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Citation: Żelasko, J.; Czogalla, A.

Selectivity of mTOR-Phosphatidic

Acid Interactions Is Driven by Acyl

Chain Structure and Cholesterol.

Cells 2022, 11, 119. https://doi.org/

10.3390/cells11010119

Academic Editor: Laura Riboni

Received: 29 November 2021

Accepted: 27 December 2021

Published: 30 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Article

Selectivity of mTOR-Phosphatidic Acid Interactions Is Driven
by Acyl Chain Structure and Cholesterol
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Abstract: The need to gain insights into the molecular details of peripheral membrane proteins’
specificity towards phosphatidic acid (PA) is undeniable. The variety of PA species classified in terms
of acyl chain length and saturation translates into a complicated, enigmatic network of functional
effects that exert a critical influence on cell physiology. As a consequence, numerous studies on the
importance of phosphatidic acid in human diseases have been conducted in recent years. One of
the key proteins in this context is mTOR, considered to be the most important cellular sensor of
essential nutrients while regulating cell proliferation, and which also appears to require PA to build
stable and active complexes. Here, we investigated the specific recognition of three physiologically
important PA species by the mTOR FRB domain in the presence or absence of cholesterol in targeted
membranes. Using a broad range of methods based on model lipid membrane systems, we elucidated
how the length and saturation of PA acyl chains influence specific binding of the mTOR FRB domain
to the membrane. We also discovered that cholesterol exerts a strong modulatory effect on PA-FRB
recognition. Our data provide insight into the molecular details of some physiological effects reported
previously and reveal novel mechanisms of fine-tuning the signaling cascades dependent on PA.

Keywords: phosphatidic acid; mTOR; lipid signaling; protein-lipid interactions; BLI; GUV; liposomes;
giant unilamellar vesicles; bio-layer interferometry

1. Introduction

Discovering the existence of modulatory effects of membrane physicochemical proper-
ties on lipid-dependent signaling pathways makes the latter more complicated and interde-
pendent [1,2]. Thus, the more signaling molecules we identify, the more questions about
mechanisms that fine-tune their activity arise. Most recently, the rapid development of
lipidomics that led to the identification of a plethora of lipid signaling molecules helped us to
understand that even tiny differences in acyl chain composition of membrane phospholipids
may dramatically change their physiological functions. An illustrative example is cardi-
olipin, as saturation of acyl chains switches this lipid from an antagonist to an activator of
TLR (toll-like receptor) 4, thus discriminating between pro- and anti-inflammatory responses
in macrophages [3]. Increasing evidence points to the possibility that this phenomenon is
valid also in the case of other signaling lipids, including phosphatidic acid (PA).

Protein-lipid interactions still remain hard to explore and evaluate. Studying such
interactions in the context of living cells is challenging due to their complex architecture and
very dynamic nature. On the other hand, using artificial membranes with purified proteins
brings a risk of oversimplification of the studied system. A number of studies indicated that
some proteins which bind to negatively charged lipids have sequence stretches enriched
in basic amino acids [4,5]. Others suggest that certain proteins, e.g., synuclein, ArfGAP1,
and melittin, interact with membranes due to their amphipathic motifs [6–8]. So far, only
in the case of a few membrane lipids, such as phosphoinositides, common sequential
or structural lipid-recognition motifs within membrane interacting proteins have been
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defined [9]. Although for PA dozens of partner proteins involved in various processes in
mammalian cells have been identified [10], no common PA-recognizing motif was described
for these proteins [11–13].

This lack of identified PA-recognition protein domains or patterns is just one of many
features that make PA so unique. Despite a low concentration in a cell (around 1% of
phospholipids) [14–16], PA is central for glycerophospholipid metabolism and cellular
signaling [17]. It is implicated in cell proliferation and vesicular trafficking [18] and plays a
major role in the local remodeling of membranes [19]. Depending on the local environment
(e.g., presence of other lipids and divalent ions, pH at physiological range), the PA head
group net charge can be altered [20,21]. It is obvious that all these factors have an impact on
recognition of PA-enriched membranes by proteins. Such phenomena have been described
for several proteins, including Yas3p [22], Spo20 [23], Opi1 [24] and lipin 1 [25]. For a few
PA binding proteins, a cluster of basic, positively charged residues has been described as
critical for PA binding [12,26,27]. The uniqueness of PA is nicely described in the hydrogen
bond switch model, which has been proposed to explain the mechanism of interaction of
the lipid with protein partners [28]. This model relies on the importance of electrostatic
bonds between PA and Arg/Lys residues and hydrogen bond formation. As it does not
fully resolve specificity towards PA, it may explain the preference of PA recognition over
other negatively charged phospholipids in the membrane.

One of the PA-dependent signaling proteins is mTOR (mammalian target of ra-
pamycin). Although some data about mTOR PA recognition are available, the exact
mechanism that governs its specificity remains unknown. mTOR is a multidomain ki-
nase that belongs to the PIKK family [29]. This protein has recently been localized to
various intracellular compartments including the nucleus and specific components of the
endomembrane system such as lysosomes [30]. mTOR is a critical regulator of cell growth
in animals and plays an important role in controlling metabolism and proliferation. Aberra-
tions in mTOR-dependent signaling pathways are associated with numerous diseases, e.g.,
cancer, metabolic disorders, and inflammation [31,32]. mTOR forms two multi-component
complexes in the cell: mTORC1 and mTORC2. Each of them is responsible for phosphory-
lation of a different set of substrates and regulates various processes [31,33–35]. Moreover,
their activation takes place in certain subcompartments of the cell. As has been shown for
mTORC1, activation of this complex is dependent on its recruitment from the cytoplasm to
the lysosomal membranes [36,37]. On the other hand, mTORC2 activity has been attributed
to the plasma membrane, outer mitochondrial membranes, and endosomal vesicles [38].

