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ABSTRACT
The regulatory process of naïve-state induced pluripotent stem cell
(iPSC) generation is not well understood. Leukemia inhibitory factor
(LIF)-activated Janus kinase/signal transducer and activator of
transcription 3 (Jak/Stat3) is the master regulator for naïve-state
pluripotency achievement and maintenance. The estrogen-related
receptor beta (Esrrb) serves as a naïve-state marker gene regulating
self-renewal of embryonic stem cells (ESCs). However, the
interconnection between Esrrb and LIF signaling for pluripotency
establishment in reprogramming is unclear. We screened the marker
genes critical for complete reprogramming during mouse iPSC
generation, and identified genes including Esrrb that are responsive
to LIF/Jak pathway signaling. Overexpression of Esrrb resumes the
reprogramming halted by inhibition of Jak activity in partially
reprogrammed cells (pre-iPSCs), and leads to the generation of
pluripotent iPSCs. We further show that neither overexpression
of Nanog nor stimulation of Wnt signaling, two upstream regulators of
Esrrb in ESCs, stimulates the expression of Esrrb in reprogramming
when LIF or Jak activity is blocked. Our study demonstrates thatEsrrb
is a specific reprogramming factor regulated downstream of the LIF/
Jak signaling pathway. These results shed new light on the regulatory
role of LIF pathway on complete pluripotency establishment during
iPSC generation.
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INTRODUCTION
Generation of induced pluripotent stem cells (iPSCs) (Takahashi
and Yamanaka, 2006) leads to the establishment of pluripotency
equivalent to embryonic stem cells (ESCs) without embryo
destruction, by overexpressing the so-called Yamanaka factors,
namely Oct4, Klf4, Sox2 and c-Myc (OKSM). However, to date, a
complete understanding of pluripotency establishment has not been
achieved. The cytokine leukemia inhibitory factor (LIF) activates
the Janus kinas/signal transducer and activator of transcription 3
(Jak/Stat3) pathway, which serves as a key for the self-renewal of
naïve-state pluripotent mouse ESCs (Matsuda et al., 1999; Nichols

and Smith, 2009; Niwa et al., 1998; Smith et al., 1988; Williams
et al., 1988). Stat3 activity also plays a fundamental role for naïve-
state iPSC generation at late-reprogramming stage (Tang et al.,
2012; van Oosten et al., 2012; Yang et al., 2010). A number of genes
have been reported to be regulated by Stat3 and mediate LIF-
independent mouse ESC self-renewal or iPSC reprogramming.
These include MnSOD, Klf4, Klf5, Nanog, Gbx2, Pim1, Pim3,
Pramel7, Tfcp2l1, c-Myc and Foxm1 (Aksoy et al., 2007;
Cartwright et al., 2005; Casanova et al., 2011; Festuccia et al.,
2012; Hall et al., 2009; Martello et al., 2013; Niwa et al., 2009;
Parisi et al., 2008; Sheshadri et al., 2015; Tai and Ying, 2013; Tan
et al., 2014; Ye et al., 2013). We also found that Jak/Stat3 regulates
key epigenetic change during the reprogramming process (Tang
et al., 2012). However, a question remains as how exactly Jak/Stat3
activity regulates pluripotency establishment during the
reprogramming process. A better understanding of the Stat3-
regulated downstream targets/effectors is necessary, and will further
facilitate the naïve-state iPSC generation across different species
including humans (De Los Angeles et al., 2012).

The nuclear receptor estrogen-related receptor beta (Esrrb) is a
canonical Wnt pathway effector negatively regulated by glycogen
synthase kinase 3 (GSK3)/T-cell factor 3 (Tcf3) in naïve-state ESCs,
and its overexpression can sustain ESC self-renewal that mimics the
inhibition of GSK3 (Martello et al., 2012). In ESCs, the expression
of Esrrb can also be regulated by Nanog, and overexpressing Esrrb
promotes complete reprogramming from Nanog-null partially
reprogrammed iPSCs (pre-iPSCs), and can sustain LIF-independent
ESC self-renewal similarly toNanog (Festuccia et al., 2012).Nanog is
not a GSK3 downstream effector (Martello et al., 2012; Silva et al.,
2009). This indicates that Esrrb is subjected to multi-upstream
signaling regulation for pluripotency establishment and maintenance.
However, whether Esrrb is regulated under LIF-mediated Jak/Stat3
signaling during the reprogramming process is not clear. In this study,
we screened the expression of key pluripotency genes regulated by
Jak/Stat3 and LIF activities in reprogramming. We describe the
identification of Esrrb as an important effector downstream of LIF/
Jak/Stat3 signaling for completely reprogrammed iPSC generation,
with its expression dependent on LIF pathway activation.

