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Abstract
Purpose: This study aimed to investigate the performance of multiparametric magnetic resonance 
imaging (mpMRI) radiomic feature-based machine learning (ML) models in classifying the 
Gleason grade group (GG) of prostate cancer. Methods: In this retrospective study, a total of 
203 patients with histopathologically confirmed prostate cancer who underwent mpMRI before 
prostate biopsy were included. After manual segmentation, radiomic features (RFs) were extracted 
from T2-weighted, apparent diffusion coefficient, and high b-value diffusion-weighted magnetic 
resonance imaging (DWMRI). Patients were split into training sets and testing sets according to 
a ratio of 8:2. A pipeline considering combinations of two feature selection (FS) methods and six 
ML classifiers was developed and evaluated. The performance of models was assessed using the 
accuracy, sensitivity, precision, F1-measure, and the area under curve (AUC). Results: On high 
b-value DWMRI-derived  features, a combination of FS method recursive feature elimination (RFE) 
and classifier random forest achieved the highest performance for classification of prostate cancer 
into five GGs, with 97.0% accuracy, 98.0% sensitivity, 98.0% precision, and 97.0% F1-measure. The 
method also achieved an average AUC for GG of 98%. Conclusion: Preoperative mpMRI radiomic 
analysis based on ML, as a noninvasive approach, showed good performance for classification 
of prostate cancer into five GGs. Advances in Knowledge: Herein, radiomic models based on 
preoperative mpMRI and ML were developed to classify prostate cancer into 5 GGs. Our study 
provides evidence that analysis of quantitative RFs extracted from high b-value DWMRI images 
based on a combination of FS method RFE and classifier random forest can be applied for multiclass 
grading of prostate cancer with an accuracy of 97.0%.
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Introduction
Prostate cancer is the second most 
prevalent malignancy in the male 
population worldwide.[1] According to the 
statistics of the American Cancer Society, 
268,490 new prostate cancer cases and 
34,500 prostate cancer-related deaths 
would have been estimated in the United 
States in 2022.[2] The ability to accurately 
and timely identify the aggressiveness 
risk of prostate cancer can improve the 
selection of the most suitable treatment 
for these patients; therefore, it can be 
resulted in decreasing prostate cancer 
morbidity and mortality.[3] Therefore, it 
is crucial to preoperatively predict the 
grade of prostate cancer for treatment 
decision-making.

Currently, the standard approach for 
grading of prostate cancer is transrectal 
ultrasound (TRUS)-guided prostate 
biopsy.[4] The Gleason score (GS) – 
identified through the histopathologic 
analysis of biopsy samples – is the best 
predictor of the aggressiveness of prostate 
cancer.[4] In 2014, a new grading system 
approach was proposed by the International 
Society of Urological Pathology Consensus 
Conference on Gleason Grading of 
Prostatic Carcinoma.[5] A five-grade group 
(GG) system was adopted based on the 
GS: GG 1 (GS ≤ 6), GG 2 (GS 3 + 4 = 7), 
GG 3 (GS 4 + 3 = 7), GG 4 (GS 8), and 
GG 5 (GS 9–10).[5] However, it has been 
reported that the standard TRUS biopsy 
for identifying prostate cancer has a poor 
sensitivity.[6] Moreover, the Gleason grading 
of histopathology images is an expensive 
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and time-intensive task and suffers from high inter- and 
intra-observer variability.[7] Besides, TRUS prostate 
biopsy is associated with possible side effects including, 
prostatitis, urinary tract infections, bleeding, pain, and 
sepsis.[8] Therefore, it is desirable to develop a noninvasive 
and accurate approach for the preoperative prediction of 
grade of prostate cancer.