Although for decades mTOR has been known to sense amino acids, glucose, and cellu-
lar energetics, its interaction with PA was discovered somewhat later [39–41]. Numerous
in vitro studies on cells have shown that stimulation with exogenous PA or overexpression
of PA-producing enzymes can stimulate mTOR signaling [40,42–44]. On the other hand,
inhibition of mTOR activity has been shown to occur in response to blocking the generation
of PA, which was surprising taking into consideration that mTOR activity is regulated
by multiple stimuli [45–48]. Further studies led to the identification of the region within
the mTOR protein responsible for PA sensing by both mTOR complexes, namely the FRB
domain (FKBP12 rapamycin binding domain) [49,50]. It substantially overlaps with the
region to which rapamycin binds, which led to the conclusion that both PA and rapamycin
FKBP12 bind mTOR competitively. The latter was demonstrated, inter alia, in human breast
cancer cell lines [51].

Within a single cell, there can be found many PA species that differ in fatty acid chain
length, saturation level, and as a consequence in cellular function [52]. The type of PA
that is formed at a certain time and localization depends on the synthesis pathway and
preferential substrates. The latter are mostly lysophosphatidic acid, diacylglycerol, or
phosphatidylcholine (PC) [15]. Initially, it was believed that the PA synthesized through PC
conversion plays the most significant role as the cellular second messenger [39]. Further
research on PA protein partners revealed their altered behavior in response to PA structural
differences. For example, among three proteins–Spo20, Opi1, and PDE4A1–significant
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differences in PA recognition were detected depending on the length and saturation of
acyl chains of the lipid. In addition, Spo20 and PDE4A1 preferred mono and bis unsat-
urated PAs (18:0/18:1 and 16:0/18:2, respectively), while Opi favored polyunsaturated
PAs [53]. On the other hand, the activity of the MAPK cascade increased most dramat-
ically in the presence of saturated PA (16:0 PA) [54]. In the case of PA–mTOR interac-
tions, Foster and collaborators proposed that PA with some degree of unsaturation is
required for functional activation of mTOR [51]. Indeed, 16:0 PA was shown to inhibit the
mTORC2 complex [55] while unsaturated species (16:0/18:1) stimulated both mTORC1 and
mTORC2 [50,56]. According to the proposed model, saturated PA species would be directed
to energy storage and converted to triacylglycerols, which led to mTOR inhibition, whilst
PA with at least one unsaturated bond in acyl chains activates mTOR and the proliferation
mode [39,57]. On this basis, further studies revealed the greatest influence on mTORC1 and
mTORC2 activity for PAs containing (in decreasing order): oleic (18:1), linoleic (18:2), arachi-
donic (20:4) acyl chains, while a negative effect was exerted by PA with two palmitic acyl
chains (16:0) [50,56].

Although we already know a lot about the physiological consequences of mTOR–PA
interactions, a more detailed model explaining, e.g., how membrane context affects protein
binding to the lipid and how the differences between molecular species of PA contribute to
the mechanism of this interaction is currently not available. Most of the above-mentioned
conclusions on these interactions derived from cell-based assays or simplified in vitro
binding studies. Therefore, there arose an urgent need to gain deeper insight into PA–mTOR
interactions and elucidate molecular mechanisms that govern their specificity. In this report,
we describe how a combination of qualitative and quantitative in vitro approaches based
on different model membrane systems employed to systematically compare interactions of
various PA species embedded in membranes with the recombinant FRB domain of mTOR
helped us to explain the impact of the structure of acyl chains of PA on the selectivity and
specificity of these interactions. Moreover, we identified cholesterol as a strong modulator
of FRB–PA interactions, which seems to be physiologically relevant in light of its function
as a major regulator of membrane fluidity and the variability of its content along different
cellular subcompartments. The obtained results may help to identify unknown molecular
mechanisms of modulation of mTOR activity and its membrane recruitment.

2. Materials and Methods
2.1. Antibodies, Chemicals, Reagents

2-[4-(2-Hydroxyethyl)piperazin-1-yl]ethane-1-sulfonic acid (HEPES), isopropyl β-D-
1-thiogalactopyranoside (IPTG), phenylmethylsulfonyl fluoride (PMSF), sodium dodecyl
sulfate (SDS), Tris HCl, and Triton X-100 were purchased from Roth (Karlsruhe, Germany).
β-mercaptoethanol, bovine serum albumin (BSA), imidazole, and lysozyme were obtained
from Sigma-Aldrich (Schnelldorf, Germany). Bromophenol blue, chloroform, ethylenedi-
aminetetraacetic acid (EDTA), glycerol, and methanol were obtained from POCH (Gliwice,
Poland). A cholesterol oxidase/peroxidase kit was purchased from BioSystem (Costa
Brava, Spain). cOmplete EDTA-free Protease Inhibitor Cocktail was purchased from Roche
(Basel, Switzerland). ECL Prime Western Blotting Detection Reagent was purchased from
Amersham, GE Healthcare Life (Chalfont St Giles, UK). Kanamycin was obtained from
Bioshop Canada (Burlington, ON, Canada). OMNI nuclease was purchased from EURX
(Gdańsk, Poland). Primary antibodies recognizing the FRB domain were purchased from
Enzo Life Sciences (Farmingdale, NY, USA) and secondary goat-anti-rabbit antibodies
were from Santa Cruz Biotechnology (Dallas, TX, USA). Restriction enzymes BamHI and
XhoI were purchased from New England BioLabs (Ipswich, MA, USA). Ribonuclease A
(MW = 13.7 Da) and a gel filtration LMW Calibration Kit were obtained from Cytiva
(Marlborough, MA, USA). Sodium chloride (NaCl) and Sucrose were purchased from
Chempur (Piekary Śląskie, Poland). A Quick Change II Site-Directed Mutagenesis Kit was
obtained from Agilent Technologies (Santa Clara, CA, USA). TALON Metal Affinity Resin
was purchased from Takara Bio (Kusatsu, Japan).
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All the lipids–1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA), 1,2 dipalmitoyl sn glyc-
ero 3 phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (Rh DPPE), 1 palmitoyl
2 oleoyl sn glycero 3 phosphate (POPA), 1 palmitoyl 2 oleoyl glycero 3 phosphocholine
(POPC), 1 palmitoyl 2 oleoyl sn glycero 3 phospho L serine (POPS), 1 stearoyl 2 arachi-
donoyl sn glycero 3 phosphate (SAPA), and cholesterol (CH) were purchased from Avanti
Polar Lipids (Alabaster, AL, USA)