RESULTS
Esrrb is activated by LIF/Jak signaling during the
reprogramming process
Previous studies of reprogramming dynamics towards naïve-state
pluripotency have identified a number of pluripotent genes for which
expression in reprogramming stringently marks the development to
pluripotent iPSC state (Buganim et al., 2012; Polo et al., 2012). These
genes include Esrrb, Utf1, Lin28a, Dppa2, Nr5a2, Eras, Rex1/Zfp42,
Dnmt3l,Pecam1,Nanog andEpcam (Buganim et al., 2012; Polo et al.,
2012). To understand the expression of these genes relevant to Jak/
Stat3 activity in reprogramming,we utilized theRNA-seq data recentlyReceived 23 August 2017; Accepted 29 November 2017
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generated by us (GEO accession number GSE97261) (Wang et al.,
2017b), where we blocked Jak/Stat3 activity using a well-studied Jak-
specific inhibitor (Jak inhibitor I, Jaki) (Niwa et al., 2009; Thompson
et al., 2002) during the reprogramming ofmouse embryonic fibroblasts
(MEFs) to iPSCs (Fig. 1A). These MEFs have green fluorescent
protein (GFP) expression controlled by theOct4 distal enhancer region
(OG-MEFs), and total RNAs of reprogrammed OG-MEFs were
analyzed on reprogramming day 18 (Stage 1, S1) and 3 weeks (S2)
after retroviral OKSM infection (Fig. 1A). Heatmap analysis of the
RNA-seq data reveals that the majority of the eleven pluripotency-

predicting genes are downregulated by Jaki inhibition after 3 weeks of
reprogramming (Fig. 1B). Quantitative reverse-transcription
polymerase chain reaction (qRT-PCR) analysis further confirmed
that except for three genes (Utf1,Eras andEpcam), all other pluripotent
markers including Esrrb are significantly upregulated after 3 weeks of
reprogramming in DMSO control, but inhibited when Jak/Stat3
activity is blocked (Fig. 1C).

We previously showed that similar to the Jaki treatment,
deprivation of LIF cytokine (no LIF and feeder-cell free) during
OG-MEF reprogramming resulted in the generation of only GFP-

Fig. 1. Esrrb is regulated by LIF and Jak/Stat3 activity in reprogramming. (A) Schematic diagram depicting the reprogramming process and dates (S1 andS2)
for RNA-seq sample collection from reprogrammed cells. (B) Heatmap of FPKM value comparison for key pluripotent genes plus the Stat3 activity indicator
Socs3 under Jaki or DMSO treatment at reprogramming stage S1 and S2. The relative abundance is indicated by color (blue, lower abundance; red, higher
abundance). (C) qRT-PCR analysis of pluripotent genes in reprogrammed cells collected at Jaki or DMSO treatment at reprogramming stage S1 and S2. Values
are relative to R1-ESC standard. Data are mean±s.d. from three independent biological repeats. The arrowhead indicates that expression was not detected.
*P<0.05, **P<0.01. (D) Schematic diagram depicting the reprogramming process and dates for the LIF-deprivation MEF reprogramming experiment. (E) qRT-
PCR analysis of pluripotent genes in reprogrammed cells with or without LIF, or with LIF plus Jaki treatment at a 3-week time point. Values are relative to R1-ESC
standard. Data are mean±s.d. from two independent biological repeats.
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negative colonies (Tang et al., 2012). If the stimulation of these
pluripotency-predicting genes in reprogramming is specifically
controlled by Jak/Stat3 activity, we shall observe similar results
when LIF cytokine, the stimulator of Jak/Stat3 signaling is depleted
during mouse iPSC induction. We then compared the expression of
these genes inMEFs reprogrammed by retroviral OKSM transduction
and with or without LIF cytokine at a 3-week time point (Fig. 1D,E).
Indeed, we found that the expression of these genes is significantly
inhibited by depletion of LIF cytokine, to levels comparable to the
Jaki treatment (Fig. 1E). Similar results were also observed when LIF
is blocked using a LIF-neutralizing antibody (LIFAb) in
reprogramming (Figs S1 and S2). Thus, the LIF-regulated Jak
activity specifically stimulates pluripotency marker genes including
Esrrb that are tightly associated with pluripotency development
during the somatic cell reprogramming process.