Over the past decade, multiparametric magnetic resonance 
imaging (mpMRI) has been increasingly utilized in the 
evaluation, localization, and staging of prostate cancer.[9,10] 
Nowadays, mpMRI has been established as the imaging 
gold standard for prostate cancer.[11] Additionally, the 
Prostate Imaging Reporting and Data System (PI-RADS) 
is integrated into the clinical evaluation of prostate cancer 
to standardize the examination process and unify the 
interpretation of prostate MRI results.[12,13] Interpretation of 
mpMRI according to the PI-RADS has shown encouraging 
results in predicting the grade of prostate cancer, with 
high sensitivity.[14,15] Nevertheless, mpMRI interpretation 
is a challenging task and prone to inter- and intra-rater 
variability and is therefore subjective.[16]

To tackle the aforementioned challenges regarding mpMRI 
interpretation, quantitative imaging parameters extracted 
from T2-weighted (T2W) and diffusion-weighted images 
(DWIs) were identified. Researchers have shown that T2W 
and DW signal intensities can be associated with prostate 
cancer aggressiveness.[17,18] Furthermore, a correlation 
between T2W and DWI (including apparent diffusion 
coefficient [ADC] map) signal intensities with GSs has been 
found.[19] However, there is considerable overlap in the ranges 
of ADC values for various GSs, and therefore, such an issue 
limits their use in distinguishing between these GSs.[18]

In the last decade, radiomics has emerged as a novel 
tool that can extract a huge number of quantitative 
features (e.g., texture, size, and shape) from clinical 
images.[20] In other words, radiomics applies the advanced 
mathematical algorithms to extract quantitative and 
mineable imaging features from radiological images in 
a cost-effective and high-throughput approach, resulting 
in accurate tumor detection and personalized medical 
decision-making.[20] Recently, studies applied MRI-based 
radiomics features (RFs) to differentiate prostate cancer 
from benign prostate tissue and to evaluate prostate 
cancer aggressiveness.[21,22] Machine learning (ML), a 
subset of artificial intelligence, is capable of extracting 
meaningful patterns from data without being explicitly 
programmed.[23-26] In recent years, there has been increasing 
interest in applying ML methods to radiomic studies to 
improve the assessment of prostate cancer.[27] ML-based 
mpMRI radiomics as an objective tool has been shown to 
be helpful in evaluating the grade of prostate cancer.[28,29]

To the best of our knowledge, a limited number of studies 
have attempted to perform binary classification of prostate 
cancer aggressiveness using mpMRI-based radiomics 

using a small number of classification methods, mostly 
support vector machine (SVM).[27,30] Moreover, ML model 
performance evaluation was performed using the area under 
the receiver operating characteristic (ROC) area under 
curve (AUC) score only. Therefore, the purpose of the current 
study was to develop an ML-based framework to identify 
the best-performing classifier for preoperatively identifying 
the grade of prostate cancer based on mpMRI-derived RFs. 
Herein, six supervised ML models were used for the grading 
of prostate cancer into 5 GGs by mpMRI RFs. Furthermore, 
we comprehensively assessed the performance of candidate 
classifiers using accuracy, sensitivity, precision, and F1-score 
in addition to the AUC score.

Materials and Methods
Patient cohorts

Between June 2017 and January 2020, a total of 
203 prostate cancer patients were enrolled in this 
single-institution, retrospective study. We included patients 
with histopathologic confirmed prostate cancer, mpMRI of 
the prostate, and TRUS-MRI fusion-guided prostate biopsy 
within 6 weeks of mpMRI. Patients with a previous history 
of prostatic surgery or hormonal therapy before the MRI 
scans, poor quality of the MR images (e.g., owing to severe 
artifacts from hip prostheses), confirmed diagnosis of a 
tumor other than prostate cancer, and incomplete clinical 
data were excluded from this study. For patients with 
multiple tumor sites identified on mpMRI, the site with 
the dominant lesion was used for analysis. The included 
patients were randomly split into training sets (n = 162) and 
test sets (n = 41) using a ratio of 8:2. Figure 1 illustrates 
the flowchart of the present study.

Image acquisition

All MRI examinations were acquired using two different 
models of Siemens 3T MRI scanner, MAGNETOM Trio 
and MAGNETOM Skyra (Siemens Healthineers, Erlangen, 
Germany), using a body transmit coil. Herein, mpMRI 
sequences, including axial T2W, ADC, and high b-value 
diffusion-weighted MRI (DWMRI), were chosen to extract 
RFs. ADC maps were automatically reconstructed on a 
designated workstation.

