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Direct Diagnostic Tests for Lyme Disease
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Borrelia burgdorferi was discovered to be the cause of Lyme disease in 1983, leading to seroassays. The 1994 serodiagnostic testing 
guidelines predated a full understanding of key B. burgdorferi antigens and have a number of shortcomings. These serologic tests 
cannot distinguish active infection, past infection, or reinfection. Reliable direct-detection methods for active B. burgdorferi infec-
tion have been lacking in the past but are needed and appear achievable. New approaches have effectively been applied to other 
emerging infections and show promise in direct detection of B. burgdorferi infections.
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Lyme disease is the most common vector-borne illness in the 
United States and Europe. Borrelia burgdorferi was identified 
as the etiologic agent of Lyme disease in 1983 [1, 2]. In 1994, a 
2-tiered antibody testing strategy was adopted in which a first-tier 
test (usually enzyme-linked immunosorbent assay) was designed 
to be very sensitive in detecting new cases, and a second-tier test 
(Western blot) was intended as a more specific confirmatory step 
to rule out false positives [3]. However, serologic tests have been 
hampered by technical and biological shortcomings, the greatest 
being a time lag for the host to make detectable antibody by cur-
rent tests. The other biologic hurdle is that a single antibody test 
can only indicate exposure, not active infection [4] or reinfection. 
The development of sensitive tests capable of directly detecting 
the organism in body fluids has proven challenging.

Borrelia burgdorferi infection begins as a local infection at the 
tick bite site. Hematogenous dissemination occurs in early di-
sease in many, but not all, cases. However, even when it occurs, 
only low and transient levels of the bacteria are found in the 
blood [5]. Later, they have a predilection for certain tissues 

(heart, nervous system, joints). Nucleic acid amplification test 
(NAAT) methods that are efficient for the detection of other 
infections in blood have largely been ineffective for B. burgdor-
feri detection without measures to enhance their sensitivity.

Advances in molecular diagnostics over the past few years have 
led to the application of new technologies for many emerging in-
fectious diseases. Now, soon after an emerging infection appears, 
diagnostic tests can be rapidly developed to detect the infection 
in patients, as well as monitor its incidence in the population. 
First-generation molecular tests can be quickly refined to attain 
higher sensitivity and specificity. Recent examples include the 
emergence of accurate diagnostics for severe acute respiratory 
syndrome–coronavirus, Middle East respiratory syndrome–co-
ronavirus, Zika infection [6], and even 2 newly recognized tick-
borne borreliae by Borrelia mayonii [7] and Borrelia miyamotoi 
[8]. Progress in our understanding of the biology of Lyme di-
sease is allowing for the exploration of these promising new 
technologies in direct-detection diagnostics of the disease. As in 
any infection where there are low microbe copies, enhancement 
or enrichment methods will also be needed.

This article was developed after a September 2016 meeting at 
the Cold Spring Harbor Laboratory Banbury Center and sub-
sequent discussions to assess current and potentially new labo-
ratory tests for the diagnosis of Lyme disease. The participants 
were from industry, academia, and government, with exten-
sive experience in clinical and laboratory aspects of Lyme di-
sease and other infectious diseases, as well as participants with 
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regulatory experience in the clearance of diagnostic tests. The 
emphasis of the meeting was on diagnostic testing platforms 
for early Lyme disease, since current serologic tests are insen-
sitive during the first several weeks of infection. There was no 
intent to take a vote, advocate for one test product over another, 
or reach a consensus during the meeting; rather, there was dis-
cussion of research findings that support or challenge partic-
ular diagnostic concepts. What emerged was a recognition that 
improved approaches to serologic testing were now available [4] 
and that the technology for direct detection of bacterial proteins 
or DNA has advanced to the point that it is evaluable in Lyme 
disease. If the technology meets scientific rigor, these tests could 
become future diagnostic assays.

A wide range of direct diagnostic testing methods was dis-
cussed. The focus was on methods and approaches that may 
have practical use in the laboratory diagnosis of Lyme disease 
now and in the near future. Distinctions were made between 
assays that are currently available and being used for other 
infections and those that are in the developmental stages [9].

CURRENT APPROACH TO LABORATORY TESTING 
FOR LYME DISEASE

Serologic assays are the most frequently used and familiar tests 
for the laboratory diagnosis of Lyme disease. At present in the 
United States, all tests currently cleared for diagnostic use by the 
US Federal Drug Administration (FDA) are serologic assays. 
The current guidelines for serologic testing were adopted in 
1994 [3]. The challenge to the 1994 Dearborn Conference [3] 
participants was to develop testing and interpretive guidelines 
that would standardize serologic testing for diagnostic pur-
poses. The guidelines are geared to assess exposure to B. burg-
dorferi through the patient’s antibody response to infection 
rather than direct detection of nucleic acid or protein from the 
microbe. The limitations of serologic testing and advances were 
recently reported in detail [4].