2.2. DNA Constructs

The pGEX-2T plasmid containing the sequence for the FRB domain of human mTOR
protein was bought from Addgene (Cambridge, MA, USA) (cat. no. 26607). The FRB
gene sequence (encoding aa 2015-2114) (GenBank ID: NM_004958) was subcloned into
the pET28 plasmid with the 8His tag (kindly provided by Magdalena Zaremba-Czogalla,
University of Wrocław) using BamHI and XhoI restriction enzymes to generate the ex-
pression vector pET28 8His FRB. One single insertion was required to remove the STOP
codon and to change the reading frame of the above-mentioned vector to obtain the vector
pET28 8His FRB-mGFP (achieved with Quick Change II Site-Directed Mutagenesis Kit
(Agilent) and the primers 5′CGACGAATCTCAAAGCAGGCTAGAATTCTGGAAGTGC
and 5′GCACTTCCAGAATTCTAGCCTGCTTTGAGATTCGTCG). A construct with mGFP
protein was used for giant unilamellar vesicle (GUV) experiments. The control vector
mGFP-C1was purchased from Addgene (cat. no. 54759).

2.3. Expression and Purification of Recombinant Proteins

Production of recombinant proteins, FRB and FRB-GFP and GFP, was carried out in
Escherichia coli NiCo21 (DE3). Initially, cells were precultured overnight at 37 ◦C under
constant agitation (200 rpm) in 5 mL of LB medium containing kanamycin (35 µg/mL). Then,
200 mL of fresh LB medium with kanamycin (35 µg/mL) was inoculated with overnight
preculture and grown at 37 ◦C to reach optical density (OD600) of 0.7, and IPTG (final
concentration 0.75 mM) was added to induce protein overexpression and incubated for
another 16–18 h at 18 ◦C with constant shaking (200 rpm). Bacteria were then centrifuged
(20 min, 4 ◦C, 10,000× g) and the bacterial lysate was prepared by resuspending the pellet
in lysis buffer (10 mM HEPES, 500 mM NaCl, 1mM PMSF, 10 mM imidazole, 0.1% Triton
X-100, 25 U/mL OMNI nuclease, 1 mg/mL lysozyme, cOmplete EDTA-free Protease In-
hibitor Cocktail, pH 7.4); thereafter it was incubated on ice for 30 min, sonicated (Hielscher
sonicator) 10 times for 15 s with 15 s intervals on ice and centrifuged (35,000× g, 30 min,
4 ◦C). The obtained supernatant was incubated for 2 h at 4 ◦C with 1 mL bed volume of
TALON Metal Affinity Resin with gentle rotation. The resin was in advance pre-equilibrated
with the lysis buffer. Beads were packed into the column, washed with 20 mL of wash
buffer 1 (10 mM HEPES, 500 mM NaCl, 10 mM imidazole, pH 8.0), wash buffer 2 (10 mM
HEPES, 300 mM NaCl, 10 mM imidazole, pH 8.0), and wash buffer 3 (10 mM HEPES,
300 mM NaCl, pH 8.0) until absorbance A280 was lower than 0.01. Elution was performed
with elution buffer (10 mM HEPES, 300 mM NaCl, 200 mM imidazole, pH 8.0). Concentra-
tions of FRB, FRB GFP, and GFP were determined by UV absorption spectroscopy using
a Cary 1E spectrophotometer at λ = 280 nm employing extinction coefficient parameters
determined using the ProtParam tool (https://web.expasy.org/protparam/, accessed on
28 February 2021) [58]. Stepwise dialysis of purified protein to buffers (I: 10 mM HEPES,
250 mM NaCl, 20 mM EDTA, 1 mM DTT; II: 10 mM HEPES, 200 mM NaCl, 1 mM DTT;
III: 10 mM HEPES, 150 mM NaCl, 1 mM DTT; pH 7.4 for all buffers) was performed us-
ing membrane Spectra/Por 6 pre-wetted with cut-off 10 and 25 kDa (for FRB, GFP, and
FRB GFP, respectively) (Spectrum Chemical, New Brunswick, NJ, USA). Prior to use, the
purified proteins were centrifuged for 10 min at 896× g and 4 ◦C to remove any precip-
itated material. In order to assess the quality of the purified proteins, they were mixed
with 5x reducing protein sample buffer (50 mM Tris-HCl pH 8.0, 12.5% SDS, 0.15% bro-
mophenol blue, 5 mM EDTA, 20% glycerol, 2.5% β mercaptoethanol), boiled for 10 min

https://web.expasy.org/protparam/
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at 95 ◦C and subjected to SDS-PAGE. Other quality check procedures are described in
Supplementary Information.

2.4. Preparation of Large Unilamellar Vesicles (LUVs)

Concentrations of lipids dissolved in organic solvents were quantified by total phos-
phorus analysis [59]. Cholesterol concentration was determined using a BioSystems Choles-
terol Kit according to the manufacturer’s protocol. Lipid mixtures were prepared according
to molar ratios of 90 mol% POPC and 10 mol% PA or 55 mol% POPC, 35 mol% CH,
and 10 mol% PA. For LUV preparation, lipid mixtures in chloroform (for DPPA chloro-
form/methanol) were dried in a round-bottom flask under a nitrogen gas stream, followed
by incubation under a vacuum desiccator for at least 2 h, or overnight to remove traces of
organic solvents. The dried lipid films were rehydrated with SLB buffer (10 mM HEPES,
150 mM NaCl, pH 7.4) to a final lipid concentration of 1 mg/mL. Multilamellar liposomes
were then subjected to 5 cycles of freezing in liquid nitrogen and thawing (room tempera-
ture). Vesicles suspension was sequentially extruded through a polycarbonate membrane
filter with pore sizes (diameter) 0.2 µm and 0.1 µm (Whatman Nuclepore, Fisher Scientific,
Hampton, NH, USA) under high-pressure gaseous nitrogen in a temperature above the
phase transition of each PA. Each extrusion step was repeated 11 times (cycles). Liposomes
were snap-frozen in liquid nitrogen and stored at −80 ◦C until use. For quality control,
prior to use in binding assays, the size and zeta potential of the liposomes were determined
using a ZetaSizer Nano ZS (Malvern Instruments, Malvern, UK). Procedures are described
in detail in Supplementary Information.