Segmentation

Segmentation is the crucial first step in the radiomic 
pipeline.[31] Highly distinctive RFs were obtained from 
the delineated region of interest in two-dimensional or of 
the volume of interest (VOI) in three-dimensional (3D) 
approaches. Herein, the mpMRI examinations were 
retrieved from the Picture Archiving and Communication 
System. Then, all images were imported into 3D slicer, 
a free open-source software platform for biomedical 
imaging research (https://slicer.org). A 3D VOI of clinical 
lesions was manually delineated by a board-certified 
radiologist (with 15 years of experience in prostate imaging) 

https://slicer.org
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on the axial T2W, ADC, and high b-value DWMRI images 
on each slice, as depicted in Figure 2.

Feature extraction and selection

All RFs were extracted from the VOIs on both the T2W 
and ADC images of each patient using Pyradiomics v. 3.0., 
an open-source Python package.[32] The extracted RFs were 
divided into three classes:[32] (1) 8 shape-based features; (2) 
12 first-order features; and (3) 28 texture features, 
including the gray-level co-occurrence matrix (GLCM), 
gray-level dependence matrix, neighboring gray-tone 
difference matrix, gray-level run-length matrix, and 
gray-level size-zone matrix, as shown in Table 1. In total, 
113 RFs were calculated for every patient on both the 
T2W and ADC images. In this study, two different feature 
selection (FS) methods were applied to decrease the number 
of features used for training. The minimum redundancy 
maximum relevance (mRMR) was conducted to select the 
top-ranked RFs and eliminate the redundant and irrelevant 
RFs.[33] Furthermore, recursive feature elimination (RFE) 
was used to eliminate RFs that are redundant.[34] The RF 
dimension after utilizing both the methods was decreased 
to ten features per each MR sequence (i.e. T2, ADC, and 
high b-value DWMRI ).

To tackle the class imbalance of the training samples, 
we applied the Synthetic Minority Over-Sampling 
Technique (SMOTE) algorithm, an oversampling method 
that artificially adds the minor class instances to match 
the number of training samples of the major class 
instances.[35]

Classification prediction

After FS, ML classifiers were applied to construct a predictive 
model that most accurately classifies different grades of 
prostate cancer (grade 1/2/3/4/5) based on mpMRI-derived 

Table 1: Features extracted
Class Feature
3D shape-based 
features

Mesh volume, major axis length, minor axis 
length, flatness, maximum 2D diameter, voxel 
volume, maximum 3D diameter, surface ratio 
volume

First-order 
features

Energy, total energy, minimum, maximum, mean, 
median, IQR, root mean squared, skewness, 
kurtosis, entropy, robust mean absolute deviation

GLCM Difference entropy, difference variance, sum 
entropy, cluster tendency, correlation, maximum 
probability

GLSZM LALGLE, SAHGLE, zone variance, SZN, 
LAHGLE

GLRLM RLN, SRHGLE, LRHGLE, RLNN, LAHGLE, 
run entropy, LRLGLE

NGTDM Busyness, contrast, complexity, DNN, HGLE
GLDM GLN, GLNN, dependence entropy, LDE, LGLE
GLCM – Gray-level co-occurrence matrix; 2D – Two-dimensional; 
3D – Three-dimensional; IQR – interquartile range; GLSZM – 
Gray-level size-zone matrix; LALGLE – Large area low gray 
level emphasis; SAHGLE – Small area high gray level emphasis; 
SZN – Size-zone nonuniformity; LAHGLE – Large area high 
gray level emphasis; GLRLM – Gray-level run-length matrix; 
RLN – Run-length nonuniformity; SRHGLE – Short run high gray 
level emphasis; LRHGLE – Long run high gray level emphasis; 
RLNN – RLN normalized; LRLGLE – Long run low gray level 
emphasis; NGTDM – Neighboring gray-tone difference matrix; 
DNN – Dependence nonuniformity normalized; HGLE – High gray 
level emphasis; GLDM – Gray-level dependence matrix; GLN – Gray 
level nonuniformity; GLNN – GLN normalized; LDE – Large 
dependence emphasis; LGLE – Low gray level emphasis

