damage that

can present as Fanconi syndrome? What are the genetic disorders with which the
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FIG. 1. Glomerular filtration rate estimated as creatinine clearance versus year of measurement.
Clearance was calculated from patient's weight, age, and serum creatinine by the formula of Cockcroft and
Gault [61 ]. No statistically significant change occurred in estimated creatinine clearance during the first ten
years of the patient's follow-up; the decline noted in the last decade is significant (p < 0.01).

Fanconi syndrome, as a collection of renal tubular dysfunctions, is associated [2]?
Table 3 presents a list of those best known and reported. I think we can exclude all of
them in this patient and his family, but their review is worthwhile.
At the top of the list is Wilson's disease, a disorder of copper metabolism [5]. Copper

is stored in various body tissues and leads to toxicity not only in the kidney but in the
liver and central nervous system as well. The basic defect is as yet unknown, but the
damage is reversible with decoppering, using chelating agents such as penicillamine.
Wilson's disease has been excluded in this patient by the normal blood ceruloplasmin
concentrations, the absence of Kaiser-Fleischer rings, and the absence of central
nervous system deterioration without any specific therapy. Wilson's disease is a rare
autosomal recessive disorder. It would be unusual for a parent and a child to have a
rare autosomal recessive disorder, because it would require that the affected parent be
married to an individual heterozygous for the same gene in order for the child to be
homozygous for the same mutation, which can occur in disorders that are common or in
consanguineous families.

Glycogen storage disease is a disorder that one must consider in the pediatric age
group, particularly Type 1 glycogen storage disease, due to glucose-6-phosphatase
deficiency [6,7]. These patients have storage of glycogen in liver but also in the kidney,
resulting in renal tubular damage. This condition is reversible with maintenance of
normal blood glucose, formerly by continuous nasogastric suction and now with
cornstarch every six hours by mouth. There is no reason to think that this family has
glycogen storage disease.

Galactosemia, due to galactose- I -phosphate uridyl transferase deficiency, is another
recessively inherited disorder in which renal tubular damage is prominent [8]. Toxicity
is probably due to either galactose or galactose-l-phosphate. This patient's initial
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presentation is quite inconsistent with galactosemia, because classical galactosemia, if
untreated, is usually fatal within the first four weeks of life.

Hereditary tyrosinemia is a very rare disorder of amino acid metabolism in which
the basic defect is a deficiency of the enzyme fumaryl acetoacetase, an important
component of the tyrosine catabolic pathway [9]. This condition is also an autosomal
recessive disorder, and afflicted individuals succumb in early infancy if not treated. The
only successful treatment at the present time is liver and renal transplantation. This
condition is not a consideration for this patient.

Hereditary fructose intolerance (HFI) due to deficient fructoaldolase is another
rare, recessively inherited disorder of carbohydrate metabolism [1 0]. Fructose and/or
fructose- I-phosphate are toxic to the renal tubule, but this condition is reversible with a
fructose-free diet. It would be unusual to find a parent and child who are both affected
with this disease. It is possible to find a child with this disorder who develops symptoms
in later childhood. Because patients become symptomatic with vomiting and diarrhea
only when they have a fructose load, such an individual could self-limit fructose intake
and not present until a later age. Usually those who do present at later ages have had
small fructose intakes and present with hepatomegaly as well as renal insufficiency or
renal tubular damage. I think it is a very unlikely explanation for this patient.

Cystinosis is an interesting autosomal recessive disorder in which cystine is stored
within lysosomes, probably because of abnormal cystine transport [ 1]. The infantile
form presents with conjunctivitis, renal insufficiency, failure to grow, and developmen-
tal delay in young infants. Obviously, that's not the explanation here. There is,
however, an intermediate form with onset in adolescence and a less severe course. In
the adult-onset form, renal tubular function is usually spared. It has not been proven
that these three are all due to different mutations at the same locus, but that is the
leading hypothesis. Absence of cystine crystals in bone marrow or in the renal biopsy of
this patient excludes this diagnosis.
The last relatively common genetic disorder associated with Fanconi syndrome is the

oculo-cerebral-renal syndrome described by Charles Lowe [ 12]. It is the only X-linked
disorder reported. The mechanism of that disorder is completely unknown, and the
gene has not been defined. There is no successful therapy that I know of, and those
children die in early infancy. It would be untenable to think that a father and a son
would have the same X-linked disorder because the gene is on the X chromosome, so
father-to-son transmission excludes an X-linked disorder.
What do we know about the familial occurrence of the Fanconi syndrome in patients