2.5. Flotation Assay

The binding of proteins to liposomes was determined via flotation assay using ultra-
centrifugation in a step density gradient of sucrose in SLB buffer. FRB at concentration
360 µg/mL (25 µM) was mixed with 0.4 mg/mL LUVs to a final volume of 250 µL and
incubated for 30 min at room temperature. Control samples contained FRB at the same
concentration but without liposomes. After incubation, samples were mixed with 0.25 mL
of 60% sucrose to reach the final concentration of 30% and the step gradient was built
on top of it (in sequence: 0.8 mL 15%, 1.8 mL 10%, and 1 mL 0%). The samples were
centrifuged at ~200,000× g (45,000 rpm, ultracentrifuge Optima L90K, SW-60 Ti rotor
(Beckman Coulter, Brea, CA, USA)) for 2 h at 4 ◦C. From each tube, six individual fractions
were gently collected, starting from the top of the tube, and mixed with SDS to obtain the
final concentration of 0.2%. Fractions were analyzed via dot-blot assay. Equal volumes
of samples were loaded into the wells of a Dot Blotter (Hoefer Inc., Holliston, MA, USA)
and transferred onto a nitrocellulose membrane (Amersham, Protran, UK) using a vacuum
pump. The membrane was subsequently blocked with 5% (w/v) milk (powder) in TBS-T
(20 mM Tris-HCl, 150 mM NaCl, and 0.05% Tween 20, pH 7.4) overnight at 4 ◦C. Incubation
with primary antibodies diluted 1:1000 in TBS-T was applied for 3 h at room temperature
or overnight at 4 ◦C. The membrane was washed three times in TBS-T (5 min each). The
secondary antibodies diluted 1:10,000 in TBS-T were used for incubation for 1 h at room
temperature and subsequently washed as previously. Enhanced chemiluminescence (ECL
Prime Western Blotting Detection Reagent, Amersham, UK) was used for detection using
BioSpectrum Imaging System (UVP, Upland, CA, USA), in chemiluminescence mode. Im-
age quantification was carried out by 2D densitometry (ImageJ, 1.53c version). The bound
fraction of protein was determined as the amount of protein in the second fraction where
liposomes floated and was calculated as the amount of protein in this fraction divided by
the total protein content in all fractions.

2.6. Preparation of Giant Unilamellar Vesicles (GUVs)

GUVs of lipid composition corresponding to LUVs and the addition of 0.1 mol% of
Rh-PE were prepared by electroformation (EF) [60,61] or passive formation (PF) [62,63].
In both cases, lipids were mixed in chloroform. For EF 3 µL of a 1 mg/mL lipid solution
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were deposited on each of the two platinum wires of a custom-made chamber and dried
under gaseous nitrogen followed by incubation under a vacuum desiccator for at least 2 h.
Sucrose-containing swelling buffer (280 mM Sucrose, 10 mM HEPES, pH 7.4) isosmotic
to SLB buffer (310 mOsm/kg), was added to a Teflon chamber, and platinum wires were
immersed in it. Chambers were connected to a function generator (NDN DF1641A, NDN
Instrument) and exposed to a 2 V (rms) AC electric field for 2 h (first 1.5 h 10 Hz, next
30 min 2 Hz). For PF, dry lipid films formed in round-bottom glass tubes were immersed in
swelling buffer and kept overnight in the dark without shaking at room temperature.

2.7. GUV Binding Assay and Image Quantification

In order to visualize protein–vesicle interactions, GUVs were mixed with FRB-GFP
protein at 1 µM concentration in SLB buffer (for the control experiments GFP was used at the
same concentration). A black, 96-well glass-bottom plate (Greiner Bio-One, Kremsmünster,
Austria) was blocked with 2% BSA for 20 min, and subsequently washed with SLB buffer.
Vesicles with protein were transferred into wells by gentle pipetting and equilibrated for
10 min prior to imaging.

Confocal fluorescence microscopy was carried out on the LSM 510 Meta system (Carl
Zeiss, Jena, Germany). GFP fluorescence was excited with a 488 nm argon laser and
detected using a BP 505–530 nm filter. Rhodamine fluorescence was excited with a 561 nm
DPSS laser and detected using an LP 575 nm filter. Images were analyzed with the Circle
Skinner plugin for Fiji (https://sites.imagej.net/CircleSkinner/, accessed on 2 April 2019).
GUV identification was verified manually for every confocal image and corrected when
necessary.

2.8. BLI Measurements

The Octet K2 2-channel System (ForteBio, Menlo Park, CA, USA) was used for ki-
netics studies. This method allows one to analyze kinetic interactions in real time [64].
Experiments were performed in black, 96-well plates (Nunc F96 MicroWell Plates, Thermo
Fisher Scientific, Langenselbold, Germany). The total volume of each sample or buffer was
0.2 mL per well. The test was performed at 30 ◦C with 1000 rpm shaking. Prior to each
assay, Ni-NTA biosensor tips (ForteBio, Menlo Park, CA, USA) were pre-wet in 0.2 mL of
SLB buffer for at least 10 min. Subsequently, an equilibration step with SLB buffer was
performed for 60 s, after which Ni-NTA biosensor tips were non-covalently loaded with
the FRB domain for 500 s, followed by an additional equilibration step (200 s) in SLB buffer.
The association step of the FRB domain with LUVs of corresponding composition in the
range 0–100 µM of PA was carried out for 500 s. Dissociation was assayed for 600 s. All
measurements were performed in triplicate.