Figure 1: Flow diagram of our radiomics‑based machine learning framework. T2W1 – T2‑weighted; ADC – Apparent diffusion coefficient; AUC – Area 
under  curve; GLCM – Gray‑level  co‑occurrence matrix; GLDM – Gray‑level dependence matrix; NGTDM – Neighboring gray‑tone difference matrix; 
GLRLM – Gray‑level run‑length matrix; GLSZM – Gray‑level size‑zone matrix; SMOTE – Synthetic Minority Over‑Sampling Technique; mRMR – Minimum 
redundancy maximum relevance; RFE – Recursive feature elimination
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cancer disease, including 59 Grade 1, 71 Grade 2, 43 
Grade 3, 16 Grade 4, and 14 Grade 5, were included 
according to the inclusion criteria. The mean ± standard 
deviation (range) age of patients in the study cohort was 
65.6 ± 5.6 (52–80) years. As shown in Table 3, 41.87%, 
38.43%, and 40.70% of lesions were localized in the 
peripheral zone, transitional zone, and anterior stroma, 
respectively.

We further used six ML classification methods to each 
of the two FS methods to classify prostate cancer 
to different GGs. Therefore, for each group of MRI 
images, 12 combinations of 2 FS methods and 6 ML 
classifiers were systematically assessed. Hence, the 
performance of 36 proposed ML models was assessed on 
the test set.

Table 4 outlines the performance of the different 
FS methods and ML classifiers for classification of 
prostate cancer GGs from each group of MRI images on 
the test set using the accuracy, sensitivity, specificity, 
and F1-score. As observable in Table 4, among all of the 
selected groups, the group with high b-value DWMRI 
features achieved the highest performance with a 
combination of FS method RFE and classifier RFC with an 
accuracy of 97.0%, a sensitivity of 98.0%, a precision of 
98.0%, and a F1-score of 97.0%. Figure 3 shows the 
performance of best-performing pipeline for five-class 
classification in the form of confusion matrix. ROC 
curve for best-performing model on test set is depicted 
in Figure 4. On the T2W features, the combination of 

Table 2: Machine learning classification algorithms
Algorithm Abbreviation
K-nearest neighborhood classifier KNNC
Decision tree classifier DTC
Random forest classifier RFC
Support vector machine classifier SVMC
Gradient boosting classifier GBC
Stochastic gradient descent classifier SGDC

RFs. Initially, we normalized the input data before building 
ML models.[36] Herein, 6 well-supervised classification models 
were used as classifiers, as outlined in Table 2. Our ML 
classifiers combined with two FS methods (i.e., mRMR and 
RFE) were trained and validated on training dataset and tested 
on the test dataset. Our ML classifiers were implemented in 
the Python Scikit-learn ML package (version 0.20.4).

Performance evaluation

The performance of our RF-based ML classifiers was 
assessed using the test cohort. A variety of metrics, 
including accuracy, weighted average-based sensitivity, 
precision, and F1-measure, were calculated to evaluate the 
performance of our ML models for multiclass grading of 
prostate cancer. Furthermore, we outlined confusion matrix 
and ROC curve for our best-performing model.

Results
Table 3 summarizes the detailed clinical characteristics of 
study participants. A total of 203 patients with prostate 

Figure 2: An example segmentation of prostate lesion in a representative patient. T2W – T2‑weighted; ADC – Apparent diffusion coefficient
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FS method RFE and classifier RFC achieved the best 
performance with accuracy = 87.0%, sensitivity = 88.0%, 
precision = 88.0%, and F1-score = 87.0%. On the ADC 
features, the best performance was achieved when the 
RFE as FS method combined with GBC as ML classifier, 
showing an accuracy of 87.0%, a sensitivity of 90.0%, a 
precision of 90.0%, and an F1-score of 90.0%, as shown 
in Table 4.