Esrrb promotes complete reprogramming in the presence of
Jak/Stat3 inhibition
We wanted to evaluate the functional significance of these
pluripotent genes regulated by Jak/Stat3 activity for complete
reprogramming. We utilized the pre-iPSCs isolated at a 3-week
reprogramming point (Fig. 1A), which remained GFP-negative and
continuous OKSM transgene expression under Jaki treatment (Tang

et al., 2012). Overexpressing a constitutively active form of Stat3
(Stat3C) (Bromberg et al., 1999) in these pre-iPSCs led to
significantly increased GFP-positive (GFP+) colonies within
2 weeks in the presence of Jaki, further confirming a specific
blocking of Stat3 signaling by Jaki treatment in halted
reprogramming (Fig. 2A). We tested three candidate genes (Esrrb,
Nanog and Nr5a2) for their overexpression on reprogramming of
the pre-iPSCs. We chose these genes because Nanog was shown to
upregulate Esrrb in ESCs (Festuccia et al., 2012), and Nr5a2 was
reported as a Wnt-regulated transcription factor that can stimulate
the expression of Oct4, Nanog and Tbx3 in ESCs (Wagner et al.,
2010), and can replace Oct4 for iPSC induction (Heng et al., 2010).
Out of multiple trials, we consistently observed a significant
increase of GFP+ colonies in 2-3 weeks by overexpression of Esrrb
(to ∼25% of the GFP+ colonies developed in the absence of Jaki),
whereas overexpressing Nanog or Nr5a2 had negligible effects
(Fig. 2A). Similar results were obtained when we overexpressed
Esrrb, Nanog, Nr5a2 and three other genes (Klf2, Lin28, and
Prdm14) using two additional lines of pre-iPSCs (Fig. S3).

The GFP+ colonies induced by Esrrb overexpression can be
further expanded in 2i/LIF, the restrictive medium for ground state
pluripotency (Silva et al., 2009; Ying et al., 2008) (Fig. 2B). In
contrast to their parental pre-iPSCs, the Esrrb-induced iPSCs

Fig. 2. Esrrb promotes complete reprogramming blocked by Jak/Stat3 inhibition. (A) Pre-iPSCs were expanded and seeded into 24-well plates,
infected with vector control or virally expressed Stat3C, Esrrb, Nanog or Nr5a2, and cultured in the presence of LIF or LIF plus Jaki. GFP+ colonies were counted
2 weeks after viral infection. Data are mean±s.d. from four independent experiments. **P<0.01. (B) The Esrrb induced putative iPSC colonies cultured in 2i/
LIF medium at different passages (p). Scale bars: 120 μm (p2) and 625 μm (p4). (C) qRT-PCR analysis of endogenous (eOct4, eSox2, eKlf4) and total
(endogenous plus viral transgene) expression of reprogramming factors in Esrrb-induced putative iPSC colonies at passage 3, together with the parental pre-
iPSCs remaining in Jaki treatment. R1-ESCwas used as the control. Data aremean±s.d. derived from two different cell lines. (D) EB formation from original Esrrb-
induced iPSCs at days 3 and 7 of differentiation, with gradually silenced Oct4-GFP expression. Scale bars: 250 μm. (E) qRT-PCR analysis for relative expression
levels of the three germ layer markers at day 14 of EB differentiation (endoderm: AFP, ALB1; mesoderm: Brachyury, Acta2; ectoderm: Nestin). The gene
expression values of two differentiated EB lines were relative to their parental iPSCs.
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showed expression of endogenous pluripotent genes at levels
comparable to ESCs, including Oct4, Sox2, Klf4, Nanog, Rex1,
Dppa3 and Nr5a2, and silenced the transgene expression (Fig. 2C;
Fig. S4). Furthermore, upon removal of the LIF cytokine, these
Esrrb-induced iPSCs readily formed embryoid bodies (EBs), with
gradual silencing of the Oct4-GFP fluorescence (Fig. 2D), and
demonstrated three-germ layer differentiation (Fig. 2E; Fig. S5).
These iPSCs also showed the ability of differentiation into beating
cardiomyocytes (Movie 1). Taken together, our data demonstrate
that during somatic cell reprogramming, the activation of Esrrb is
one of the key effectors downstream of Jak/Stat3 for the complete
pluripotency establishment.