2.9. BLI Data Analysis

To analyze binding kinetics based on association and dissociation curves, baseline
correction was performed. Global fitting for each dataset (covering the whole range of
analyzed PA concentrations) was used and the binding model was chosen depending on
the PA species in liposomes. Models were used to calculate the association rate constant
(ka), defined as the rate of complex formation per second in a 1 molar solution of two
reaction partners. To estimate the stability of the complexes the dissociation rate constant
(kd) was calculated. The ratio kd/ka gives us the affinity constant KD. The fact that a
kd can only be calculated when signal decay greater than or equal to 5% is observed can
be considered a drawback in the case of KD estimation [64,65]. Hence, the kd (s−1) is
given by kd < −ln(0.95)/td, where td is dissociation time in seconds. All the calcula-
tions were performed using Octet Data Analysis High Throughput (HT) software version
11.1.0.25 (ForteBio).

https://sites.imagej.net/CircleSkinner/
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3. Results
3.1. Structure of Acyl Chains of PA Determines Binding Specificity of mTOR FRB Domain

To characterize the capacity of the FRB domain to bind PA-enriched membranes, we
focused on phosphatidic acid molecules differing in the acyl chain structure. The diversity
in PA structure results from different synthetic pathways within a cell. Depending on
the preferred substrates for PA synthesizing enzymes, the product may vary in satura-
tion and length of acyl chains [15]. Previous studies revealed that mTOR activity in cells
in vitro is dependent on PA and that the consequences of this interaction are determined
by the structure of the lipid [39–41]. For example, PA is required firstly for the assembly of
mTORC1 and mTORC2 complexes and secondly to activate downstream pathways [50].
Furthermore, it has been suggested that saturated PA inhibits mTORC2 activity, whereas
PA with unsaturated acyl chains promotes its signaling [57]. Based on the fact that the
PA interacting site of mTOR is localized within its FRB domain [49], we hypothesized
that the FRB PA binding might depend on the length and saturation of acyl chains of the
lipid. To test our hypothesis, we decided to use three diverse PA species which are of
major importance for eukaryotic cells and were chosen based on literature data [55,66,67].
Comparison of DPPA (16:0) with POPA (16:0–18:1) would let us test the importance of
chain saturation for binding. As SAPA (18:0–20:4) has longer and more unsaturated acyl
chains, comparing it to POPA would allow us to verify whether this corresponds to a
larger fraction of exposed acyl chains [68] and whether the size of the cross-sectional area
influences the binding. Thus, liposomes used in our studies were composed of POPA,
DPPA, or SAPA with POPC (molar ratio 1/9), as the latter lipid is the most abundant
PC species in animal cells [69,70]. For the quality control and physicochemical character-
ization, all LUV preparations were first subjected to thin-layer chromatography (TLC),
dynamic light scattering (DLS), and electrophoretic light scattering (ELS) measurements
(Figures S1 and S2). The average diameter of liposomes in the range of 100–125 nm and
the polydispersity index (PDI) below 0.1 suggest that the particles in suspension are close
to homogeneity. Strongly negative values of zeta potential and TLC chromatograms con-
firmed the presence of PA in vesicles. Regarding the recombinant FRB domain of mTOR,
SDS-PAGE and size-exclusion chromatography confirmed that the protein was pure and
monomeric in solution, and CD analysis confirmed that it is properly folded and stable
(Figure S3). In the flotation assay for liposomes containing PA with unsaturated acyl
chains, we observed no (POPA) or weak (SAPA) binding of the FRB domain, which was in
contradiction to robust protein recruitment by vesicles containing saturated phosphatidic
acid (DPPA) (Figure 1A).

In order to supplement the above results and eliminate potential pitfalls related to
the flotation method (effect of membrane curvature, nonequilibrium binding conditions,
etc.) [1], we additionally examined the binding of the FRB domain fused to GFP (FRB-GFP,
see Figure S3) to GUVs. Among artificial model membranes, GUVs are among the most
appropriate and most widely used tools due to their nearly flat geometry of the freestanding
lipid bilayer [71,72]. In this case, we used the same molar ratios of lipids as for LUVs,
although for visualization 0.1 mol% Rh-PE was added. As shown in confocal images
(Figure 1C), FRB GFP interacted to various degrees with PA-containing vesicles. For
GUVs containing POPA, we did not observe any interaction, similarly to GUVs made
of pure POPC, which is consistent with results obtained with the flotation method. On
the other hand, the binding strength to SAPA was very similar to DPPA. Thus, it seems
that there are some intrinsic features characteristic for each of the two vesicle systems
and experimental conditions, which result in tiny differences in terms of FRB binding
(Figures 1 and S5A), although it cannot be excluded that fusion with GFP slightly alter the
behavior of the FRB domain. Nevertheless, the results obtained with both vesicle systems
are highly consistent. In control experiments with GFP, we did not observe any binding for
any of the lipid compositions tested (Figure S6).
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Figure 1. Binding preferences of mTOR FRB domain to different PAs vary in terms of acyl chain 
structure. Experiments were performed using POPC liposomes containing 10 mol% POPA, SAPA, 
or DPPA. (A) Percentage of FRB domain of mTOR in the fractions collected after flotation and ana-
lyzed by dot-blot/densitometry. For POPA and SAPA, no or very weak binding occurs, but for 
DPPA strong interaction is observed. Error bars are standard deviations of three independent ex-
periments. (B) Distribution of median intensity per pixel of individual GUVs (of variable diameter) 
incubated with FRB-GFP in green fluorescent channel. GUVs were captured after addition of FRB 
GFP protein and Rh-PE as membrane marker (data from three independent sets of experiments). 
Each dot represents a single GUV. The number (n) of analyzed GUVs is indicated in the legend. (C) 
Representative images of GUVs (with Rh-PE as membrane marker in red) and FRB-GFP (green 
channel). The scale bar corresponds to 10 µm. 
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crodomains, and many other physicochemical parameters [75–79]. Studies showed that 
CH has a great impact on the presentation of phospholipids in the membranes, which is 
reflected through changes in affinities of peripheral membrane proteins to these lipids 
[80–82]. As CH has a critical influence on multiple parameters of membranes, and as a 
consequence of the presentation of signaling lipids at the surface of membranes [2], animal 

Figure 1. Binding preferences of mTOR FRB domain to different PAs vary in terms of acyl chain
structure. Experiments were performed using POPC liposomes containing 10 mol% POPA, SAPA, or
DPPA. (A) Percentage of FRB domain of mTOR in the fractions collected after flotation and analyzed
by dot-blot/densitometry. For POPA and SAPA, no or very weak binding occurs, but for DPPA
strong interaction is observed. Error bars are standard deviations of three independent experiments.
(B) Distribution of median intensity per pixel of individual GUVs (of variable diameter) incubated
with FRB-GFP in green fluorescent channel. GUVs were captured after addition of FRB GFP protein
and Rh-PE as membrane marker (data from three independent sets of experiments). Each dot repre-
sents a single GUV. The number (n) of analyzed GUVs is indicated in the legend. (C) Representative
images of GUVs (with Rh-PE as membrane marker in red) and FRB-GFP (green channel). The scale
bar corresponds to 10 µm.

