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Metastatic cervical carcinoma from unknown primary (MCCUP) accounts for 1–4% of
all head and neck tumors, and identifying the primary site in MCCUP is challenging. The
most common histopathological type of MCCUP is squamous cell carcinoma (SCC),
and it remains difficult to identify the primary site pathologically. Therefore, it seems
necessary and urgent to develop novel and effective methods to determine the primary
site in MCCUP. In the present study, the RNA sequencing data of four types of SCC
and Pan-Cancer from the cancer genome atlas (TCGA) were obtained. And after data
pre-processing, their differentially expressed genes (DEGs) were identified, respectively.
Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis indicated that these significantly changed genes of four types of SCC share
lots of similar molecular functions and histological features. Then three machine learning
models, [Random Forest (RF), support vector machine (SVM), and neural network (NN)]
which consisted of ten genes to distinguish these four types of SCC were developed.
Among the three models with prediction tests, the RF model worked best in the external
validation set, with an overall predictive accuracy of 88.2%, sensitivity of 88.71%, and
specificity of 95.42%. The NN model is the second in efficacy, with an overall accuracy
of 82.02%, sensitivity of 81.23%, and specificity of 93.04%. The SVM model is the last,
with an overall accuracy of 76.69%, sensitivity of 74.81%, and specificity of 90.84%. The
present analysis of similarities and differences among the four types of SCC, and novel
models developments for distinguishing four types of SCC with informatics methods
shed lights on precision MCCUP diagnosis in the future.

Keywords: metastatic cervical carcinoma from unknown primary, random forest, neural network, support vector
machine, predict, primary sites

INTRODUCTION

Metastatic cervical carcinoma from unknown primary (MCCUP) is defined as metastatic disease
in the lymph nodes of the neck without any evidences of a primary tumor after appropriate
investigations. It is a type of cancer which originates from unknown primary sites, and
squamous cell histology is prominent, accounting for 75–90% of cases (Arosio et al., 2017;
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Jereczek-Fossa et al., 2004). The special features of the lymphatic
drainage of the head and neck regions suggest that the primary
sites may locate in head, neck (oropharynx, larynx, and
tongue) or thorax (tracheal, bronchial, lung, and esophagus)
(Jereczek-Fossa et al., 2004; Arosio et al., 2017). However, despite
comprehensive diagnostic work-ups including fibroscopy,
computed tomography, magnetic resonance imaging, positron
emission tomography, fine-needle aspiration, and panendoscopy
have been conducted, the primary site remains difficult to
identify in cases of MCCUP. An accurate identification of
the primary site is crutial for the designment of effective
treatments. Therefore, the developments of a novel and effective
method to determine the primary site in MCCUP seem rather
necessary and urgent.

The reasons for the failure of primary tumor diagnosis is not
fully elaborated; however, the small size of the primary tumor
may increase the difficulties in identifying the primary site and
the evolutions of the cancer cell itself may be one of the reasons
too (Arosio et al., 2017). The developments of high-throughput
and next-generation sequencing technologies have improved our
understanding of the molecular landscape of cancer, offering the
basis and possibility to discover predictive biomarkers for cancer
diagnosis (Roychowdhury and Chinnaiyan, 2016). Relevant high-
throughput studies indicate that squamous cell carcinoma (SCC)
shares certain common histological characteristics and molecular
signatures (Dotto and Rustgi, 2016; Campbell et al., 2018)
which makes it more difficult to identify the primary site of
MCCUPwhose pathologic type is primarily SCC. In cases of
MCCUP, determining the primary site is challenging.

Research discoveries derived through cancer genome
and transcriptome studies have potential clinical impact as
biomarkers (Roychowdhury and Chinnaiyan, 2016). And
machine learning approaches have been applied to cancer
prognosis and prediction and shown significant advantage
in differential diagnosis (Cruz and Wishart, 2007). Khan
et al. (2001) developed a model of Neural Networks (NN) for
diagnostic classification base on gene-expression signatures of the
small, round blue cell tumors (SRBCTs) of childhood, of which
four subtypes share similar appearance on routine histology.
Yang et al. (2018) used the Random Forest (RF) algorithm to
select biomarker metabolites and establish a diagnostic model in
a metabolomics study of cancer cachexia.