Discussion
A preoperatively accurate identifying the grade of prostate 
cancer is very important for clinical decision-making and 
selection of treatment modalities. Although TRUS-guided 
prostate biopsy is a popular tool in predicting prostate 
cancer grade invasiveness, it suffers from different side 
effects that restrict its clinical use.[8] Hence, mpMRI has 
been introduced as a noninvasive, useful tool for identifying 
prostate cancer grade; however, there are variations in 
inter-observer interpretation of mpMRI images, depending 
on personal knowledge and reader experience.[14,37] ML 
based on the radiomic approach is capable of extracting a 
huge number of quantitative imaging features beyond those 
attained through visual analysis by clinicians, providing an 
objective prediction model.[10]

The main purpose of the current study was to develop 
an ML-based framework for multiclass classification 

of prostate cancer into 5 GGs based on preoperative 
mpMRI RFs. Our findings showed that radiomic model 
incorporating high b-value DWMRI images had the 
highest performance in classification of prostate cancer 
GGs, suggesting that the clinical application of radiomics 
is a promising noninvasive approach in terms of the 
preoperative prediction of the grade of prostate cancer. 
Moreover, we applied various combinations of two FS 
methods and six ML classifiers on T2W, ADC, and B-Value 
(BVAL) images separately to build radiomic signatures for 
multiclass grading of prostate cancer. From our data, it can 
be seen that the algorithm combination of FS method RFE 
and ML classifier RFC achieved the highest performance 
for multiclass classification of prostate cancer between 5 
GGs with satisfying accuracy, sensitivity, precision, and 
F1-score of 97.0%, 98.0%, 98.0%, and 97.0%, respectively, 
based on high b-value DWMRI features. As a consequence, 
BVAL images can reflect the heterogeneity of tumors better 
and that RFs can be applied to discriminate small signal 
discrepancies in prostate tumors.

Our study demonstrated the efficacy of using mpMRI 
radiomic feature-based ML models to classify Gleason 
GGs of prostate cancer, achieving an impressive accuracy 
of 97.0%, sensitivity of 98.0%, precision of 98.0%, 
F1-measure of 97.0%, and an AUC of 98%. These results 
underscore the robustness of our approach in providing a 

Table 3: The clinical characteristics of study participants
n=203 patients

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5
Number of patients 59 71 43 16 14
Age (years), mean±SD 65.9±6.0 66.9±5.9 65.1±4.6 61.3±4.2 64.35±3.5
PSA (ng/mL), median (range) 7.0 (2.8–17.5) 8.6 (2–26) 10.9 (2.3–26) 20 (2.5–35) 30.5 (15–50.6)
Location

PZ 23 32 16 9 5
AS 31 21 12 6 8
TZ 5 18 15 1 1

PZ – Peripheral zone; AS – Anterior stroma; TZ – Transitional zone; PSA – Prostate specific antigen; SD – Standard deviation

Figure 3: Confusion matrix for best‑performing model
Figure 4: Receiver operating characteristic curve for best-performing 
model. ROC – Receiver operating characteristic; AUC – Area under curve
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noninvasive and detailed assessment of prostate cancer 
aggressiveness. In contrast, the study employing a deep 
learning-based AI workflow for automated EPE grading 

from MRI reported moderate performance metrics, with 
a balanced accuracy of 0.39, ROC AUCs ranging from 
0.55 to 0.70 for different EPE grades, and an overall 
accuracy of 0.72.[38] The AI model’s sensitivity (0.67) 
and specificity (0.73) also indicated potential utility but 
highlighted the need for further refinement. The superior 
performance of our radiomics-based model in classifying 
Gleason GGs can significantly aid in personalized treatment 
planning by providing critical insights into the cancer’s 
aggressiveness. In comparison, accurate preoperative 
assessment of EPE, as targeted by the deep learning model, 
is crucial for informing surgical strategies and improving 
postoperative outcomes, though the current performance 
metrics suggest room for improvement to achieve clinical 
utility comparable to our model. Methodologically, our 
study emphasized the importance of manual segmentation 
and FS, utilizing RFE and random forest classifiers to 
achieve high accuracy. Conversely, the deep learning 
study leveraged automated segmentation to extract 
relevant features for EPE grading, reflecting a different yet 
complementary approach to prostate cancer assessment.