without any of the recognized genetic disorders? There are several families now
reported in the literature over the last 20 years where there are multiple family
members with isolated Fanconi syndrome, unexplainable by any of the other mecha-
nisms just reviewed.
The earliest case involving more than one generation was a family reported in 1959

by Sheldon, Luder, and Webb [ 13]. Twin girls presented with the Fanconi syndrome in
childhood. When the father was then examined, he had glucosuria, phosphaturia, and
skeletal problems. The children had frank rickets. Review of the medical record of the
paternal grandfather (then deceased) showed glucosuria, thought to be renal glu-
cosuria. He had been a very short, slender man diagnosed with osteoporosis. He died
before quantitative amino acid measurement was available, and so he never had amino
acids measured in blood or urine. Sheldon and colleagues postulate that this family
represents three generations of proximal renal tubular dysfunction, presenting in the
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twins as classical Fanconi syndrome. In 1981, Patrick et al. [14] provided follow-up
information about the family described by Sheldon and Luder, and noted that renal
failure necessitating renal transplant had occurred in the father; the twins at that time
had less severe renal failure. Although their renal failure has continued to progress,
neither twin had begun dialysis or been transplanted by early 1988 [Cameron JS:
personal communication].

In 1961 Ben-Ishay and his colleagues [15] reported three generations in a family
with low serum uric acid concentrations and phosphaturia but without renal failure.
Hunt [16] in 1966 reported a mother and three children with aminoaciduria, glu-
cosuria, proteinuria, and hypophosphatemia. The mother had skeletal manifestations
which improved after treatment with phosphate and vitamin D. In 1981, Brenton and
colleagues [17] provided extensive data about the occurrence of idiopathic Fanconi
syndrome in two generations of the families of the siblings reported in 1951 by Dent
and Harris and believed to have a recessive form of Fanconi syndrome. This 30-year
follow-up revealed the occurrence of idiopathic Fanconi syndrome in a total of five
individuals in two generations. The cases reported by Friedman and his colleagues [18]
in 1978 were father and son, each with relatively early renal failure; both underwent
renal transplantation. The Wisconsin group has recently reported another family in
which both mother and son have generalized aminoaciduria, glycosuria, and impaired
renal function [19].
Some of the cases just reviewed were reported prior to 1968, the date we first saw this

patient. The rarity of the reported cases at that time and the lack of family history in
our case mitigated against the initial diagnosis of inherited Fanconi syndrome. Today,
however, with further cases reported, we would raise the possibility of a 50 percent risk
to offspring, since dominant inheritance has been demonstrated in some families.
The question of environmental influences arises. I think this is always a serious

problem, but in the Sheldon and Luder paper, at least, there are three generations
affected. The various reports summarized above have come from different parts of the
world: Hunt's report from Iowa City, Friedman and Chesney's from the University of
Wisconsin, Ben-Ishay's from Israel (the patient was Tunisian), and Sheldon and
colleagues from Great Ormond Street in London. So, although we cannot conclusively
rule out environmental effect in these cases, it seems either unlikely or worldwide in
distribution.
Much variability occurs from one case to another, both within families and among

the families reported in the literature. This fact, of course, is not an unusual feature of
dominantly inherited disorders (if indeed this is a disorder involving a single gene). A
great deal of clinical variability occurs within and among families in most autosomal
dominant disease.

Is this an autosomal dominant disorder? At present, there is no proof for that
hypothesis. No linkage to any other known genes has been demonstrated. For Fanconi
syndrome, no mapping to a specific chromosomal location has been done, but the
pedigree evidence speaks for autosomal dominant inheritance. Within the families
described, the affected parents have had both normal and abnormal children, which is
compatible with autosomal dominant inheritance. There have been affected fathers
with affected sons, also compatible with autosomal dominant inheritance and incompat-
ible with X-linked inheritance.