In the present study, a dataset from The Cancer Genome Atlas
(TCGA) RNA-Seq data of squamous cancer and TCGA Pan-
Cancer (PANCAN) data were employed to conduct a series of
bioinformatics analyses, and three machine learning models [RF,
NN, support vector machine (SVM)] were developed to explore
the potantial effective tool to distinguish these squamous cancers.

MATERIALS AND METHODS

Data Source and Data Pre-Processing
The Cancer Genome Atlas RNA-Seq data of four types of
cancer [Genomic Data Commons (GDC) TCGA Cervical Cancer
(CESC), GDC TCGA Esophageal Cancer (ESCA), GDC TCGA
Head and Neck Cancer (HNSC), GDC TCGA Lung Squamous

Cell Carcinoma (LUSC)], and the phenotype data and TCGA
PANCAN data were downloaded from University of California
Santa Cruz (UCSC) Xena database1 . The GDC sample sheet of all
squamous cell carcinomas of TCGA database2 were downloaded
from TCGA database by using the searching strategy (Disease
Type IS squamous cell neoplasms AND Program Name IS TCGA
AND Experimental Strategy IS RNA-Seq).

Based on sample ID in the GDC sample sheet, the samples
of SCC in the data PANCAN were extracted. Using the same
methods we extracted the SCC data of the four types of
cancer data (CESC, ESCA, HNSC, HNSC). Then we renamed
above data as PANCANsqu, CESC, ESCC, HNSC, and LUSC
spectively. Using the function Rtsne provided by R Rtsne to
visualize PANCANsqu based on t-distributed stochastic neighbor
embedding (t-SNE) algorithm (van der Maaten and Hinton,
2008; van der Maaten, 2014).

Differential Expression Analysis
The DESeq2 R package was used to identify differentially
expressed genes (DEGs) of each squamous cancer data (CESC,
ESCC, HNSC, and LUSC) (Love et al., 2014, 2). Padjust < 0.01
and absolute log2 FC > 2 were chosen as the cut-off criteria. The
Venn diagram was generated by VennDiagram R package.

Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis

GO and KEGG pathway enrichment analysis was performed
using clusterProfiler R package (Ashburner et al., 2000; Kanehisa
and Goto, 2000; Yu et al., 2012). The enriched biological processes
(BP), cellular components (CC), and molecular functions (MF)
were obtained to analyze the DEGs of each cancer at the
functional level. P < 0.01 was set as the threshold value.

Protein-protein Interaction Network
Construction
The STRING online database3 was used for analyzing the protein-
protein interaction (PPI) of the DEGs of each cancer, and
Cytoscape software4 was used to visualize the PPI network
of the DEGs (Snel et al., 2000; Shannon et al., 2003;
Szklarczyk et al., 2019).

Predict Model Construction and
Validation
The function nearZeroVar was used to identify and eliminate
zero and near-zero-variance variables, and the function
findCorrelation to remove Correlated variables with absolute
correlations above 0.9, and the function findLinearCombos to
eliminate the linear dependencies (Kuhn, 2008). The above three
functions are provided by the R caret R package (Kuhn, 2008).
Feature selection using recursive feature elimination algorithms
(Guyon et al., 2002).

The function createDataPartition was used to create balanced
splits of the PANCANsqu data, creating a single 70/30% split of

1https://xenabrowser.net/datapages/
2https://portal.gdc.cancer.gov/
3http://string-db.org
4http://www.cytoscape.org/
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the data. Then the 70% split of the data was used as training
set while the remaining 30% data was used as the validation
set. Several machine learning methodologies [RF, NN, and SVM]
were adopted to construct the model with data of the training set
using caret, e1071 and randomForest R package and 10 fold cross
validation is applied in model training (Kuhn, 2008).