Integrating our detailed radiomic feature analysis with the 
deep learning capabilities from the EPE grading study 
could potentially enhance both Gleason grading and EPE 
assessment, leading to more accurate and clinically useful 
diagnostic tools. This integrative approach could harness 
the strengths of both methodologies, paving the way for 
advancements in prostate cancer diagnosis and treatment 
planning.

Most existing literature on methods of prostate 
cancer grading focus on binary classification of 
low-grade (GG = 1) and high-grade (GG ≥ 2) prostate 
cancer.[22,39-44] Furthermore, few studies applied ML 
classifiers in predicting the grade of prostate cancer from 
MRI,[39,40] whereas most of the studies used statistical 
analysis to show the correlation between features and 
prostate cancer aggressiveness.[22,41,42] In a study, Nezzo 
et al. applied statistical analysis using ANOVA test to 
compare mean diffusivity (MD) values obtained from 
diffusion tensor imaging (DTI) between different prostate 
cancer GGs.[41] The results showed that MD values derived 
from DTI acquired at high B values could be applied for 
discriminating between prostate cancer of GG 1 and 2 and 
GG ≥ 3.[41] Citak-Er et al. investigated linear discriminant 
analysis (LDA) and SVM classifiers to predict final GS 
preoperatively using mpMRI and clinical factors.[39] They 
observed that SVM classifier achieved a slightly higher 
sensitivity but a lower specificity in comparison with LDA 
method on their private dataset.[39] Using a pioneering 
method Fehr et al. classified low-grade and high-grade 
prostate cancer.[40] Their method applied GLCM texture 
features and RFE-SVM classifier and SMOTE-based 
oversampling of instances in minority classes and achieved 
an accuracy of 93.0% for binary classification (GG1 vs. 
GG ≥ 2).[40] Jensen et al. utilized image histogram 

Table 4: The performance of the different feature 
selection methods and machine learning classifiers on the 

test dataset for multiclass grading of prostate cancer
Image Algorithm Precision Sensitivity F1‑score Accuracy
T2W mRMR

KNNC 0.81 0.76 0.77 0.75
DTC 0.81 0.73 0.74 0.73
RFC 0.83 0.76 0.77 0.74
SVMC 0.60 0.56 0.55 0.56
GBC 0.75 0.71 0.70 0.70
SGDC 0.31 0.29 0.29 0.30

RFE
KNNC 0.77 0.76 0.76 0.75
DTC 0.74 0.71 0.66 0.70
RFC 0.88 0.88 0.87 0.87
SVMC 0.87 0.85 0.85 0.85
GBC 0.86 0.83 0.82 0.83
SGDC 0.65 0.61 0.60 0.61

ADC mRMR
KNNC 0.58 0.51 0.54 0.51
DTC 0.72 0.63 0.65 0.63
RFC 0.68 0.59 0.61 0.58
SVMC 0.52 0.27 0.33 0.27
GBC 0.79 0.68 0.73 0.68
SGDC 0.42 0.17 0.23 0.17

RFE
KNNC 0.48 0.47 0.44 0.46
DTC 0.86 0.86 0.86 0.85
RFC 0.87 0.87 0.87 0.86
SVMC 0.47 0.46 0.44 0.46
GBC 0.90 0.90 0.90 0.87
SGDC 0.31 0.38 0.34 0.38

BVAL mRMR
KNNC 0.72 0.71 0.70 0.70
DTC 0.92 0.91 0.91 0.91
RFC 0.96 0.95 0.95 0.95
SVMC 0.91 0.90 0.90 0.90
GBC 0.96 0.95 0.95 0.95
SGDC 0.63 0.54 0.57 0.53