In summary, we have evidence for a few families in the literature where there is
vertical transmission compatible with autosomal dominant inheritance (but certainly
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TABLE 4
Characteristics of Fanconi Syndrome

Cardinal Features Clinical Consequences

1. Generalized aminoaciduria 1. May contribute to failure to thrive in infants
and children; no known effects in adults

2. Glycosuria 2. Hypoglycemia and ketonuria only if severe; usu-
ally without marked clinical effect

3. Phosphaturia 3. Bone disease
4. Renal tubular acidosis (RTA Type II > I) 4. Metabolic acidosis; probably contributes to bone

disease

Other Less Frequent Abnormalities Clinical Consequences

5. Hyperuricosuria 5. None known
6. Proteinuria 6. None known
7. Potassium wasting 7. Hypokalemia, weakness
8. Sodium wasting 8. Volume contraction and hyponatremia if severe
9. Polyuria 9. Dehydration and electrolyte abnormalities if

severe

not proven) and clinical variability within and among families. This list is a very small
number of families from which to construct a genetic model, and the reports do not
contain full pedigrees. Nevertheless, Fanconi syndrome is now listed as an autosomal
dominant disorder by McKusick in the seventh edition of his catalog, Mendelian
Inheritance in Man [21 ].

CLINICAL FEATURES

DR. W.S. LONG, AND DR. M.J. BIA: Clinical features of Fanconi syndrome involving both
renal and musculoskeletal systems are listed in Table 4. Cardinal features, present in
all patients with Fanconi syndrome, include glucosuria, general aminoaciduria, and
phosphaturia [1,3,4,40]. Although glycosuria and aminoaciduria appear to have few
clinical consequences, renal phosphate wasting is thought to play a major role in the
development of the metabolic bone disease which invariably develops in untreated
cases and is an important cause of morbidity. Development of renal tubular acidosis
(RTA) may also contribute to bone disease, which is usually Type II RTA from
proximal tubular bicarbonate wasting, but patients with Type I (distal) RTA have also
been described [5,23,29,30], especially in acquired Fanconi syndrome. Hyperurico-
suria and proteinuria (usually tubular proteinuria consisting of proteins of small
molecular weight) are also frequent features. Although potassium wasting, polyuria,
and salt wasting are less frequently observed, they can have profound clinical conse-
quences if not recognized and treated appropriately. Children may present dramati-
cally with vomiting, polydipsia, polyuria, and volume depletion, or more subtly with
failure to thrive. Presentation with rickets will depend on whether the child is walking
or crawling (or neither) but may include frontal bossing and hypotonia as well. Bone
films show widened epiphyses, frayed metaphyses, and demineralization. Children will
eventually develop severe rickets if left untreated [1].

In adults, presentation may by symptomatic, e.g., bone pain, proximal muscle or
generalized weakness, polyuria with polydipsia, and myalgias, or it may be fortuitously
detected by abnormal laboratory values, as in our patient, before the disease becomes
symptomatic. Although untreated adults do not present with growth retardation, they
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invariably develop osteopenia, due to both osteomalacia and osteoporosis. Back, hip,
and sacroiliac pain and weakness are common complaints, with X-rays showing
pseudofractures, even in asymptomatic locations. Although phosphate wasting and
acidosis are thought to be the most important contributors to the metabolic bone
disease, more recent evidence indicates that deficient 1,25-(OH)2 Vitamin D3 produc-
tion in these patients may contribute as well [31,411.
Our patient manifested all the classic features of Fanconi syndrome with phospha-

turia, aminoaciduria, glycosuria, proteinuria, and acidosis. Furthermore, he had
radiologic evidence of marked osteopenia on initial presentation. Although we cannot
date the onset of the syndrome in our patient, it appears to have begun after the age of
puberty, since he had attained adult stature and skeletal maturation.
Of particular interest in our case is the presence of asymptomatic renal disease at

initial presentation. There are few reliable early clues in patients with idiopathic
Fanconi syndrome to ascertain if a given patient will progress to chronic renal failure.
Although renal failure was reported to be rare in early reports of patients with Fanconi
syndrome [42], later studies showed that this condition does occur. Thus there are at
least eight reports [14,16,18,23,38,41,43,44] involving 14 patients with idiopathic
Fanconi syndrome associated with significant decreases in GFR. Interestingly, the
syndrome was genetically transmitted in ten of these patients, which raises the question
of whether such patients inherit both the predisposition for renal failure as well as that
for idiopathic Fanconi syndrome. Chronic interstitial nephritis, as demonstrated in our
case, with atrophy and dilatation of tubules and interstitial fibrosis has been demon-
strated in all cases where renal tissue was examined [14,16,18,23,44]. There are at
least four reports demonstrating that the renal failure has progressed to end stage,
requiring dialysis or transplantation [14,18,38,43]. Both nephrocalcinosis, resulting
from the hypercalciuria and hyperphosphaturia, and renal stones, present in our
patient, are rare in the cases described. The etiology of the interstitial nephritis and
subsequent renal failure is currently unknown.