Sensitivity, specificity, and area under curve (AUC) values
were determined to evaluate the performance of the established
classifier in the validation set.

The modeling process is briefly described below:
Fristly, the function trainControl was used to define the

parameters of sampling and cross-validation.
method = “repeatedcv”, number = 10, repeats = 3,

returnResamp = “all”, classProbs = T
Secondly, The function train was used to build three

training models.

1. method = “rf”, mtry = 2
2. method = “svmRadial”, sigma = 0.3469467 and C = 1
3. method = “nnet”, size = 5 and decay = 0.1

Lastly, The function predict was used to predict the sample
type base on the training model, function extractPrediction
and extractProb to acquire the model prediction results and
their probabilities.

To evaluate the performance of the model that have
been established, the function confusionMatrix was used to
obtain the confusion matrix and the ROCR R package to
draw the ROC curve.

RESULTS

Expression Profiles of Four Types of
Squamous Cancer
Volcano plots were generated to visualize the distribution of
expressed genes between cancer and normal controls from the
four RNA-Seq data (CESC, ESCC, HNSC, and LUSC). Red
or green dots in the plots represent significantly upregulated
or downregulated genesrespectively (Figures 1A–D). Venn
diagrams show the DEGs information among CESC, ESCC,
HNSC, and LUSC (Figure 1E). In total, 3429, 3749, 3462, and
7035 DEGs were identified from the four RNA-Seq data of
ESCC (CESC, ESCC, HNSC, and LUSC). A total of 236 common
DEGs were significantly changed in all four independent cohorts,
and 1511(CESC), 1324(ESCC), 1016(HNSC), and 3285(LUSC)
specific DEGs were identified in the difference set (just in one
type of cancer). Detailed information of the DEGs is provided by
Supplementary Materials.

GO and KEGG Pathway Enrichment
Analysis
GO and KEGG pathway enrichment analyses of DEGs were
performed using clusterProfiler R package, and the results were
shown in the Figure 2.

For “BP”, CESC and LUSC both showed enrichment in
cornification, epidermis development, skin development,

epidermal cell differentiation, keratinocyte differentiation,
and keratinization. The differential DEGs expressed in ESCC
mainly showed enrichment in digestion, extracellular structure
organization, extracellular matrix organization, regionalization
and hormone transport. The DEGs expressed in HNSCC
mainly showed enrichment in response to muscle contraction,
muscle system process, muscle filament sliding, actin-myosin
filament sliding, myofibril assembly and striated muscle
cell development.

For the “cellular component (CC)” ontology, ESCC
and LUSC both showed enrichment in transmembrane
transporter complex, transporter complex, ion channel complex,
anchored components of membrane. The differential genes
expressed in HNSC mainly showed enrichment in myofibril
contractile fiber part, sarcomere, I band and Z disc. The
differential genes expressed in CESC showed enrichment
in cornified envelope, collagen-containing extracellular
matrix, condensed chromosome, contractile fiber and
cell-cell junction.

Regarding “MF”, the DEGs of ESCC and HNSCC
both showed enrichment in extracellular matrix structural
constituent, receptor ligand activity and passive transmembrane
transporter activity. The differential genes expressed in LUSC
mainly showed enrichment in substrate-specific channel
activity, ion channel activity, ion gated channel activity
and gated channel activity. The differential genes expressed
only in CESC mainly showed enrichment in DNA-binding
transcription activator activity, RNA polymerase II-specific
glycosaminoglycan binding, actin binding and extracellular
matrix structural constituent.