The expression of Esrrb depends on LIF/Jak pathwayactivity
in reprogramming
Esrrb has been reported to be regulated by Nanog in ESCs
(Festuccia et al., 2012). In this study, we found that Esrrb, but not
Nanog, overexpression could resume the reprogramming of pre-
iPSCs with inhibited Jak/Stat3 activity (Fig. 2A; Fig. S3). This
result is also consistent with our previous study showing that with
the absence of LIF, the addition of Nanog overexpression cannot

rescue the GFP+ iPSC generation from OG-MEFs transduced with
retroviral OKSM (Tang et al., 2012). We then wondered whether
Nanogwould stimulate Esrrb expression during the reprogramming
in depleted LIF signaling. qRT-PCR analysis to these previously
reprogrammed samples at a 3-week time point further revealed
that without LIF cytokine, there is no significant increase in
Esrrb expression in the reprogrammed cells compared with the
OKSM transduction, despite a high level of Nanog transgene
overexpression (Fig. 3A).

Esrrb is also the Wnt pathway downstream effector that supports
ESC self-renewal, which can be activated through suppression of
GSK3 by a specific inhibitor CHIR99021 (CHIR) (Martello et al.,
2012). We wondered whether Esrrb could be similarly activated
during the reprogramming process without LIF pathway signaling.
We added CHIR to the pre-iPSC medium treated by Jaki or LIFAb.
The pre-iPSCs cultured in LIF cytokine-containing medium
developed GFP+ colonies in 12 days, while the cells treated with
Jaki or LIFAb remained GFP negative (Fig. 3B). The addition of
CHIR to either Jaki or LIFAb condition showed no improvement on
GFP+ colony generation from pre-iPSCs (Fig. 3B,C). However,
CHIR increased the number of GFP-negative colonies, resulting in a

Fig. 3. Esrrb expression depends on LIF and Jak activity in reprogramming. (A) qRT-PCR analysis of pluripotent genes in reprogrammed cells transduced
with retroviral 4F (OKSM) or 4F plus Nanog, with or without LIF cytokine at a 3-week time point. Values are relative to R1-ESC standard. Endogenous and
total (endo- plus viral expression) Nanog (eNanog and tNanog, respectively) expression are also shown. Data are mean±s.d. from two independent biological
repeats. **P<0.01. (B) Representative images of pre-iPSCs seeded into 24-well plates and treated with LIF, LIF plus Jaki, LIF plus Jaki/CHIR, LIFAb or
LIFAb/CHIR at day 12 of reprogramming. Scale bar: 250 μm. (C) GFP+ colonies induced from pre-iPSCs treated as described in B were counted at day 12. Data
are mean±s.d. from three independent experiments. **P<0.01. (D) Number of total colonies developed from pre-iPSC reprogramming as described in B at day 12.
Data aremean±s.d. from three independent experiments. **P<0.01. (E) qRT-PCR analysis for Esrrb, Sox2, and Nanog expression in pre-iPSCs treated with Jaki,
Jaki plus CHIR, LIFAb or LIFAb plus CHIR at reprogramming day 12. Values are relative to R1-ESC standard. Data are mean±s.d. from three independent
experiments. **P<0.01.
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significantly greater number of total colonies developed during the
pre-iPSC reprogramming process (Fig. 3D; Fig. S6). qRT-PCR
analysis revealed that the addition of CHIR did not activate the
expression of Esrrb in the pre-iPSCs treated with Jaki or LIFAb
(Fig. 3E). Thus, in the absence of LIF/Jak/Stat3 signaling,
Wnt activity alone cannot induce Esrrb expression during
reprogramming, even though inhibition of GSK3 does stimulate
the development of partially reprogrammed colonies. Taking
together, our data strongly indicate that the expression of Esrrb is
determined by LIF/Jak activity during the reprogramming process,
and Esrrb serves as a LIF/Jak downstream effector important for the
generation of completely reprogrammed iPSCs.