Length and saturation of acyl chains may alter PA accessibility in the context of lipid
bilayers. Kulig et al. observed a significant effect of the chain saturation on PC/PA mis-
cibility [73]. According to their results, a system composed of saturated and unsaturated
lipids (DOPC/DPPA) displayed complete immiscibility. This is in contrast to systems
composed of unsaturated species of both lipids, which showed almost ideal mixing. These
observations are in agreement with studies of Cambrea [73,74]. Our results seem to reflect
these phenomena at the level of protein-lipid binding. Namely, imaging DPPA-containing
vesicles by confocal microscopy revealed a very interesting effect not observed for GUVs
containing unsaturated PA species. In the latter case, bound FRB was distributed equally
around vesicles, while for DPPA we noticed clusters of the protein on the surface of GUVs.
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It seems that DPPA as a saturated lipid forms gel domains. It has been reported that
the headgroup of POPA in the POPC/POPA system is located deeper than the PC head-
group [73]. Our recently published data obtained for monolayers show bigger APL (area
per lipid) for POPC/SAPA mixture (44.6 ± 2.1 Å2) than for POPC/POPA (38.6 ± 2.3 Å2),
although in both cases the values are significantly lower than those expected from theo-
retical calculations [68]. Such disproportion in APL is explained by stronger interaction
between POPC and POPA than for POPC and SAPA. It may explain the lack of binding
for the POPC/POPA system observed by us. Figuratively speaking, POPA seems to be
captured and imprisoned by POPC, being invisible for the protein. For SAPA, we observed
a much weaker affinity towards POPC, which is reflected in a weak interaction with mTOR
FRB presented in the flotation method and confocal microscopy.

3.2. Effect of Cholesterol on FRB-PA Binding

Cholesterol is a major regulator of membrane fluidity, permeability, formation of
microdomains, and many other physicochemical parameters [75–79]. Studies showed that
CH has a great impact on the presentation of phospholipids in the membranes, which is re-
flected through changes in affinities of peripheral membrane proteins to these lipids [80–82].
As CH has a critical influence on multiple parameters of membranes, and as a consequence
of the presentation of signaling lipids at the surface of membranes [2], animal cells invest
a lot of energy to fine-tune the proper distribution of this sterol, which is reflected by its
steep gradient along the secretory pathway [83–85]. Therefore, we decided to investigate
the influence of CH on the binding of FRB to PA-containing vesicles. We used a CH concen-
tration equal to 35 mol% as it roughly corresponds to the concentration in cellular plasma
membranes and endocytic vesicles [86]. First, we performed flotation experiments using
LUVs composed of POPC/CH/PA (molar ratio 55/35/10) using the same PA species as
above. The addition of CH resulted in dramatic changes in FRB binding in the case of all
three examined PAs (Figures 2 and S4A). For unsaturated POPA and SAPA presence of
CH increased the percent of protein floating together with liposomal fractions. Opposite
behavior was observed for saturated DPPA, where cholesterol diminished binding of FRB.
Moreover, in control experiments using POPC/CH vesicles, we found that the FRB domain
has no affinity to CH (Figure S4B), thus confirming that cholesterol does not trigger the
binding but rather has a capability to modulate it. To prove that the modulatory effect of
CH is not related solely to the presence of net charge in the bilayer, we tested the binding of
FRB to the most abundant negatively charged membrane lipid, namely PS with or without
cholesterol. We observed relatively weak binding in both cases, indicating that the presence
of the charge itself is not sufficient for these interactions to occur and PA is indeed required
(Figure S4). This is in agreement with other research on lipid selectivity of mTOR [45] but,
to some extent, in contradiction to the conclusions drawn by Rodriguez Camargo et al. [87],
who reported the lack of specificity of the FRB domain. However, while employing the
more systematic approach presented here, which is based on freestanding lipid bilayers,
we observed that this interaction is strongly dependent on the acyl chain structure of PA
and CH content. Our data also strongly suggest that stabilization of FRB–PA interaction
might occur through the electrostatic/hydrogen bond switch mechanism which is not valid
for PS. The electrostatic/hydrogen bond switch mechanism occurs when a hydrogen bond
between positively charged residue of Arg or Lys with the PA headgroup is created. This
causes deprotonation of the PA headgroup (increasing charge from −1 to −2), thereby fur-
ther stabilizing the interaction [28]. High ionic strength (500 mM NaCl) reduces the affinity
of the FRB domain to PA, which supports the electrostatic character of this interaction [49].
The hydrogen bond switch mechanism as a requirement for the occurrence of PA protein
interaction has also been reported for other PA binding partners [88,89].
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Figure 2. Effect of cholesterol on binding preferences of mTOR FRB domain towards different PA
species. Experiments were performed using POPC/CH/PA (55/35/10 molar ratio) liposomes with
POPA, SAPA, or DPPA, and results were directly compared to the data already presented in Figure 1.
(A) Percentage of FRB domain of mTOR protein in fractions collected after flotation and analyzed
by dot-blot/densitometry. Error bars are standard deviations of three independent experiments.
(B) Distribution of median intensity per pixel of individual GUVs incubated with FRB-GFP in
green fluorescent channel. Each dot represents a single GUV (with CH represented by blue dots,
and without CH by green). Data collected in three independent experiments. The number (n) of
analyzed GUVs is indicated in the legend. (C) Representative images of GUVs (with Rh-PE as
membrane marker in red channel) and FRB GFP (green channel). The scale bar corresponds to 10 µm.
(D) Boxplot of data presented in panel B. Each dot represents a single GUV. The mean value for each
GUV lipid composition tested is indicated as a line and standard deviation as whiskers.