NEW METHODS ARE NEEDED

There is a lag period in most infections, and with B. burgdorferi, 
up to 3 weeks may be needed from infection to B-cell produc-
tion of pathogen-specific antibody in sufficient quantity to be 
detectable by current serologic assays. Also immunoglobulin M 
reactivity is fraught with issues that affect utility. Culture of the 
pathogen, microbial nucleic acid, or protein may be detected 
in skin biopsies of erythema migrans (EM) before the develop-
ment of a positive serology. However, culture is impractical for 
routine clinical use. It requires specialized media; B. burgdor-
feri grows slowly, requiring weeks before it comes detectable. 
Although improvements in serologic assays are foreseeable, 
current assays utilize antigen targets identified before a thor-
ough understanding of the expression of the antigens or their 
epitopes. Key early antigen targets were missing from the assays, 

contributing to insensitivity of serology in early infection. Also, 
cross-reactive epitopes are found in virtually all of the antigens 
used in the currently approved seroassays.

ADVANTAGES AND LIMITATIONS OF DIRECT-
DETECTION METHODS (BORRELIA PROTEINS AND 
DNA BY POLYMERASE CHAIN REACTION ASSAYS)

General

Early manifestations may range from asymptomatic without a 
known tick bite (impractical to test) to asymptomatic with tick 
bite, to nonspecific symptoms, to specific ones such as EM [2].

Serologic tests detect exposure to a pathogen indirectly via 
quantification of a specific antibody in blood, independent of 
whether infection is past or current. In contrast, direct tests are 
designed to detect the etiologic agent itself, or components of 
it. Such a test could be advantageous in the diagnosis of early 
Lyme disease. In the absence of EM, the signs and symptoms of 
Lyme disease are too nonspecific to be clinically diagnostic. In 
a patient who has the viral-like symptoms of early Lyme disease 
without EM, serologic tests may not yet be positive. A  direct 
test could provide a definitive indication of active B. burgdorferi 
infection. Later in the disease, direct-detection methods may 
help confirm the presence of the pathogen.

Cultures as Direct Detection Are Time Consuming and Not Practical for 
Routine Use

Culture of B. burgdorferi requires special media. The organism 
grows slowly, taking up to 12 weeks before being seen [10], and 
has relatively low sensitivity. Culture continues to be a research 
tool as culture-confirmation techniques are beyond the capabil-
ities of most clinical laboratories.

Detection of Bacterial Antigens

Antigen-capture assays provide one means of direct detection. 
Bacteria often shed or secrete antigens that can be detected in 
body fluids. For example, legionellosis, cryptococcosis, aspergil-
losis, and dimorphic fungal infections can be diagnosed using 
antigen tests applied to urine, blood, bronchoalveolar lavages, 
or cerebrospinal fluid. A direct test for Lyme disease is needed, 
but a sensitive and specific antigen-capture assay has been elu-
sive. Even if the antigen is known to be present in a sample, past 
attempts to develop an antigen-capture assay had poor speci-
ficity, low sensitivity, and uncertainty about the choice of the 
capture antigen target [11].

The specificity and sensitivity of an antigen-detection assay 
is largely a function of the choice of the capture and reporter 
antigenic targets, as well as the affinity of the antibody used 
to capture or detect it [12]. Depending on the duration of the 
infection, the B.  burgdorferi antigenic repertoire changes. In 
addition, because of the high sequence variability between 
B.  burgdorferi strains, identification of conserved antigenic 
epitopes that span all strains at all times has been challenging 
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across genospecies. One can select 1 or more appropriate target 
antigens for any genospecies. Even OspC, known for its vari-
ability, has at least 2 well-conserved epitope targets found across 
the various serotypes.

Earlier attempts to create antigen-capture assays may have 
been hindered by lack of data for optimal selection of targets 
and antibodies [11]. Now, with advances in proteomics, spec-
imen processing, and mass spectrometry, identification of 
pathogen-specific antigens is possible [13] and represents a path 
forward. Although some large commercial laboratories use mass 
spectrometry for diagnostic purposes (not Lyme disease), this 
methodology can be used to identify and validate the specific 
antibody–antigen complex so that simpler assays can be devel-
oped for use in routine laboratory settings or perhaps even closer 
to the point of care. In addition, emerging antigen concentration 
and enrichment methods [14, 15] have the potential to address 
another likely limitation—B.  burgdorferi-specific antigens are 
probably in very low abundance in body fluids. Throughout the 
B. burgdorferi infection, there are few circulating organisms, and 
the organism burden in affected organs is low. Concentration 
methods can be categorized as follows: removal of solute or 
water [16], electrophoretic or chromatographic separation [17], 
and affinity capture [18–20]. Along with target enrichment, 
these methods may require exclusion of masking proteins such 
as common abundant proteins (frequently a preparative step 
prior to mass spectrometry detection of proteins).