DISCUSSION
The LIF-regulated Jak/Stat3 pathway is important for naïve-state
pluripotency establishment across species (Weinberger et al., 2016).
Although many downstream targets of Stat3 have been reported,
the complete understanding of Jak/Stat3 mediated pluripotency
establishment has not been achieved. Jak/Stat3 signaling has been
reported to regulate pluripotency in pluripotent stem cells through
a number of transcription factors such as Tfcp2l1 and Klf4 (Hall
et al., 2009; Martello et al., 2013; Niwa et al., 2009; Ye et al., 2013).
However, how Jak/Stat3 regulates downstream targets in
reprogrammed somatic cells to achieve complete pluripotency is
not well understood. We found that in mouse iPSC generation, LIF-
stimulated Jak activity regulates the activation of a number of key
pluripotent factors such as Esrrb. To the best of our knowledge, this
is the first report demonstrating Esrrb as a downstream target of
LIF/Jak signaling in somatic cell reprogramming. Esrrb is a naïve-
specific pluripotency marker negatively regulated by GSK3/Tcf3 in
ESCs, and overexpressing it can sustain ESC pluripotency similarly
to Wnt signal activation (Martello et al., 2012). Esrrb is also a
Nanog target, and overexpressing Esrrb promotes complete
reprogramming from Nanog-null pre-iPSCs, and sustains LIF-
independent ESC self-renewal similarly to Nanog (Festuccia et al.,
2012). We found that inhibiting Jak/Stat3 or LIF results in the lack
of Esrrb activity, and overexpressing Esrrb in pre-iPSCs resumes
reprogramming despite the inhibited Jak/Stat3. However, in the case
of blocked LIF or Jak/Stat3 activity, overexpression of Nanog or
mimicking the canonic Wnt signaling by inhibiting GSK3 – the two
known regulators of Esrrb in ESCs – could not stimulate the
expression of Esrrb, nor could they promote complete
reprogramming. Our finding highlights the multiple layers of
upstream control of Esrrb expression, which changes between the
reprogramming and pluripotency maintenance stages. Our results
indicate that during the reprogramming process, the activation of
Esrrb relies on LIF-stimulated Jak/Stat3 activity. Activated Esrrb
can then serve as an important LIF downstream effector driving the
cells towards complete reprogramming, and becomes the essential
component parallel to LIF signaling for pluripotency maintenance
as previously described (Martello et al., 2012).
We also noticed that in the absence of LIF signaling, CHIR-

mediated GSK3 inhibition results in increased GFP-negative colony
formation in pre-iPSC reprogramming. Multiple mechanisms could
be responsible for this phenomenon, as Wnt regulates many
downstream targets via suppressing GSK3 activity (Beurel et al.,
2015; Sokol, 2011). Firstly, relieving the GSK3 inhibition of
glycogen synthase (Embi et al., 1980) may modulate glucose
homeostasis and energy metabolism of reprogrammed cells in favor
of fast cell proliferation. Also, GSK3 can interact with and be
activated by p53 during cellular DNA damage, resulting in
increased apoptotic response (Watcharasit et al., 2002). We

