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Abstract: In this paper, the SQDs@MnO2 NS as the probe was applied to construct a novel “turn-on”
fluorescent sensor for sensitive and selective detection of hydrazine (N2H4). Sulfur quantum dots
(SQDs) and MnO2 nanosheets (MnO2 NS) were simply mixed, through the process of adsorption to
prepare the architectures of SQDs@MnO2 NS. The fluorescent emissions of SQDs@MnO2 NS play
a key role to indicate the state of the sensor. According to the inner filter effect (IFE) mechanism,
the state of the sensor at the “off” position, or low emission, under the presence of MnO2 NS, is
which the ultraviolet and visible spectrum overlaps with the fluorescence emission spectrum of SQDs.
Under the optimal conditions, the emission was gradually recovered with the addition of the N2H4,
since the N2H4 as a strong reductant could make the MnO2 NS converted into Mn2+, the state of the
sensor at the “on”. Meanwhile, the fluorescent sensor possesses good selectivity and high sensitivity,
and the detection concentration of N2H4 with a wide range from 0.1 µM to 10 mM with a detection
limit of 0.072 µM. Furthermore, actual samples were successful in detecting certain implications,
indicating that the fluorescent sensor possesses the potential application ability to monitor the N2H4

in the water.

Keywords: sulfur quantum dots; MnO2 nanosheet; hydrazine; fluorescence probe

1. Introduction

Hydrazine (N2H4) has attracted particular attention due to its strong reducibility and
weak alkalinity in applications such as pesticides, pharmaceuticals, fuels, organic dyes,
and so on [1,2]. Meanwhile, the toxicity and harm of N2H4 could not be neglected due
to its water-solubility. It could damage the lungs, eyes, skin, and some system diseases
when exposed to the N2H4 surroundings for an extended period of time [3,4]. Hence, the
development of a facile and sensitive measure for N2H4 is considerable. In the past decades,
many analytical methods have been reported, including chromatography, electrochemical,
fluorescent, titrimetric, colorimetry, and mass spectrometry [5–7]. The fluorescent method
is a powerful technique to detect N2H4, due to a comprehensive consideration of the factors
including the low cost, simple operation, and rapid analysis.

The fluorescent method consists of constructing a fluorescent probe to observe the
fluorescence intensity enhancement, or quenching, for the qualitative and quantitative
analysis present of the targets. The fluorescent probe materials are commonly applied in
the fluorescent sensor field similar to quantum dots (QDs) [8–10], organics [11,12], metal-
organic framework [13–15], and metal nanoclusters [16,17]. Therein, the sulfur quantum
dots (SQDs) is a novel and attention the QDs, which retain the advantage of the traditional
optical performance of QDs while overcoming potential issues of the toxicity of the heavy
metal QDs. Thus, it is widely applied in the fluorescent probes, biological sensors, and cell
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imaging fields [18–20]. Lei et al., take the one-pot to prepare the polyvinyl alcohol-capped
SQDs as the fluorescent probe for detection of Fe3+ and temperature in cells [21].

Nowadays, the various probes of fluorescent are being investigated and developed
to detect N2H4. Based on the aggregation caused quenching effect [22–24], aggregation-
induced emission effect [25–27], the excited-state intramolecular proton-transfer effect [28–30],
and photo-induced electron transfer [31,32], probes such as 5-(9-phenyl-9H-carbazol-3-
yl)thiophene-2-carbaldehyde [22], salicylaldehyde Schiff’s base [25], p-TNS [28], and 5-
chlorothiophene-2-carbonyl chloride [31]. Using these mechanisms to detect N2H4 method
is relatively mature, with little room for growth. Therefore, we introduced the inner filter
effect (IFE) mechanism to rapidly detect N2H4, which is the absorption of the excitation
and/or emission light by the quencher (MnO2) leading to the intensity decrease [33].