For “KEGG pathway enrichment analysis”, LUSC mainly
showed enrichment in Retinol metabolism, ascorbate and
aldarate metabolism, Metabolism of xenobiotics by cytochrome
P450 and Bile secretion. The differential DEGs expressed
in ESCC mainly showed enrichment in Neuroactive ligand-
receptor interaction, Protein digestion and absorption, Maturity
onset diabetes of the young, Pancreatic secretion, Viral protein
interaction with cytokine and cytokine receptor and Drug
metabolism – cytochrome P450. The DEGs expressed in HNSCC
mainly showed enrichment in Hypertrophic cardiomyopathy
(HCM), ECM-receptor interaction, Salivary secretion, Calcium
signaling pathway, and Dilated cardiomyopathy (DCM).

Identification of Key Candidate Genes
With the PPI Network of DEGs
The PPI network of the four types of squamous cancer was
constructed using the STRING online database and Cytoscape
(Figure 3). Then the central node genes (more than 10
connections/interactions) were identified. In the DEGs of CESC,
the top ten highly connected genes were CDK1, CDC20, CCNA2,
CCNB1, BUB1B, CDC6, BUB1, AURKA, CCNB2, and MAD2L1.
In the DEGs of ESCC, the top ten highly connected genes
were CDK1, CCNB1, CCNA2, CDC20, BUB1, CDC6, CCNB2,
CDC45, MAD2L1, and BUB1B. In the DEGs of HNSC, the
top ten highly connected genes were CREBBP, BRCA1, UBE2I,
GNB1, PPARGC1A, POLR2F, POLR2A, POLR2H, POLR2B, and
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FIGURE 1 | Identification of the differentially expressed genes (DEGs) between tumor tissues and normal controls, (A–D) Volcano plots of genes showing significantly
different expression between tumor tissues and normal controls. The Y-axis indicates the p-values (log10 scaled), whereas the X-axis shows the fold change (log2
scaled). Each symbol represents a different gene, and the red/blue colors of the symbols categorize the upregulated/downregulated genes under different criteria
(p-value and fold change threshold). p-value < 0.01 was considered statistically significant, whereas log2 (fold change) = 2 was set as the threshold. (E) Venn
diagram of the DEGs of the four squamous carcinoma. (F): Visualized PANCANsqu RNA-seq data used by t-SNE algorithm.

POLR2K. In the DEGs of LUSC, the top ten highly connected
genes were CDK1, CCNB1, CCNA2, CDC20, BUB1, PLK1,
CCNB2, BUB1B, MAD2L1, and CDC6.

Model Construction for Discriminating
the Four Types of Squamous Cancer
The t-SNE algorithm was used to visualize PANCANsqu data
prior to model construction, as shown in Figure 1F. After
preprocessing the PANCANsqu data, 1,327 variables were
retained. To improve model predictive accuracy and reduce
model complexity, we used recursive feature elimination as
the methods of feature selection by using the function rfe
in the caret R package. Then the number of the variables
(5, 10, 15, 30, 60, 80, and 1,327) was tested in the feature
selection procedure, and it was found that 80 genes worked
the best with the accuracy of 93.35%. Table 1 showed the

detail information. As the performance of each number of
variable showed in Table 1, considering the model predictive
accuracy and the model complexity, the top 10 gene were selected
for the subsequent researches, which were C11orf85, LA16c-
431H6.6, MYBPH, MAP9, FMO2, SCGB3A1, BPIFA1, TBX1,
SRRM2, and AC016549.1.

Several statistical methodologies (RF, SVM, and NN) were
used to construct the prediction model with data from the
training set, and for each statistical methodology, using subsets
of DEGs (the top 10 genes generated by feature selection) instead
of all DEGs as variables. Receiver operating characteristic curves
were used to evaluate the predictive value (Figure 4). Among
the three statistical methodologies tested, the RF model worked
best both in the training set and in the external validation set
(Table 2), with an overall predictive accuracy of 88.2%, mean
sensitivity of 88.71%, and mean specificity of 95.42%. Mean AUC
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FIGURE 2 | Gene Ontology (GO) analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs of the four types of carcinoma
(LUSC, HNSC, ESCC, and CESC). MF, molecular function; CC, cellular component; BP, biological process. The Y-axis represents the four types of carcinoma.

for the validation sets was 0.9782. Subsequently, for the NN
model, overall predictive accuracy was 0.8202, mean sensitivity
was 0.8123, mean specificity was 0.9304, and the mean AUC
was 0.9563. For the SVM model, overall predictive accuracy was
0.7669, mean sensitivity was 0.7481, mean specificity was 0.9084,
and the mean AUC was 0.9347.