recently showed that knockdown of Akt3 in ESCs activates p53
signaling, leading to apoptosis and impaired cell proliferation
(Wang et al., 2017a). We also found that inhibiting GSK3 promotes
the reprogramming of MEFs inhibited by blocking Akt/PKB
activity, which leads to cell apoptosis (Tang et al., 2014). Thus,
inhibition of GSK3 can enhance the survival of reprogrammed cells,
as many of them undergo p53- and other apoptotic factor-mediated
cell death (Banito et al., 2009). Thirdly, the inhibition of GSK3
by Wnt signaling also results in increased nuclear β-catenin activity
that is required for ESC self-renewal (Kelly et al., 2011; Wray et al.,
2011). On the other hand, in addition to Esrrb, inhibition of GSK3
may also release other factors suppressed by Tcf activity, thus
enhancing cell proliferation during reprogramming. The exact
mechanism for this Esrrb-independent promotion of colony
development would be very interesting to investigate.

Recently, a number of studies revealed that naïve-state
pluripotency can also be established in human ESCs/iPSCs
(Wang and Gao, 2016; Ware, 2017). However, it was also
reported that unlike the naïve-pluripotent mouse ESCs, the naïve-
state human cells exhibit little Esrrb expression, which might
account for their instability in propagation compared with their
mouse counterparts (Guo et al., 2016). Understanding the Esrrb-
mediated naïve pluripotency maintenance, as well as its activation
during reprogramming may uncover novel routes for improvement
of naïve-state human pluripotent stem cells. In light of this view, it
was recently reported that Esrrb activates the oxidative
phosphorylation process in reprogrammed cells, which is essential
for efficient reprogramming and conversion of the primed-state
pluripotency into naïve-state (Sone et al., 2017). How exactly LIF/
Jak/Stat3 signaling determines Esrrb expression during mouse
iPSC generation is currently under investigation. Nevertheless, our
study demonstrates that LIF/Jak signaling dictates the activation of
Esrrb in somatic cells during reprogramming as one of its
significant downstream effectors for pluripotency establishment.

Conclusion
We identified LIF/Jak activity-specific regulation and activation of
several pluripotency-predicting genes including Esrrb. Functional
analysis revealed that Esrrb overexpression rescues the
reprogramming halted by the inhibited LIF/Jak/Stat3 activity, and
leads to the generation of pluripotent iPSCs. We further show that
during the reprogramming process, Esrrb serves as a LIF activity-
dependent downstream effector, with its expression unstimulated by
Nanog or Wnt activity when LIF/Jak signaling is missing. Our data
provide new insight for LIF signaling pathway-mediated pluripotency
establishment in reprogramming, which are valuable for further
improving the generation of naïve-state iPSCs across species.

MATERIALS AND METHODS
Chemicals and DNA constructs
Doxcyclin (Dox) and Jak inhibitor (Jaki) were purchased from Merck
Millipore (Billierica, MA, USA). CHIR99021 and PD0325901 were
purchased from SelleckChem (Houston, TX, USA). The LIF neutralizing
antibody (LIFAb) was from R&D Systems. The retro- and lenti-viral vectors
including pMXs-Nanog, and FUW- M2rtTA, and the viral packaging
plasmids PUMVC, psPAX2 and pCMV-VSV-G (Stewart et al., 1992) were
all obtained from Addgene (Cambridge, MA, USA). FUW-TetO-Esrrb and
pMXs-Stat3C were described previously (Tang et al., 2012, 2014). Nr5a2
cDNA was PCR amplified using primers (forward primer: 5′-AGTTAAT-
TAAGGATCCATGTCTTCTAATTCAGATACTGGGG-3′ and reverse
primer: 5′-ACTGTGCTGGCGGCCGCTTATGCTCTTTTGGCATGCA-
AC-3′) and cloned into linearized pMXs vectors (Cell Biolabs, San
Diego, CA, USA) using the In-Fusion kit (Clontech Inc., Mountain View,
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CA, USA). Lenti- and retro-viruses were prepared with 293T cells according
to the protocol from Addgene and filtered with 0.8 μm filters.