The influence of cholesterol on FRB–PA interactions was also visible in our confocal
imaging approach. Control experiments with POPC/CH vesicles gave similar results as in



Cells 2022, 11, 119 11 of 18

the flotation method. Likewise, in the case of GFP protein, we did not observe any binding
(Figures S5 and S6). In the case of POPA containing GUVs, CH significantly increased the
binding of the protein, whereas for DPPA it acted in an opposite way, which is in full agree-
ment with the data obtained via the flotation method. In the case of GUVs with SAPA, we
observed relatively enhanced protein binding compared to LUVs, although the amplitude
of the CH-driven modulation is moderate. Previous studies have shown that cholesterol
insertion into a phospholipid bilayer makes a highly ordered bilayer less ordered and vice
versa [90]. It, therefore, seems quite understandable that for POPC/POPA addition of
cholesterol remodeled binding completely. Namely, the introduction of cholesterol could
expose the POPA headgroup, release it from interaction with POPC and thus make it more
accessible for the FRB domain. The results obtained with SAPA are in agreement with this,
as binding was also slightly enhanced by cholesterol insertion. It can be stated that the
presence of CH limits PC–unsaturated PA interactions. Considering our recently published
data, it is also reflected by the increase in APL values and monolayer compressibility for
POPC/CH/POPA and POPC/CH/SAPA, in contrast to corresponding systems without
CH. Such a modulatory effect of cholesterol on POPC/POPA and POPC/SAPA systems
also confirms the values of Gibb’s free energy of mixing, which is lower in the presence
of CH [68]. DPPA in our experimental conditions exists in the gel phase, which is mani-
fested as FRB-GFP-enriched domains observed in confocal microscopy of POPC/DPPA
GUVs. We previously observed that the presence of cholesterol in POPC/DPPA mixtures
altered membrane characteristics and parameters, i.e., increase in APL and of the gel phase
disorder and reorientation of lipids in the membrane. These data indicate the existence
of strong DPPA/CH interactions and an increase in DPPA acyl chain exposure induced
by CH. It could be that due to all these changes we observe higher and more uniformly
distributed binding of mTOR FRB on the surface of POPC/CH/DPPA GUVs compared to
POPC/DPPA.

3.3. Kinetic Analysis of FRB–PA Interaction by BLI Method

One method which allows one to measure binding kinetics is bio-layer interferometry
(BLI), which, along with surface plasmon resonance (SPR), belongs to the label-free biosen-
sor technologies [91]. BLI technology developed some features that gave it an advantage
over the SPR, namely no risk of clogging and the possibility of using crude samples due to
the open shaking micro-well plate format; recoverable samples; substantial extension of the
association step; a wide range of disposable optical fiber biosensors and high-throughput
96-well and 384-well microplate format [92,93]. Our approach was based on immobiliza-
tion of the protein via histidine tag to Ni-NTA biosensors in a reproducible manner with
standardized buffer conditions and further titration with PA containing liposomes that
showed no substantial non-specific binding (Figure S8). After testing the most appro-
priate concentration of protein, loading (t = 550 s) on biosensor tips was set to 5 µg/mL
(Figure S7). As liposomes bind to the FRB-loaded surface, the thickness (nm) of the biosen-
sor layer increased, which was measured as spectral shift (∆λ). It is important to point
out that, because of the large size of liposomes, our raw data exhibit a shift of negative
value and were flipped prior to data processing. At first, different concentrations of PA
present in liposomes were tested for each set of liposomes. Unfortunately, kinetic curves
for concentrations around 0.1x KD were unachievable due to the low system response. On
the other hand, for PA concentrations around 10x KD curves were collapsing and were not
appropriate for further analysis. Thus, for each liposomal formulation, the concentration
range was adjusted individually, but in the approximate range (Figure 3). The inability to
use the same range of concentrations for all lipid mixtures may arise from the technical
problems caused by liposomes. Namely, the relatively large size of the vesicles, their unde-
fined behavior on the sensors, high probability of fusion, aggregation, and/or collapsing
may be the source of such problems. Another matter is the distinct characteristics of studied
PA species, e.g., DPPA is more rigid and ordered, which also may influence liposomes’
features and behavior.
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Figure 3. Association and dissociation curves of PA-containing liposomes. mTOR FRB domain
was immobilized on Ni-NTA sensors tips prior association. Curves represent the mean values of
triplicate measurements of each concentration. Dashed lines represent raw data, continuous lines fit.
(A) POPC/CH/PA liposomes, (B) POPC/PA liposomes, (C) normalized curves of all studied liposome
mixtures in 24 µM PA concentration.