RFE
KNNC 0.82 0.80 0.81 0.80
DTC 0.75 0.59 0.51 0.58
RFC 0.98 0.98 0.97 0.97
SVMC 0.80 0.80 0.80 0.80
GBC 0.95 0.93 0.94 0.92
SGDC 0.83 0.73 0.76 0.73

mRMR – Minimum redundancy maximum relevance; 
T2W – T2-weighted; KNNC – K-nearest neighborhood classifier; 
DTC – Decision tree classifier; RFC – Random forest classifier; 
SVMC – Support vector machine classifier; GBC – Gradient 
boosting classifier; SGDC – Stochastic gradient descent classifier; 
RPE – Recursive feature elimination; ADC – Apparent diffusion 
coefficient; RFE – Recursive feature elimination, BVAL – B-Value
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and textural features in combination with K-nearest 
neighborhood classifier to perform a binary classification 
of GG1, GG2, GG (1 + 2), GG 3, and GG (4 + 5) and 
achieved AUC of 0.85, 0.89, 0.83, 0.94, and 0.86, 
respectively.[43] In a study, Abraham and Nair applied 
high-level features extracted using sparse auto-encoders 
and the random forest (RF) classifier for discriminating 
clinically significant from clinically insignificant prostate 
cancer, achieving an accuracy of 93.65%.[44] They also used 
the SMOTE and Weka resample algorithm and adaptive 
synthetic sampling approach to address the class-imbalance 
problem.[44] In another study by the same investigators, a 
stacked sparse auto-encoder (SSAE) framework was used 
to classify prostate cancer into 5 GGs.[45] Using a SSAE, 
as a deep learning architecture, high-level features were 
extracted and classified using a Softmax classifier. Their 
framework achieved a positive predictive value of 80.26% 
and an accuracy of 47.3% in predicting prostate cancer with 
GG >1.[45] Herein, we applied radiomics-based ML models 
to perform multiclass classification of prostate cancer GGs, 
which achieved good accuracy on test cohort. Of note, 
multiclass classification is more difficult and challenging 
than a simple binary classification. It is worthwhile to 
mention that there was an unequal distribution of classes 
in our dataset. Therefore, we applied SMOTE algorithms, 
an oversampling technique, to address class imbalance 
problem. In a previous study, it has also been shown that the 
SMOTE algorithm was useful to solve the class imbalance 
problem for discriminating GS = 6 from GS ≥ 7.[40]

Our study has some limitations. In this study, our 
dataset had a small number of subjects. Herein, any 
data augmentation method was used. A relatively small 
patient data size may trigger overfitting of the classifiers. 
We will apply oversampling techniques along with data 
augmentation techniques to solve the issue of limited data 
and class imbalance, as well as overfitting for future studies. 
Our data were collected from two kinds of scanner from 
a single MRI vendor, achieved using a similar imaging 
protocol. It is worthwhile to mention that RFs need to be 
reliable across various scanners and imaging parameters. 
Therefore, further multicenter, multi-MRI vendor studies 
are warranted on the purposes of our study.

Conclusion
Our data suggested that mpMRI radiomic models based on 
optimal combinations of FS methods and ML classifiers 
have great potentials in predicting the grade of prostate 
cancer. Our results showed that the combination of FS 
method RFE and classifier RFC is particularly promising 
for multiclass classification of prostate cancer into 5 GGs 
on the high b-value DWMRI-extracted RFs. The proposed 
ML-based radiomic model, as a noninvasive approach, 
can assist clinicians in reporting prostate cancer grade and 
facilitate clinical decision-making. Our framework may 
be of fundamental importance to decrease the number 

of biopsies. This study demonstrates the potential of 
multiparametric MRI radiomics and ML for accurately 
classifying prostate cancer Gleason GGs. Our model 
achieved a high classification accuracy of 97% using high 
b-value DWMRI features. By leveraging preoperative 
mpMRI, we offer a noninvasive approach to prostate 
cancer grading, potentially improving patient care. While 
the study shows promise, limitations include retrospective 
design, moderate sample size, and the complexity of the 
methodology. Future research should address these to 
enhance generalizability and clinical impact.
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