New developments to stabilize proteins in samples prior to 
analysis may be suitable for several assays [14].

Detection of DNA: Nucleic Acid Amplification Tests

For infectious agents that are difficult to visualize or cultivate, 
nucleic acid amplification tests (NAATs) can identify specific 
pathogen DNA. Many pathogens are easily detected using 
NAATs, especially with high enhancement or enrichment 
methods when present. Many polymerase chain reaction (PCR) 
assays have been geared to analyze small volumes of blood, 
plasma, or other sample types. In Lyme disease, outside the 
EM in skin, the infectious agent resides in very low numbers in 
tissue and body fluids, and standard PCR methods, as applied 
to B. burgdorferi detection, have suffered from poor sensitivity, 
especially in blood and cerebrospinal fluid [21–25]. An illus-
trative strategy to increase PCR sensitivity without diminish-
ing specificity is to start with a larger specimen volume and/
or use target enrichment methods [26]. It appears possible to 
detect B. burgdorferi in the blood with higher sensitivity [27] in 
early Lyme disease. In addition, there are a variety of PCR-based 
assays in development that use unconventional signal detection 
or amplification methods [27, 28], with the potential to achieve 
a limit of detection (LOD) that is substantially lower than with 
standard PCR methods.

Today’s advanced direct-detection diagnostic tools were not 
available at the time of the 1994 Dearborn recommendations. 

In the ensuing years, PCR and high-throughput sequencing 
have matured and are now routinely used to detect many new 
pathogens [29]. Such techniques can be applied successfully to 
Lyme disease diagnostics. For an improved Lyme disease assay, 
performance should be equal to or better than the existing sero-
logic  2-tier enzyme immunoassay followed by Western blot. 
The advantage of a NAAT is that it is a measure of the presence 
of the microbe and therefore active infection, especially when 
found in circulating fluid, instead of host antibody responses to 
B. burgdorferi.

PCR strategies have performed well in blood tests for causa-
tive agents of sepsis [30] and Ebola [29]. These infections have 
many genomic copies detectable by methodology geared to small 
volumes of blood or plasma. In contrast, Lyme disease has very 
low microbe numbers in the majority of clinical samples. With 
enhancement and enrichment methods, detection of B. burgdor-
feri in the blood is increasingly possible. Multiple displacement 
amplification [26] and similar strategies in which DNA is expo-
nentially amplified by isothermal amplification increases the 
yield of B. burgdorferi by at least 200 times above normal [27]. 
This makes a PCR detection assay far more sensitive. In other 
studies, the sensitivity of PCR-based assays was increased, on the 
order of 16 000-fold, by combining 3 consecutive methods [27]. 
Similar to the approach used for blood cultures for sepsis where 
multiple large volumes of blood are taken, the first step was to 
start with a larger volume of whole blood, 1.25 mL (more than 
0.5 mL of plasma or serum are often requested by clinical lab-
oratories). The second step was to increase the relative content 
of B. burgdorferi compared to human or other microbial DNA 
by using targeted isothermal amplification. In vitro experiments 
resulted in a 200- to 2000-fold increase in the targeted DNA. In 
a set of clinical EM samples, the number of cases detected was 
7-fold greater than without this step. The third step that increased 
sensitivity with 100% specificity was the use of multiple primers. 
It should be noted that there appear to be skin-restricted geno-
types, which may be the reason for negative results in blood. We 
should also consider enrichment or concentration of a pathogen 
to increase the target concentration for nucleic acid extraction 
followed by PCR analysis.

An additional hopeful point for future acute NAAT develop-
ment is that some acute Lyme disease studies have documented 
that the number of organisms or their DNA in the blood may 
have been higher than appreciated [5].

Genomic Sequencing

High-throughput sequencing (HTS), also known as next-genera-
tion sequencing (NGS) [31], has been a breakthrough method for 
identifying and characterizing nucleic acids from diverse microbes. 
However, B. burgdorferi is particularly challenging, in part, because 
it is present in low abundance in circulating fluids and because it has 
an unusual genome [32]. The approximately 1.7 Mb Bbl. genome is 
AT-rich (approximately 30%), and nearly half of it consists of linear 



VIEWPOINTS • CID 2019:68 (15 March) • 1055

and circular plasmids. Borrelia burgdorferi isolates an average of 17 
such plasmids, with up to 21 for the B31 type strain [33]. Thus, 
Borrelia genomes are among the most complex and challenging 
bacterial human–pathogenic genomes to sequence and analyze. 
These difficult-to-sequence plasmids carry antigen-encoding 
genes and are often required for propagation of the bacteria in ticks 
and/or mammals. The recent development of long-read sequenc-
ing technology [34] (eg, Pacific Biosciences), in combination with 
the use of HTS technologies with relatively very low sequencing 
error rates (eg, Illumina Novae or MiSeq platforms) [34–36], has 
allowed resolution of the repeated sequences that are the hallmark 
of Borrelia genomes and of other sequencing challenges commonly 
found in the critically important Borrelia plasmids.