PATHOPHYSIOLOGY

DR. W.S. LONG: The wide range of tubular, especially proximal tubular, derangements
in Fanconi syndrome suggests that some generalized defect in cellular function
underlies its presentation. Although a naturally occurring canine model of Fanconi
syndrome exists [45], most experimental work [3,4,40,46] has used models of Fanconi
syndrome induced in laboratory animals or in patients with hereditary fructose
intolerance (HFI) to investigate two major explanations: (1) changes in energy supply
and utilization, and/or (2) changes in membrane permeability.

1. Energy Hypothesis: The energy hypothesis speculates that the etiologies of
Fanconi syndrome have in common a diversion of biochemical energy from its usual
paths, with consequent disruption of directly and indirectly coupled membrane trans-
port. Support for this hypothesis is derived from observations in patients with HFI, due
to defective fructose-l-phosphate (FIP) aldolase. In these patients, ingestion of
fructose causes Fl P to accumulate primarily in proximal tubular cells, where it serves
as an intracellular sink for phosphate. It is also associated with an almost immediate,
dose-dependent, increased excretion of amino acids, protein, bicarbonate, and hypophos-
phatemia without phosphaturia. Glycosuria is usually not found in these patients
[4,40].
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Given a fructose load, normal dogs [47] and rats [46] produce a urine similar to that
found in patients with HFI ingesting fructose or with Fanconi syndrome of other
etiologies. This model of Fanconi syndrome, readily established in laboratory animals,
has served to study the etiology of Fanconi syndrome. Rats given a fructose load
accumulate FIP in renal proximal tubules, small bowel mucosa, and liver, with
consequent depletion of intra- and extracellular inorganic phosphate. The resulting
depletion of free intracellular phosphate in turn activates adenosine monophosphate
(AMP) deaminase, shunts adenine nucleotides into oxypurines (inosine, hypoxanthine,
xanthine), reduces total cytoplasmic adenine nucleotide pool including adenosine
triphosphate (ATP), and promotes the hyperuricemia and increased excretion of
oxypurines observed in HFI [40,46]. Pre-loading with inorganic phosphate attenuates
these responses in fructose-loaded rats [40]. (With fructose loading, normal humans
appear to develop a syndrome [48] similar to those in laboratory animals, albeit at
much higher doses of fructose than those used to produce Fanconi syndrome in patients
with HFI.)
The other major model of Fanconi syndrome involves maleic acid (MA), the

cis-isomer of fumarate [46,49]. Studies of both the energy and permeability hypothe-
ses in Fanconi syndrome have used MA. This compound induces a reversible, dose-
dependent urinary wasting of glucose, phosphate, amino acids, bicarbonate, sodium,
and potassium when administered to rats and dogs; under some conditions it may
induce acute renal failure [50,51 ]. The mechanism(s) is(are) unclear. MA blocks both
protein and non-protein sulfhydryl groups [46], as well as amino groups [52], and so
may have widespread effects on multiple cellular processes. Many studies have shown
development of Fanconi syndrome in association with defective energy metabolism
after exposure to MA [53,54,55,56]. Rats treated with MA have significantly reduced
activities of both Na-K- and Mg-ATPases, as well as decreased ATP concentrations
[54,55]. MA inhibits 02 uptake and phosphorylation in rat kidney mitochondria
oxidizing CoA-dependent compounds such as pyruvate and acetoacetate; the effects
can be diminished by high concentrations of inorganic phosphate [56]. In vivo,
phosphate infusion in dogs before MA exposure attenuated increases in urine flow and
in clearances for bicarbonate, amino acids, and potassium [48].

Electron microscopy of renal tissue exposed to MA shows dose-dependent changes
consistent with effects on both transport and energy systems. Several investigators have
shown dense cytoplasm, focal loss of microvilli, and the accumulation of apical
vacuoles in proximal tubules [51,55,57]. Christensen and Maunsbach demonstrated
decreased uptake and lysosomal degradation of lysozyme in MA-treated rats, attrib-
uted in part to diminished supply of ATP [51 ]. Verani and colleagues [57] showed the
histologic changes only in the late proximal convolution and pars recta, while others
demonstrate leakage of inulin and histological changes beyond the proximal convolu-
tions [50,55].