Herein, we first introduced the IFE mechanism to establish a “turn-on” fluorescent
sensor for the detection of N2H4. The sensing strategy is illustrated in Figure 1; SQDs
combined with MnO2 nanosheet (MnO2 NS) to prepare SQDs@MnO2 NS architectures.
The SQDs alone have a strong fluorescence intensity and the MnO2 NS has nearly no
fluorescence under the same experimental conditions. The SQDs@MnO2 NS possesses
a lower intensity compared to the SQDs, due to the MnO2 NS as a full-of-all adsorbed
material in the ultraviolet and visible (UV-Vis) spectrum, which could overlap with the
fluorescence emission spectrum of SQDs, led to the fluorescence intensity quenching.
Meanwhile, at this stage, the state of the fluorescent sensor is off. However, the emission of
fluorescent is recovered under the N2H4 present condition, with the addition concentrations
the state is gradually turned on. Benefits of the sensor for quantitatively detecting N2H4
was successfully constructed by monitoring the fluorescent intensity of SQDs@MnO2 NS.
Furthermore, this approach possesses the potential for a practical application, due to its
ability to effectively identify the N2H4 in the real samples of water.
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Figure 1. Mechanism of “turn-on” fluorescence sensor based on SQDs@MnO2 NS for detecting N2H4.

2. Materials and Methods
2.1. Materials

Sublimed sulfur, polyethylene glycol (PEG-400), Tetramethylammonium hydroxide
(TMA·OH), and NaOH were provided by Shanghai Aladdin Biochemical Technology
Co. (Shanghai, China). MnCl2·4H2O, K2S2O8 were acquired from Sinopharm Chemical
Reagent Co., Ltd. (Tianjin, China). N2H4 (v/v 80%) was purchased from Sigma Chemical
Co., Ltd. (Shanghai, China). The prepared solutions of all experiments used ultrapure
water (18.2 MΩ cm) from a water purification system.
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2.2. Apparatus

Transmission electron microscopy (TEM) and high-resolution transmission electron
microscopy (HR-TEM) measurements was carried out using a JEOL-2010F (200 kV) (JEOL,
Tokyo, Japan). The ultraviolet and visible (UV-Vis) absorption spectra were examined with
a UV-Vis spectrophotometer (TU-1901, Beijing, China). Fourier-transform infrared (FT-IR)
spectroscopy was performed using a Nicolet 5700 Fourier transform infrared spectrometer
(Shimadzu, Tokyo, Japan). The prepared nanomaterials were characterized by X-ray
diffraction (XRD, LabX XRD-6000 (Shimadzu, Tokyo, Japan)). Elemental analysis was
recorded by X-ray photoelectron spectroscopy (XPS, Thermo Scientific Escalab 250Xi,
USA). Fluorescence spectra were collected using an F-4700 fluorescence spectrophotometer
(HITACHI, Tokyo, Japan).

2.3. Synthesis of SQDs and MnO2 NS

SQDs were synthesized according to a literature method [34]. Briefly, the sublimed
sulfur powder (1.4 g) was added to a mixed solution of PEG-400 (3 mL) and NaOH (50 mL,
0.08 g mL−1) stirring at 70 ◦C for 24 h. During the period, the color of the solution changed
gradually from dark-yellow to light-yellow, and then added H2O2 (3 mL) to each, the
obtained solution was termed as SQDs. The prepared SQDs were introduced in the dialysis
membrane with the molecular weight of 1000 Da to remove unreacted molecular dialysis
for 72 h each 12 h to change the water. Then, the light-yellow solid was acquired by
freeze-drying at −20 ◦C for 24 h, and the SQDs were stored at 4 ◦C for further use.

MnO2 NS were prepared with reference to previous literature [35]. Firstly, TMA·OH
(12 mL, 1.0 M) solution was introduced in MnCl2·4H2O (10 mL, 0.3 M) at the 50 mL
round-bottomed flask. Afterward, the H2O2 (2 mL, 30%) solution was slowly added to the
mixed solution vigorously stirring at room temperature for 24 h. The acquired dark brown
solution was centrifuged and rinsed with ultra-water and CH3OH several times. Last, the
obtained product of MnO2 NS was dried at room temperature.

2.4. The SQDs@MnO2 NS Fluorescent Probe Detection N2H4

The mixture solution of SQDs@MnO2 was obtained by SQDs and MnO2 NS mixed
to stand for 1 h at room temperature. Next, the different concentrations of N2H4 solution
(0.1 µM–10 mM) were added to the SQDs@MnO2 (1 mL) to react for 10 min at room
temperature and perform fluorescence spectroscopy tests. Finally, a standard curve line was
constructed between various concentrations of N2H4 and the recovery value of fluorescence
intensity. In addition, the fluorescence probe selectivity, stability, and repeatability were
studied under the optimal conditions.