DISCUSSION

In this study, we investigated methods for the accurate diagnosis
of the primary site of MCCUP using microarrays of four
potential primary tissues (CESC, ESCC, HNSC, and LUSC).
We identified significant DEGs from four RNA-Seq data. The
similarities and differences among the four types of squamous
cancer were then analyzed using bioinformatics methods based
on these significant DEG sets. Based on the data of TCGA
PANCAN, a predictive RF model consisting of a ten-gene
signature was established that could effectively discriminate
between the four types of carcinoma.

The four potential primary sites for MCCUP, CESC, ESCC,
HNSC, and LUSC shared some common features. GO and
KEGG pathway enrichment analyses showed clear similarities
and differences among these four types of carcinoma. The
KEGG pathway in which the DEGs of these four cancers are
enriched, respectively, is rarely the same. The PPI network
analysis provided detailed interactions/connections among the

common DEGs. In the PPI network of the four types of squamous
cancer, the top ten highly connected genes were selected. It is clear
that in the top ten genes in PPI network of CESC, ESCC, and
LUSC, nine of them (BUB1, BUB1B, CCNA2, CCNB1, CCNB2,
CDC20, CDC6, CDK1, and MAD2L1) are the same.

BUB1 mitotic checkpoint serine/threonine kinase (BUB1),
BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B),
both of them play a central role in mitosis which are
reported associated with aneuploidy and several forms of cancer
(Siemeister et al., 2019). Cyclin A2(CCNA2), cyclin B1(CCNB1),
and cyclin B2(CCNB2) are essential components of the cell cycle
regulatory machinery. Several researches showed that CCNB2
overexpression was associated with poor prognosis in human
hepatocellular carcinoma, non-small cell lung cancer patients
and invasive breast carcinoma (Shubbar et al., 2013; Qian et al.,
2015; Li et al., 2019). Cell division cycle 20 (CDC20) is a
regulatory molecule that plays critical roles at multiple points of
the cell cycle and may serve an oncogenic role in human cancer
(Chu et al., 2019). A study showed that CDC20 contributed
to the developments of human cutaneous SCC through the
Wnt/β-catenin signaling pathway (Chu et al., 2019). Cell division
cycle 6(CDC6) might be a biomarker of high grade and invasive
lesions of the cervix which was reported previously (Murphy,
2005, 6). Cyclin dependent kinase 1 (CDK1) is essential both for
cell division in the embryo and inhibition of CDK1 induces cell
death in human tumor cells (Goga et al., 2007; Malumbres and
Barbacid, 2009, 1). Mitotic arrest deficient 2 like 1 (MAD2L1) is
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FIGURE 3 | The protein-protein interaction (PPI) network of the differentially expressed genes (DEGs). The color of nodes represents the number of connections, the
darker the color, the more connections.

TABLE 1 | The performance of each different number of variable tested in the
feature selection procedure by using the function rfe in caret R package.

Variables Accuracy Kappa Accuracy SD Kappa SD

5 0.8256 0.7401 0.01802 0.02615

10 0.9034 0.8565 0.02822 0.04214

15 0.9209 0.8823 0.01809 0.02695

30 0.9321 0.8988 0.01848 0.02770

60 0.9279 0.8926 0.02110 0.03159

80 0.9335 0.9009 0.02211 0.03303

1327 0.9125 0.8688 0.02950 0.04434

the gene controlling mitosis whose expression was found to be
involved in carcinogenesis and prognosis of small cell lung cancer
(Wu et al., 2018, 2).