These investigations in laboratory animals and in humans [4,40] make it reasonable
to implicate disruption of energy metabolism at one or more sites in the multiple
transport abnormalities observed in Fanconi syndrome. For example, Al-Bander and
his colleagues have attempted to combine experimental data and speculation into a
clear formulation of the action of MA [47]. MA disrupts proximal tubular mitochon-
dria and consequently oxidative metabolism, as discussed above. This condition in turn
could promote the increase in glycolysis and glucose uptake, observed in rats [60], with
increased concentrations of phosphorylated intermediates of glycolysis found in tissue
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studies. In a manner analogous to that described for HFI, intracellular phosphate
depletion would then lead to diminution of adenine nucleotide pools and inadequate
energy stores for membrane transport. Pre-treatment with phosphate protects against
the effects of MA.

2. Permeability Hypothesis: This hypothesis proposes that primary changes in
membrane permeability, whatever their causes, explain many findings in experimental
Fanconi syndrome. This hypothesis stems from the microinjection, microperfusion,
and stop-flow experiments in maleate-treated rats by Bergeron and his colleagues
[58,59]. They interpret their studies to show that MA increases membrane permeabil-
ities (luminal > basal) in both proximal and distal tubular cells with otherwise intact
transport mechanisms on both sides of the cell. According to this model, the proximal
tubule still reabsorbs glucose and amino acids despite its increased membrane perme-
abilities. From the interstitium, these compounds enter distal tubular cells and tubular
fluid across its cellular membranes, made abnormally permeable by MA. Because
distal tubular cells lack reabsorptive mechanisms for glucose and amino acids, they are
excreted in the urine before inulin, even though filtered simultaneously, as observed in
their experiments with radioactive compounds. The increased permeabilities of both
proximal and distal tubular cells to glucose and amino acids but not to inulin create this
short circuit across the interstitium.

Most experimenters feel that the findings of experimental Fanconi syndrome cannot
be explained solely by one of these two hypotheses. Nonetheless, the energy hypothesis
does allow us, by uniting data from histologic, physiologic, and biochemical experi-
ments, to imagine how distortion of energy metabolism could give rise to the many
transport abnormalities of Fanconi syndrome with their clinical consequences. Evi-
dence for the permeability hypothesis is not as wide-ranging or as various.

Readers interested in an extensive review of the experimental analysis of pathogene-
sis in Fanconi syndrome are referred to the article of Gonick and Kramer [46].

THERAPY

DR. W.S. LONG AND DR. M.J. BIA: In cases associated with exposure to an exogenous
toxin or with a systemic disease, treatment of the underlying problem will often result
in resolution or improvement of the tubular defects. In some secondary cases and in
idiopathic cases, however, Fanconi syndrome persists, and the effects of electrolyte and
fluid imbalances require direct treatment.

Replacement of phosphate losses is mandatory to prevent progression of bone
disease, which constitutes the major morbidity associated with the syndrome. Oral
supplementation of 1-3 g neutral phosphate per day is usually required, although
prolonged treatment may be limited by intestinal discomfort and diarrhea experienced
at these doses. High doses of vitamin D or 1 ,25-(OH)2 vitamin D3 should also be used in
cases with documented rickets or osteomalacia. Therapy with both phosphate and
vitamin D has been shown to promote growth in children and improve symptoms and
radiologic evidence of rickets in children and osteomalacia in adults [1,4]. If renal
failure develops, phosphate wasting diminishes, and supplementation is no longer
needed, as in our patient's case. Sodium may be used to replace urinary losses and to
aid in volume repletion. Potassium supplements are frequently needed; bicarbonate,
acetate, citrate salts (2-10 mEq/kg/day) are used as anions in these supplements to
control the acidosis of Fanconi syndrome. Replacement of organic solutes like amino
acids or glucose is not necessary.
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Our patient's initial therapy (1968) consisted only of bicarbonate supplements, to
which phosphate (1969) and potassium (1978) supplements were later added, as well
as antihypertensive (1981) medications; however, with progressive renal failure phos-
phate and potassium supplements are no longer needed.

Accounts concerning transplantation for idiopathic Fanconi syndrome are few. The
group of J.P. Merrill reported a maternal allograft in a 14-year-old boy diagnosed with
idiopathic Fanconi at age five [38]. Although Fanconi syndrome can develop de novo
during transplant rejection [35-37], his two early episodes of rejection showed no signs
of it. Five weeks after transplantation (creatinine, 1.6 mg/dL percent), however, he
developed proximal tubular acidosis with subsequent glycosuria and aminoaciduria.
Thus, in this case Fanconi syndrome appears to have recurred. At the time of
publication, the patient was two years beyond his transplantation, had mild renal
insufficiency attributed to further episodes of rejection, and required bicarbonate
supplements to control his acidosis [38].