2.5. Detection of Actual Samples

The fluorescence probe of SQDs@MnO2 NS was selected specifically for N2H4. To
verify the performance in the actual sample of the probe, this was applied to detect the
environmental water samples. Actual samples were acquired from the lake and river
in Yantai. Briefly, the water samples were filtered with the 0.45 µm filter membrane to
remove impurities. Then, to detect the N2H4 in the lake and river were used to prepare
various concentrations of N2H4 (0.1 µM, 10 µM, and 10 mM) reaction for 10 min to test
fluorescence spectroscopy, respectively. Three experiments were performed in parallel, and
RSD was calculated.

3. Results
3.1. Characteristics of SQDs, MnO2 NS, SQDs@MnO2

The morphology of SQDs, MnO2 NS, and SQDs@MnO2 architectures was charac-
terized by HR-TEM and TEM. As shown in Figure 2a,b, the morphology of SQDs was
spherical particles with good distribution, and the size of SQDs was calculated mainly
to be 3.5 ± 0.5 nm. Next, the morphology of MnO2 NS was investigated presenting a
large two-dimensional ultrathin planar structure (inset of Figure 2c). Meanwhile, the struc-
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ture of MnO2 NS under the size of 100 nm of TEM appears to wrinkle and aggregation
(Figure 2c). Additionally, as shown in Figure 2d, SQDs@MnO2 retained the planar structure
but have a stronger aggregate phenomenon compared with MnO2 NS (Figure 2c), and the
SQDs were distributed on the surface of MnO2 NS, indicating that the SQDs@MnO2 was
successfully prepared.
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Figure 2. (a) HR-TEM images of SQDs; (b) the diameter distribution of the SQDs; (c) TEM images
of MnO2 NS with HR-TEM images of MnO2 NS (inset); (d) TEM images of SQDs@MnO2 NS with
HR-TEM images of SQDs@MnO2 NS (inset).

To further study the elements of SQDs and MnO2 NS, X-ray photoelectron spec-
troscopy (XPS) was analyzed. In Figure S1a, the MnO2 NS was composed of four elements
of C, O, N, and Mn. In the spectrogram of the Mn 2p element in Figure S1b, the band
energy peaks located at 641.8 eV belonged to MnO2, and the characteristic peaks of Mn 2p
appeared at 644.3 eV, 649.1 eV, which was identified with the previously reported work [36].
As can be seen in Figure S1c, the XPS survey spectrum of SQDs was recorded, which peaks
corresponding to the elements of C, O, and S, respectively. The spectrum of the S 2p region
in Figure S1d exhibits two peaks at 162.3 eV and 163.2 eV, which were due to the elemental
S. The band peaks at 166.5 eV, 168.2 eV, and 169.3 eV were respective corresponding to the
SO3

2− (2p2/3), SO3
2− (2p2/3) or SO2

2− (2p1/2), and SO3
2− (2p1/2), which demonstrated that

the prepared SQDs the surface has an amount of sulfite group by adsorbing since the huge
surface and small volume [34]. Additionally, the XPS survey spectrum of SQDs@MnO2 was
shown in Figure 3a, in which elements of S 2p (Figure 3b) and Mn 2p (Figure 3c) correspond
to the SQDs and MnO2, indicating the SQDs@MnO2 was successfully prepared.
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Figure 3. (a) XPS survey spectrum and (b) high-resolution Mn 2p, and (c) high-resolution S 2p XPS
spectrum of SQDs@MnO2 NS.

To further verify the SQDs, MnO2 NS, and SQDs@MnO2 NS were successful in
preparation, the UV-Vis spectra were shown in Figure 4. The broad absorption bands of
MnO2 NS the range from 280 to 650 nm a weak peak around 360 nm, which is due to the d-d
transition of Mn4+ ions [37]. The UV-Vis absorption spectra of SQDs and SQDs@MnO2 both
have peaks at 313 nm and 350 nm, which might be ascribed to the S2

2− and S8
2− adsorbed

on the surface of SQDs [34]. However, the values of peaks of SQDs@MnO2 were lower than
SQDs due to the adsorption of SQDs on MnO2 NS. The excitation (Ex) and emission (Em)
spectra of fluorescence of SQDs@MnO2 were shown in Figure 4b, the Em wavelength at
484.2 nm under the excitation wavelength of 380 nm, which is like the previous work [38].
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Figure 4. (a) UV-Vis spectra of SQDs, MnO2 NS, and SQDs@MnO2 NS; (b) the excitation and emission
spectra of SQDs@MnO2.