In addition to its use in characterizing the B. burgdorferi ge-
nome, NGS could potentially be used as a direct-detection method 
in clinical diagnostics [37]. Targeted deep sequencing (eg, enrich-
ment for desired genomic regions prior to sequencing via either 
hybridization or PCR amplification techniques) is proving to 
achieve adequate sensitivity; emerging approaches that sequence 
cell-free DNA from plasma show promise [38]. Sequencing also 
allows for a much better resolution of species and strains, either 
through multilocus sequence typing–like sequencing strategies or 
whole-genome sequencing approaches [39].

The rapidly decreasing cost to perform sequencing may make 
this a viable and high-throughput (multiple samples character-
ized at the same time) method for detection in the clinical labora-
tory when appropriate sensitivity can be established. Challenges 
remain, however, including our incomplete knowledge of the full 
breadth of Borrelia genomic diversity, that is, of the genes that 
might be shared by all isolates (also called the “core genome”) 
and those that might be unique to specific species (also called 
the “accessory genome”) [32]. Without this critical knowledge, 
it would be challenging to determine precisely which genes or 
antigens should be targeted by a selective diagnostic test.

PCR and HTS technology have value in authenticating that 
a sample is actually infected with the organism. This proof 
of infection is valuable for any assay development including 
improved serology and research.

It is assumed but yet to be proven that there is a preferential 
window of nucleic acid detection in blood at the earliest points 
of the infection, well before serological assays tend to be posi-
tive. It may be that in the untreated patients, Borrelia DNA may 
be detected with deep sequencing or hybrid targeted enrich-
ment or background subtraction [38].

It is important to realize that certain molecular techniques 
may be too expensive for routine clinical use, at least currently, 
and may require curated genomic or proteomic databases of 
higher quality than those currently publicly available. Other 
limitations of genomic testing, particularly on a large scale, re-
quire attention to the risk of exogenous contamination; degra-
dation of the nucleic acid during transport to the laboratory; 
complexity of the technique, which can make the testing of 
hundreds of samples in 1 day more difficult; and cost-benefit 
factors. However, using currently available tools, researchers 
should be able to help define the parameters, such as the op-
timal nature and required volume of the sample, the degree 
of targeted amplification, sequence capture, host background 
suppression needed, and the LOD that must be achieved. This 
knowledge could help drive the development of economically 
viable assays that could eventually go through the regulatory re-
view process for routine clinical use. It will require concentrated 
research followed by product development and regulatory ap-
proval before robust, affordable, and reliable direct-detection 
assays are available for routine diagnostic use.

As with any new or improved assay that one is contemplating 
for FDA clearance, it is advisable to initiate early, direct com-
munication with FDA, including participation in the Qsub 
program, during which a developer may receive assay-specific 
feedback [40].

CONCLUSIONS

New technical advances and knowledge demonstrate that direct 
tests for early active infection are ready for practical assessment 
in Lyme disease. Future tests are also likely. When testing guide-
lines for Lyme disease were adopted in 1994, they were intended to 
make the best use of available assays, which were antibody tests that 
provided indirect evidence of infection. Although the guidelines 
improved standardized serologic testing, aspects are amenable to 
improvement in light of new data and technologies. Continued 
reliance on serologic testing for early Lyme disease is suboptimal 
given the common 2–3 week seronegative window with current 
methods and the need for a biomarker of active infection.

The goal of an active-infection diagnostic test is now techni-
cally achievable. It can be evaluated for practical performance 
in clinical settings (Table  1). Direct nucleic acid and protein 
detections would complement improving indirect serological 
tests for more comprehensive diagnosis of Lyme disease.

Table 1. Characteristics of an Ideal* Direct Test for Borrelia burgdorferi Infection (Lyme Disease)

High sensitivity and specificity soon after a tick bite and/or infection at or before the time of symptom onset

High sensitivity and specificity in later stage of disease when extracutaneous infection has been established

Short turnaround time (within 24 hours)

Applicable to easily obtained sample types such as blood, urine, and saliva

Nonreactive when active infection is absent

*Distinct but complementary molecular and serological approaches may be necessary.
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