Friedman and his associates have reported two more cases of transplantation for
idiopathic Fanconi's syndrome [18]. Both father and son had aminoaciduria, gluco-
suria, phosphaturia, and renal insufficiency. At age 29, he received a cadaveric renal
transplant without nephrectomy. In 1988, six years after transplantation, the patient's
allograft continued to function well with no signs of recurrent Fanconi syndrome. In
1965, the patient's three-year-old son presented with Fanconi syndrome and at age 16
received a maternal allograft which functioned without sign of recurrent Fanconi
syndrome for about a year. This allograft and a subsequent cadaveric kidney were
eventually rejected, and he (the patient's son) is now on dialysis [Friedman A: personal
communication].

In summary, we have three published cases of idiopathic Fanconi syndrome receiv-
ing renal allografts with at least one year of follow-up. In only the first case does
Fanconi syndrome appear to have recurred. It will be interesting to follow our patient's
case after transplantation to determine if his Fanconi syndrome recurs.

ACKNOWLEDGEMENT

We are indebted to E.R. Squibb & Sons, Inc., for their support of the publication of cases presented at
Renal Grand Rounds at Yale.

REFERENCES
1. Brodehl J: The Fanconi syndrome. In Pediatric Kidney Disease. Edited by CM Edelmann, Jr. Boston,

Little, Brown Co, 1978, pp 955-987
2. Stanbury JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS: Metabolic Basis of Inherited

Disease, 5th edition. New York, McGraw-Hill Book Co, 1983
3. Roth KS, Foreman JW, Segal S: The Fanconi syndrome and mechanisms of tubular transport

dysfunction. Kidney Int 20: 705-716, 1981
4. Brewer ED: The Fanconi syndrome: Clinical disorders. In Renal Tubular Disorders: Pathophysiology,

Diagnosis, and Management, Edited by HC Gonick, VM Buckalew. New York, Marcel Dekker, Inc,
1985, pp 475-544

5. Bearn AG, Yu TF, Gutman AB: Renal function in Wilson's disease. J Clin Invest 36:1107-1114, 1957
6. Fanconi G, Bickel H: Die chronische Aminoacidurie (Aminosaurediabetes oder nephrotisch-

glukosurischer Zwergwuchs) bei der Glykogenose und der Cystinkrankheit. Helv Pediatr Acta 4:359-
396, 1949

7. Hers HG, Van Hoof F: Glycogen storage disease. In Carbohydrate Metabolism and Its Disorders.
Volume II. Edited by F Dickens, PJ Randle, WJ Whelan. New York, Academic Press, 1967, pp
151-168

8. Cusworth DG, Dent CE, Flynn FV: The aminoaciduria in galactosemia. Arch Dis Child 30:150-154,
1955



IDIOPATHIC FANCONI SYNDROME 27

9. Gentz J, Jagenburg R, Zettersstron R: Tyrosinemia. J Pediatr 66:670-696, 1965
10. Levin B, Snodgrass GJAI, Oberholzer VG, Burgess EA, Dobbs RH: Fructosaemia: Observations on

seven cases. Am J Med 45:826-838, 1968
11. Worthen HG, Good RA: The deToni-Fanconi syndrome with cystinosis. Am J Dis Child 95:653-688,

1958
12. Abbassi V, Lowe CU, Calcagno PL: Oculocerebrorenal syndrome. Am J Dis Child 115:145-168, 1968
13. Sheldon W, Luder J, Webb B: A familial tubular absorption defect of glucose and amino acids. Arch Dis

Child 36:90-95, 1961
14. Patrick A, Cameron JS, Ogg CS: A family with a dominant form of idiopathic Fanconi syndrome

leading to renal failure in adult life. Clin Nephrol 16:289-292, 1981
15. Ben-Ishay D, Dreyfuss F, Ullman TD: Fanconi syndrome with hypouricemia in an adult. Am J Med

31:793-800, 1961
16. Hunt DD, Stearns G, McKinley JB, Fronig E, Hick P, Bonfiglio M: Long-term study of a family with