Research discoveries derived from cancer genome and
transcriptome studies have potential clinical impacts on
biomarkers (Roychowdhury and Chinnaiyan, 2016). Machine
learning approaches have been applied to cancer prognosis and
prediction (Cruz and Wishart, 2007). RF is one of machine
learning algorithms used for supervised learning, which can
be used for both classification and regression tasks too. The
pros of Random Forests are that it is a relatively fast and
powerful algorithm which can be parallelized and performs
well on many problems, and even with small datasets, the
output returns satisfying prediction probabilities. Zhou et al.
(2017) used the RF classifier to select feature genes from mRNA
microarray data to diagnose renal fibrosis. Han et al. (2019)
used RF to predict the developments of end-stage renal diseases
in immunoglobulin nephropathy patients. SVM is a novel
machine learning method that simplifies the usual classification
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FIGURE 4 | Predictive performance of three machine learning methodologies [Random Forest (RF), Neural Networks (NN), support vector machine (SVM)]. Receiver
operating characteristic curve analysis of three machine learning model for classifying the four types of carcinoma (LUSC, HNSC, ESCC, and CESC). AUC, area
under curve.

TABLE 2 | Statistical models for discriminating the four types of carcinoma (LUSC,
HNSC, ESCC, and CESC) and their predictive performances.

Method Accuracy Sensitivity Specificity AUC

RF 0.882 0.8871 0.9542 0.9782

NN 0.8202 0.8123 0.9304 0.9563

SVM 0.7669 0.7481 0.9084 0.9347

RF, random forest; NN, neural networks; SVM, support vector machine; AUC,
area under curve.

and regression problems. A small number of support vectors
determine the final results and are not sensitive to outliers. This
helps us eliminate large number of redundant samples and grasp
key samples, which makes us avoid the sense of ”dimensionality
disaster” and enables the algorithm to have good “robustness.”
The SVM classifier is well suitable for signature modeling (Fan
et al., 2004). Guyon et al. (2002) used the SVM classifier to
select feature genes from DNA microarrays and showed great
classification performances. Fan et al. (2004) proved that the
SVM classifier used for feature gene selection could speed up
the classification process and generalization performances. NN
is a parallel computing model to the human neural structures,
which has basic characteristics such as learning, memory, and
inductions of the human brain and can process continuously,
discrete data and predict data. Besides,it has strong robustness,
memory ability, non-linear mapping ability and strong self-
learning ability. Selvaraj et al. (2018) used NN algorithms to
identify candidate drugs in a lung adenocarcinoma research.
Shaabanpour Aghamaleki et al. (2019) applied the NN in order
to identify a molecular biomarker for rapid leukemia diagnosis
from blood samples and evaluate its potential for the detection
of cancer.

However, there are no studies using machine learning
approaches for the diagnosis of MCCUP. In the present
study, three statistical methodologies were used to construct a
prediction model using data from the training set. For each
statistical methodology, the use of subsets of DEGs instead
of all DEGs improved the predictive performance. Among
the three statistical methodologies (RF, NN, and SVM) used

to construct the prediction model, the ten gene RF model
including C11orf85, LA16c-431H6.6, MYBPH, MAP9, FMO2,
SCGB3A1, BPIFA1, TBX1, SRRM2, and AC016549.1 showed the
best performance both in the training set and in the external
validation set.

The ten-gene signature capability of effectively differentiating
the four types of squamous carcinoma has potential diagnostic
value in MCCUP. The training set and validation cohorts
were retrospective, therefore these findings must be validated
prospectively in future studies. In addition, we just analyzed four
potential primary sites of MCCUP, future studies should include
additional potential primary sites of MCCUP and more extensive
data, as well as more complex machine learning methods.

In conclusion, the present study analyzed the similarities and
differences among CESC, ESCC, HNSC, and LUSC, which are
four potential primary sites of MCCUP. A ten-gene predictive
RF model was established based on the RNA-Seq data of the
four types of carcinoma, which might have clinical utility for the
accurate diagnosis of MCCUP and provide useful guidance for
personalized and precision therapy.
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