3.2. Optimization of Experimental Parameters

We have investigated the experimental parameters to acquire the optimal conditions,
including the excitation wavelength for SQDs, the concentration of MnO2 NS, the volume
ratio of N2H4 to MnO2 NS, and the pH of the SQDs and SQDs@MnO2 NS solution. As
illustrated in Figure 5a, the synthesized of SQDs detected under the different excitation
wavelengths at 330–420 nm, the intensity of fluorescent behaved a general trend of rising
first and then falling, and the maximum emission at 400 nm. Thus, the excitation wave-
length of SQDs at 400 nm was chosen as the optimal wavelength. As shown in Figure 5b,
with the increase of the concentration of MnO2 NS, the quenching emission values of
SQDs were increased, and the fluorescent intensity of SQDs was nearly all the quenched
at the concentration of MnO2 NS at 10 mg mL−1. Hence, 10 mg mL−1 was selected as the
optimum concentration of MnO2 NS for the next use. In addition, the quenching behavior
of SQDs@MnO2 about different concentrations of MnO2 NS for better visualization in
Figure S2, which obviously noted that the MnO2 NS possesses a huge surface that could
package the SQDs. The volume ratio of N2H4 to MnO2 NS was shown in Figure 5c, the
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N2H4 volume-specific gravity increased the emission was gradually recovered, and the
volume ratio reached 2:1 of N2H4 to MnO2 NS the emission intensity reached the max-
imum recovery values. Furthermore, the SQDs increased with pH from 5 to 12, which
had no influence on its emission, while introducing the MnO2 NS the emission of SQDs
values significantly decreased (Figure 5d). However, with the increased pH, the quench of
emission degree was decreased. On this basis, we selected the pH = 7 as the experiment
condition, considering the pH of the environment water. As shown in Figure 5e, the fluo-
rescence of SQDs intensity was decreasing when the MnO2 was added. The molar ratio of
SQDs@MnO2 was increased to 10:4 the fluorescence intensity reached its lowest. After, the
molar ratio of SQDs@MnO2 over 10:4 the fluorescence intensity was a tiny increase. Thus,
the molar ratio of 10:4 has been chosen for the further experiment. In addition, the response
time of SQDs@MnO2 with N2H4 was recorded in Figure 5f, when 10 min of reaction was
the ∆I = 30 (∆I = intensity (2 min)-intensity (1 min)), and the value of ∆I was nearly stable.
Therefore, the SQDs@MnO2 with N2H4 10 min of reaction as the optimal react time.
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Figure 5. Optimization of conditions: (a) optimal excitation wavelength for SQDs; (b) concentra-
tions of MnO2 NS; (c) volume ratio of N2H4 to MnO2 NS; (d) Different pH; (e) the molar ratio of
SQDs@MnO2 (a–h (SQDs: MnO2 = 10:0, 10:1, 10:2, 10:3, 10:4, 10:5, 10:6, 10:7)); (f) the response time of
SQDs@MnO2 with N2H4.

3.3. Fluorescence Spectra Analysis of N2H4 Sensing

The MnO2 NS nearly a total absorption in UV-Vi’s spectrum at the 280 nm to 650 nm
in this study, which could effectively quench the fluorescence of SQDs due to the IFE
mechanism. However, with the N2H4 was introduced once the emission was recovered,
demonstrating that the MnO2 NS was reduced to Mn2+ in the presence of N2H4. Beneficial
from this result, a simply “turn-on” sensor was constructed.

Under the optimum experiment condition, the analytical performance of the fluores-
cent sensor was investigated to detect N2H4 with various concentrations. As exhibited in
Figure 6a, the fluorescence intensity was increased with the N2H4 concentration gradually
added, indicating that the more reduction matter the more Mn2+ in the detected solution.
The recovery values of fluorescence intensity of the logarithm of N2H4 concentration in
the range from 0.1 µM to 10 mM, with a limit of detection (LOD) were calculated to be
0.072 µM according to the 3σ/s. Figure 6b demonstrates that the linear equation was
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I = 1010.4 logc(N2H4) + 8116.2 with a correlation coefficient of 0.9972, where I was the
recovery intensity value of fluorescence. The comparison of the proposed methods to
detect N2H4 with previous reports was listed in Table 1. It was significantly observed that
the SQDs@MnO2 NS probe possessed the lower LOD and satisfactory linear range over
other approaches.
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Table 1. Comparison of several different methods for N2H4 detection.

Method Linear Range (M) Detection Limit (M) Ref.