The lowest measurable concentration of PA was 2 µM (POPC/DPPA) and the high-
est was 36 µM (POPC/CH/POPA; POPC/SAPA; POPC/CH/DPPA). The highest am-
plitude of system response was obtained for POPC/CH/POPA liposomes (0.69 nm for
36 µM), in contrast to curves representing the same PA concentration in POPC/SAPA
and POPC/CH/DPPA vesicles where 0.36 and 0.31 nm shift could be observed, respec-
tively. The individual association and dissociation curves are presented in Figure 3, while
Table 1 displays obtained association rate constants (Ka), dissociation rate constants (Kd),
and calculated equilibrium dissociation constants (affinity constants) (KD) values for
PA in formulated liposomes. From the presented results, the first notable observation
is that liposomes interact with mTOR FBR not only in a concentration-dependent but
also in a lipid composition-dependent manner. The measured association rate (Table 1)
ranks tested liposomes as follows: POPC/CH/SAPA > POPC/CH/POPA > POPC/SAPA
> POPC/CH/DPPA, yet all of them are in an approximate range from 1.13 × 102 to
1.96 × 101 (1/Ms). Notwithstanding, POPC/DPPA exhibits two Ka values, and the first
one is in the above-mentioned range, but the second one exhibits a relatively high value
equal to 1.15 × 104 (1/Ms). In this case, the 2:1 binding model had a better fit, and for
all other mixtures, we followed fitting with the binding model 1:1, which is recognizable
by the gradual monophasic rise with a plateau after reaching saturation and equilibrium.
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Model 2:1 is exploited for nonideal heterogeneous binding with a quick initial rise in signal
followed by a slower rate of binding and initial fast dissociation continued with a slower
off-rate [94] (see Figure 3C). Values of the dissociation rate constant indicate that while
interacting with mTOR FRB PA creates stable complexes with the exception of one of the
two values of Kd obtained for POPC/DPPA, where a fast association is followed by rapid
dissociation. Because the affinity constant (KD) is the ratio of Kd/Ka, calculated values
are undifferentiated, in the same order of magnitude. Although the obtained values are in
the proximity range, the trend for POPA and SAPA is clear, where CH acts as a binding
modulator (see Figure S8, where POPC/POPA liposomes were tested and showed no
binding). This points out how important it is to look at data from different perspectives
and try to identify correlations and connections that drive studied processes. If one were
to try to explain PA-FRB kinetics based on KD, one might say that it is not influenced
by the structural features of PA acyl chains. However, the truth is that at the molecular
level, dependencies that determine the processes are not one-factorial. To discover the
mechanisms that govern them, one has to pay attention to the details. Although so far, the
BLI technique has been used for protein-lipid binding only by one research group [64,95],
we believe that, along with our results, it demonstrates that it may be a promising tool to
measure such interactions in a quantitative way.

Table 1. Kinetic rate constants and affinities determined for the liposome/mTOR FRB domain
interactions.

Liposomes PA Concetration
Range (µM) Ka (1/Ms) Kd (1/s) KD (M) KD2 (M)

POPC/CH/POPA 12–36 7.38 × 101 2.53 × 10−4 3.43 × 10−6

POPC/CH/SAPA 4–30 1.13 × 102 3.92 × 10−4 3.46 × 10−6

POPC/SAPA 8–36 7.26 × 101 3.74 × 10−4 5.16 × 10−6

POPC/CH/DPPA 12–36 1.96 × 101 1.67 × 10−4 8.53 × 10−6

POPC/DPPA 2–24
8.82 × 101 3.06 × 10−4

3.47 × 10−6 4.4 × 10−6
1.15 × 104 5.07 × 10−2

4. Conclusions

In this study, we addressed the question of how mTOR, a protein of pivotal importance
in controlling cellular metabolism and proliferation, is regulated by phosphatidic acid. The
latter is a precursor for the majority of cellular glycerophospholipids, regulates numerous
signaling pathways, and is able, due to its molecular shape, to modulate membrane
mechanical properties. As cell-based studies show that mTOR-dependent signaling is
sensitive in regard to various molecular species of the lipid, it appeared necessary to
decipher the molecular mechanisms behind such selectivity. That is why we focused on
studying the specificity of the FRB domain, which has been previously recognized as a PA
binding site within mTOR, towards biologically relevant PA species. These species differing
in acyl chain saturation and length, namely DPPA, POPA, and SAPA, were embedded into
highly controllable membrane model systems. Our research demonstrated that the FRB
domain binds to PA-enriched membranes, but the degree of acyl chain saturation of PA
defines these interactions. Thus, it transpired that although PA is already known as a factor
that governs mTOR’s ability to form stable mTORC1 and mTORC2 complexes, it is the acyl
chain structure that makes the lipid recognizable for the protein in the membrane context.
Our data show that besides structural properties of various PA species also some membrane
features, e.g., the presence of other lipids such as CH, may exert a strong influence on the
availability of the lipid for the protein to interact. Thus, some physiologically important
consequences can be concluded while taking into consideration a few cellular aspects.
First of all, it is already well known that the structure of PA depends on the synthesis
pathways that within a cell are tightly spatiotemporally regulated. Namely, PA-producing
enzymes are very often localized only at certain membrane compartments of a cell, they
usually exhibit some preferences in terms of substrates, and their activity is driven by a
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variety of stimuli. Additionally, the intracellular distribution of CH is to a large degree
inhomogeneous, which is reflected by, e.g., the steep gradient of this lipid along the
secretory pathway. Phospholipases D (PLDs) are considered to produce predominantly
PA species with one saturated and one unsaturated acyl chain, e.g., POPA. While taking
into consideration strong interactions of POPA with POPC that may inhibit interactions
of the former with mTOR and the effect of CH that completely abolishes such inhibition,
a conclusion can be drawn that membrane recruitment of the protein takes place only at
certain, precisely defined membrane sites of high CH and PA produced by PLD. Within the
cellular plasma membrane, not only high content of CH would be able to modulate the
presentation of PA but also other glycerophospholipids, such as phosphatidylethanolamine,
which may change the net charge of PA via deprotonation and hydrogen bond formation.
On the other hand, DPPA, which is usually linked to metabolic pathways driven towards
the production of storage lipids (e.g., triacylglycerols), was shown to exert an inhibitory
effect on mTORC complexes. It could be that this lipid is more intensively produced
in selected cellular compartments (e.g., endoplasmic reticulum), thus sequestering PA-
interacting proteins from certain locations and isolating them from some downstream
effectors. Remarkably, DPPA–mTOR interactions are not as heavily influenced by the CH as
in the case of POPA, although BLI binding curves show that the interactions have different
characteristics. Thus, depending on the location within the cell and levels of various PA
species, mTOR could be inactive or active as a part of either the mTORC1 or mTORC2
complex, each of which would be able to activate different downstream signaling pathways
to a variable degree. Certainly, we are still far from providing a complete picture of
molecular mechanisms that govern the selectivity and specificity of PA–mTOR interactions,
as our study did not include the effect of pH, divalent ions, and other factors. This might
be crucial in light of the fact that PA has been described as a cellular pH-biosensor and
that the lipid is able to bind calcium ions in a pH-dependent manner, as discussed by us
elsewhere [15]. However, we believe that the presented data allowed us to make a big step
further in elucidating so far unknown modulatory mechanisms of lipid signaling.
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confocal images of GUVs stained with DPPE-Rh in the presence of FRB-GFP, Figure S6: GFP binding
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