Fanconi syndrome without cystinosis (DeToni-Debr6-Fanconi syndrome). Am J Med 40:492-510,1966
17. Brenton DP, Isenberg DA, Cusworth DC, Garrod P, Krywawych S, Stamp TCB: The adult presenting

with idiopathic Fanconi syndrome. J Inher Metab 4:211-215, 1981
18. Friedman AL, Trygstad CW, Chesney RW: Autosomal dominant Fanconi syndrome with early renal

failure. Am J Med Genet 2:225-232, 1978
19. Friedman AL, Oberley TD: Two case studies from a family with primary Fanconi syndrome. Am J

Kidney Dis 13:240-246, 1989
20. Smith R, Lindenbaum RH, Walton RJ: Hypophosphatemic osteomalacia and Fanconi syndrome of

adult onset and dominant inheritance. Quart J Med 179:387-400, 1976
21. McKusick VA: Mendelian Inheritance in Man. 7th edition. Baltimore, Johns Hopkins University Press,

1986, pp 246-247
22. Clarkson TW, Kench JE: Urinary excretion of amino acids by men absorbing heavy metals. Biochem J

62:361-372, 1956
23. Lee DB, Drinkard JP, Rosen VJ, Gonick HC: The adult Fanconi syndrome. Medicine 51:107-138,1972
24. Spencer AB, Franglen GT: Gross amino-aciduria following a Lysol burn. Lancet i: 190-192, 1952
25. Moss AH, Gabow PA, Kaehny WD, Goodman SI, Haut LL, Haussler MR: Fanconi's syndrome and

distal renal tubular acidosis after glue sniffing. Ann Int Med 92:758-762, 1980
26. Vaziri ND, Ness RL, Fairshter RD, Smith WR, Rosen SM: Nephrotoxicity of paraquat in man. Arch

Int Med 139:172-174, 1979
27. Gross JM: Fanconi syndrome (adult type) developing secondary to ingestion of out-dated tetracycline.

Ann Int Med 56:523-528, 1963
28. Bitran JD, Desser RK, Billings AA, Kozloff MF, Shapiro CM: Acute nephrotoxicity following

cis-dichlorodiamineplatinum. Cancer 49:1784-1788, 1982
29. Burke EC, Holley KE, Stickler GB: Familial nephrotic syndrome with nephrocalcinosis and tubular

dysfunction. J Pediatr 82:202-206, 1973
30. Bouissou F, Barthe P, Pierragi MT: Severe idiopathic nephrotic syndrome with tubular dysfunction

(report of nine pediatric cases). Clin Nephrol 14:135-141, 1980
31. Phillips ME: Aminoaciduria-its relationship to Vitamin D and parathyroid hormone. CRC Crit Revs

in Clin Lab Sci 12:215-239, 1980
32. Maldonado JE, Velosa JA, Kyle RA, Wagoner RD, Holley KE, Salassa RM: Fanconi syndrome in

adults. A manifestation of a latent form of myeloma. Am J Med 58:354-364,1975
33. Finkel PN, Kronenberg K, Pesce AJ, Pollak VE, Pirani CC: Adult Fanconi syndrome amyloidosis and

marked X-light chain proteinuria. Nephron 10:1-24, 1973
34. Rawlings W, Griffin JF, Duffy T, Humprhey R: Fanconi syndrome with lambda light chains in urine. N

Engl J Med 292:1351,1975
35. Friedman A, Chesney R: Fanconi's syndrome in renal transplantation. Am J Nephrol 1:45-47, 1981
36. Massry S, Preuss HG, Maher JP, Schreiner GE: Renal tubular acidosis after cadaver kidney homotrans-

plantation. Am J Med 42:284-292, 1967
37. Vertuno LL, Preuss HG, Maher JP, Schreiner GE: Fanconi syndrome following homotransplantation.

Arch Int Med 133:302-305, 1974
38. Briggs WA, Kominami N, Wilson RE, Merrill JP: Kidney transplantation in Fanconi syndrome. N Engl

J Med 286:25-26, 1972
39. Wood EG, Brouhard BH, Travis LB, Cavallo T, Lynch RE: Membranous glomerulopathy with tubular

dysfunction and linear tubular basement membrane IgG deposition. J Pediatr 101:414-417, 1982
40. Morris RC Jr, Sebastian A: Renal tubular acidosis and Fanconi syndrome. In Metabolic Basis of



28 LONG ET AL.

Inherited Disease, 5th edition. Edited by JB Stanbury, JB Wyngaarden, DS Fredrickson, JL Goldstein,
MS Brown. New York, McGraw-Hill Book Co, 1983, pp 1808-1843