Cell culture and pre-iPSC reprogramming assay
R1-ESCs were cultured in 2i/LIF medium (Ying et al., 2008) containing
N2B27 medium with 1 μM PD0325901, 3 μM CHIR99021, 1×β-
mercaptoethanol (Millipore), 1000 U/ml mouse LIF (Millipore) and
0.5×penicillin/streptomycin (Invitrogen). The induced iPSCs were
initially cultured in knockout serum replacement (KSR)-ESC medium
after picking and switched to 2i/LIF medium from passage 2. The KSR-ESC
medium consists of 76% knockout-DMEM, 20% KSR, 1% 100×Glutamax,
1% 100×non-essential amino acids, 0.5×penicillin/streptomycin (all from
Invitrogen) and supplemented with 1% 100×β-mercaptoethanol and
1000 U/ml mouse LIF.

Generation of the Jaki-treated pre-iPSCs was described previously (Tang
et al., 2012), where the OG-MEFs were reprogrammed with OKSM in the
presence of 1 μM Jaki. Single pre-iPSC colonies were picked and expanded
in KSR-ESC medium containing mouse LIF and 1 μM Jaki (thereafter
called KSR-ESC-Jaki medium). Reprogramming assay was performed in
KSR-ESC-Jaki medium or the KSR-ESC medium containing no LIF but
2.5 μg/ml mouse LIF neutralizing antibodies (KSR-ESC-LIFAb medium).
For the reprogramming assay, on day 1, 0.25 million pre-iPSCs were seeded
into a 24-well plate in which mitomycin C-treated CD1 MEF feeders were
plated beforehand. On day 0, the cells were infected with retro- or lenti-viral
vector control or the genes of interest in the presence of polybrene
(American BIO, Natick, MA, USA) overnight. Starting from day 1, KSR-
ESC-Jaki medium or the KSR-ESC-LIFAb medium was applied for
reprogramming. Application of CHIR99021 for WNT activation or Dox for
induced expression was started on day 2. Media were replaced every other
day. GFP-expressing colonies were counted between 12 days to 3 weeks
after initial viral transduction under a Nikon fluorescence microscope. GFP-
positive iPSC colonies were picked at 3 weeks after viral transduction and
expanded for further characterization.

EB formation
Established iPSCs lines (passage 3) were passaged onto CD1 MEF feeders.
Colonies were trypsinized and single cells were plated back to the tissue
culture dish for 2 h to allow MEFs to attach. The iPSC cells in supernatant
were then transferred to a low adhesive Petri-dish and allowed to form EBs
and differentiate in 10% FBS in DMEM without LIF. Upon 1 week of
differentiation, the EBs were re-plated to 0.1% gelatin (Millipore)-coated
tissue culture dish for another week before proceeding to RNA extraction
and qRT-PCR.

qRT-PCR analysis
Total RNAs were extracted using Trizol (Invitrogen), and 1 μg of the total
RNAs was reverse transcribed with All-in-One cDNA Synthesis SuperMix
(Bimake, Houston, TX, USA). For qRT-PCR, 2× SYBRGreen PCRMaster
Mix (Bimake) was used. Samples were run using an ABI 7500 Fast
instrument, and data were analyzed using the 7500 software (version 2.0.2)
provided with the instrument. All genes were normalized with GAPDH as
internal control and relative mRNA expression was quantified using R1-
ESCs as the reference as specified in each figure legend.

Immunostaining
The mouse iPSCs differentiated with the EB-mediated method in Gelatin-
coated dishes were fixed with 4% paraformaldehyde plus 1% sucrose in
PBS, after which the cells were treated with 0.5% TX-100 to permeabilize
the cell membrane and blocked with donkey serum. Then, the cells were
incubated with the antibodies (R&D System) against three germ layer
makers including Otx2 for ectoderm, Brachyury for mesoderm and Gata6
for endoderm. The cell nuclei were counterstained with DAPI and
fluorescent images were visualized using a Nikon fluorescent microscope.

Data analysis
The RNA-seq data were from a previous study (GEO accession number
GSE97261) (Wang et al., 2017b). Data analyzed through Pearson

correlation coefficient were created by R Package, which was in turn used
to generate the heatmap. qRT-PCR and cell counting data were processed
using one-Way ANOVA with Tukey’s multiple comparisons or the
Student’s t-test. Data are presented as mean±standard deviation (s.d.).
P<0.05 was considered statistically significant.
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