ZY8 a 1.6 × 10−7–6.2 × 10−5 1.6 × 10−7 [39]
PBAS b 0–2 × 10−5 4.1 × 10−7 [25]
CEFN c 0–6 × 10−5 9.6 × 10−8 [40]
HBTM d 0–1.4 × 10−4 2.9 × 10−7 [30]

SQDs@MnO2 NS 10−7–10−2 7.2 × 10−8 This work
a 3-hydroxyflavone; b Salicylaldehyde Schiff’s bases; c nopinone; d 5-acetyl-2-hydroxybenzaldehyde and 2-
aminothiophenol.

3.4. Selectivity, Stability, and Repeatability

To evaluate the specificity of the probe of SQDs@MnO2 NS, the selective as one of the
most important factors was investigated under similar reaction conditions. The various
ions including Ni2+, Co2+, K+, Ca2+, Fe2+, Na+, Cd2+, Cu2+, Cr2+, SO4

2−, NO3−, Cl−, OH−,
CO3

2− were used as interference agents, these ions are the common positive ions and
anions present in the environment. As shown in Figure 7a, the fluorescence intensity
was negligible present the interference agents compared to have N2H4, indicating that
the preparation probe has a strong anti-interference ability and accuracy detect N2H4 in
environment water.
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In addition, to further assess the stability of the SQDs@MnO2 NS fluorescent probe,
the good stability of SQDs was an important means to verify. As depicted in Figure 7b,
the fluorescence intensity of SQDs was continuous detection for 14 days under similar
experimental conditions, it was noticed that the intensity have a slow decrease and the
degree was insignificant. Interestingly enough, after a month of observing the intensity of
SQDs was only a tiny different compared with them before a month, illustrating that the
SQDs@MnO2 NS possessed a high stable fluorescence performance. For reproducibility,
as can be seen from Figure 7c, the test was performed under the five sets of parallel
solutions of SQDs in the same environment, all of the measured fluorescence intensities
possess the semblable value with an outstanding RSD of 1.1%. This result was successful
in confirming that the SQDs have preeminent reproducibility. Meanwhile, they have the
potential benefit to the synthesis and application of the SQDs@MnO2 NS. These results
demonstrated that the proposed sensor has good selectivity, stability, and repeatability for
the analysis of N2H4.

3.5. Detection of N2H4 in Real Water Samples

To investigate the practicability of the probe of SQDs@MnO2 NS, it was applied to
detect N2H4 in real samples. Three parallel water samples were obtained from the local
lake and river for conducting the standard recovery test. The results were shown in Table 2,
the N2H4 was detected in the lake, river, serum, and saliva, where the recovery ranged
from 90.21% to 109.1%, and the RSD was 0.9% to 4.5%, demonstrating that the fluorescent
probe possesses practicability with promise for future applications.

Table 2. Recoveries for detecting N2H4 in real samples (n = 3).

Sample Added (M) Found (M) Recovery (%) RSD (%)

10−2 1.073 × 10−2 107.3 1.4
Lake water 10−5 0.9021 × 10−5 90.21 2.1

10−7 0.9624 × 10−7 96.24 1.1

10−2 1.091 × 10−2 109.1 2.2
River water 10−5 1.032 × 10−5 103.2 0.9

10−7 0.9254 × 10−7 92.54 1.7

10−2 0.9691 × 10−2 96.91 4.5
Serum 10−5 0.9967 × 10−5 99.67 1.9

10−7 1.027 × 10−7 102.7 2.8

10−2 0.9851 × 10−2 98.51 3.1
Saliva 10−5 0.9741 × 10−5 97.41 1.6

10−7 1.016 × 10−7 101.6 2.9

4. Conclusions

In summary, we have developed a “turn-on” fluorescent sensor based on the SQDs@MnO2
NS architectures for the detection of N2H4. The MnO2 NS has a broad absorption band of
MnO2 NS at 280 to 650 nm, which could effectively quench the emission of fluorescence
of SQDs, owing to the IFE mechanism. However, the fluorescent emission was recovered
presenting the N2H4 analysis target with a concentration in the range of 0.1 µM to 10 mM,
with a LOD of 0.072 µM. In addition, the fluorescent sensor was successfully applied in real
samples indicating the SQDs@MnO2 NS probe was possess the potential ability to detect
the N2H4 in the environmental water samples.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12132207/s1, Figure S1: (a) XPS survey spectrum of MnO2
NS and SQDs; Figure S2: The quenching behavior of SQDs@MnO2 about the concentrations of
MnO2 NS.

https://www.mdpi.com/article/10.3390/nano12132207/s1
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