41. Colussi G, DeFerrari ME, Surian M, Malberti F, Rombola G, Pontoriero G, Lavanini G, Minetti L:
Vitamin D metabolites and osteomalacia in the human Fanconi syndrome. Proc Eur Dial Transpl
21:756-760, 1984

42. Wallis LA, Engle R: The adult Fanconi syndrome. II. Review of eighteen cases. Am J Med 22:13-23,
1957

43. Neimann N, Pierson M, Marchal C, Rauber G, Grignon G: Nephropathie familiale glom6rulotubulaire
avec syndrome de deToni-Debre-Fanconi. Arch Fr Pediatr 25:43-69, 1968

44. Malluche HH, Tate M, Stelling CB, Smith AJ, Doukas M, Mitchell B, Glassock RJ: Recurrent
fractures, hypophosphatemia, and renal insufficiency in an elderly woman. Am J Nephrol 4:329-335,
1984

45. Bovee KC, Joyce T, Blazer-Yost B, Goldschmidt MS, Segal S: Characterization of renal defects in dogs
with a syndrome similar to the Fanconi syndrome in man. JAVMA 174:1094-1099, 1979

46. Gonick HC, Kramer HJ: Pathogenesis of the Fanconi syndrome. In Renal Tubular Disorders:
Pathophysiology, Diagnosis, and Management. Edited by HC Gonick, VM Buckalew. New York,
Marcel Dekker, Inc, 1985, pp 545-607

47. Al-Bander H, Etheredge SB, Paukert T, Humphreys MH, Morris RC Jr: Phosphate loading attenuates
renal tubular dysfunction induced by maleic acid in the dog. Am J Physiol 248:F513-F521, 1985

48. Fox M, Thier S, Rosenberg L, Segal S: Impaired renal tubular function induced by sugar infusion in
man. J Clin Endocrinol Metab 24:1318-1327, 1964

49. Berliner RW, Kennedy TJ, Hilton JG: Effect of maleic acid on renal function. Proc Soc Exp Biol Med
75:791-794, 1950

50. Maesaka JK, McCaffery M: Evidence for renal tubular leakage in maleic acid-induced Fanconi
syndrome. Am J Physiol 239:F507-F513, 1980

51. Christensen El, Maunsbach AB: Proteinuria induced by sodium maleate in rats: Effects on ultrastruc-
ture and protein handling in renal proximal tubule. Kidney Int 17:771-787, 1980

52. Butler PDJ, Harris JI, Harley BS, Leberman R: The use of maleic acid anhydride for the reversible
blocking of amino groups in polypeptide chains. Biochem J 112:679-689, 1969

53. Angielski S, Rogulski J: Effect of maleic acid on the kidney. I. Oxidation of Krebs cycle intermediates by
various tissues of maleate intoxicated rats. Acta Biochim Polonica 9:357-365, 1962

54. Kramer HJ, Gonick HC: Experimental Fanconi syndrome. 1. Effect of maleic acid on renal cortical
Na-K-ATPase activity and ATP levels. J Lab Clin Med 76:799-808, 1970

55. Scharer K, Yoshida T, Voyer L, Berlan S, Petra G, Metcoff J: Impaired renal gluconeogenesis and
energy metabolism in maleic acid-induced nephropathy in rats. Res Exp Med 157:136-152, 1972

56. Rogulski J, Pacanis A, Adamowicz W, Angielski S: On the mechanism of maleate action on rat kidney
mitochondria. Effect of oxidative metabolism. Acta Biochim Polonica 21:403-413, 1974

57. Verani RR, Brewer ED, Ince A, Gibson J, Bulger RE: Proximal tubular necrosis associated with maleic
acid administration to the rat. Lab Invest 46:79-88, 1982

58. Bergeron M, Dubord L, Hausser C: Membrane permeability as a cause of transport defects in
experimental Fanconi syndrome. J Clin Invest 57:1181-1189, 1976

59. Bergeron M, Scriver CR: Pathophysiology of renal hyperaminoaciduria and glucosuria. In The Kidney:
Physiology and Pathophysiology. Edited by DE Seldin, G Giebisch. New York, Raven Press, 1985, pp
1725-1745

60. Rogulski J, Pacanis A, Strzelecki T, Kaminski E, Angielski S: Effects of maleate on carbohydrate
metabolism in rats. Am J Physiol 230:1163-1167, 1976

61. Cockcroft DW, Gault MH: Prediction of creatinine clearance from serum creatinine. Nephron
16:31-41, 1975


