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Abstract

Early animal development is characterized by intense reorganization of the
embryonic genome, including large-scale changes in chromatin structure
and in the DNA and histone modifications that help shape this structure.
Particularly profound shifts in the chromatin landscape are associated with
the maternal-to-zygotic transition, when the zygotic genome is first
transcribed and maternally loaded transcripts are degraded. The
accessibility of the early zebrafish embryo facilitates the interrogation of
chromatin during this critical window of development, making it an important
model for early chromatin regulation. Here, we review our current
understanding of chromatin dynamics during early zebrafish development,
highlighting new advances as well as similarities and differences between
early chromatin regulation in zebrafish and other species.
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Overview

Animal genomes undergo a period of intense reorganization
during early development as zygotic transcription initiates and
embryos transition from a totipotent to a lineage-committed state.
This reorganization is reflected by dramatic changes in chro-
matin structure and in the DNA and histone modifications that
help drive this structure. During the last two decades, zebrafish
have become an important and established model for studying
chromatin in the context of vertebrate development. Two recent
comprehensive reviews detail the many seminal insights into
chromatin regulation that have been obtained using zebrafish'~.
This focused review highlights current advances in our under-
standing of chromatin dynamics during early zebrafish embryo-
genesis. We provide an emerging picture of chromatin changes
during the awakening of the zebrafish zygotic genome, inte-
grate this knowledge with new data gained from other species,
and highlight research directions where the strengths of the
zebrafish model provide high potential for new advances.

Zebrafish

Zebrafish offer a powerful system for studying chromatin transi-
tions associated with early development. External fertilization
means that embryos are accessible for observation, manipulation,
and molecular interrogation from the 1-cell stage onward without
surgical intervention. Following fertilization, zebrafish embryos
develop quickly over the next 24 hours, moving through a stere-
otypical program defined by cleavage, blastula, gastrula, and
segmentation periods. During this time, embryos can be accu-
rately staged on the basis of morphological characteristics
as well as time post fertilization’. Early cleavage stages exhibit
several unique features, including a high ratio of cytoplasmic to
nuclear volume, rapid cell divisions in which the entire genome
is replicated in less than 15 minutes, and sac-like vesicles called
karyomeres that transiently encase individual or groups of
chromosomes near the end of mitosis*’. Zebrafish display a
conserved fate map following blastula stages and undergo further
cell fate restriction during gastrulation®.

Awakening of the genome

The maternal-to-zygotic transition (MZT) represents a critical
milestone in early animal embryogenesis. During this transition,
developmental control shifts from maternally provided proteins
and RNAs to zygotic transcripts’™''. The timing of this transi-
tion varies between organisms. Activation occurs as early as the
1- to 2-cell stage in mouse, between the 4- and 16-cell stages
in most other mammals, and as late as cell divisions 6 to 8 in
Drosophila and zebrafish’. In addition to dramatic transcrip-
tional changes, MZT coincides with other important changes,
including lengthening of the cell cycle, emergence of cell cycle
check points, and the capacity for cells to undergo apoptosis”''.

The transition from a fully quiescent to active genome during
MZT offers a unique and exciting opportunity to tease apart the
relationship between chromatin and transcription. In zebrafish,
the bulk of zygotic transcription starts after the 10th cell divi-
sion at the 1000-cell stage (3 hours post fertilization [hpf])*.
However, a minor wave of zygotic genome activation (ZGA)
precedes this stage, and the earliest zebrafish transcripts emerge
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from the miR-430 microRNA gene cluster at the 64-cell stage
(2 hpf)'=". MicroRNAs from this cluster in turn play a key
role in the degradation of maternally loaded transcripts during
MZT'".

Core transcription factors drive zygotic genome activation
Initiation of zygotic transcription is generally mediated by a
small number of pioneer factors, although the specific fac-
tors involved differ between species'”'. In zebrafish, transcrip-
tion factors Pou5f3, Nanog, and SoxB1 proteins are critical for
ZGA, binding to thousands of putative regulatory elements dur-
ing this period'**’. These transcription factors appear to be
involved in nucleosome displacement through a two-step proc-
ess. Before ZGA, they provide non-specific competition with
histones on strong nucleosome footprints and then at ZGA
they act synergistically to maintain open chromatin at regions
with high nucleosome affinity”*”. Binding is associated with
increased accessibility at MZT*-, and recent work suggests that
accessibility precedes and is predictive of future transcription®’.

During egg production, many mRNAs and proteins required
for early development are maternally deposited. The extent to
which early transcription factors are maternally loaded at the pro-
tein level is currently unclear. However, mRNAs encoding key
transcription factors, including Pou5f3, Nanog, and SoxBl1
proteins, are detected in embryos prior to the 64-cell stage,
indicating that they are maternally loaded“*”. Injection of
translation-blocking morpholinos for either Pou5f3 or SoxBl1
prevents ZGA', suggesting that translational regulation of
these RNAs likely contributes to the control of ZGA.

Additional signals are required for zygotic genome
activation

The exact sequence of events that leads to ZGA is not well
understood and remains an area of intense investigation. In addi-
tion to translational regulation of transcription factors, deple-
tion of repressors, accumulation of activators, and local changes
in chromatin accessibility have been implicated in promoting
ZGA™''. Of particular note, recent studies in Xenopus suggest
that the concentration of histones in the early embryo may be
critical for ZGA*~°. This also appears to be the case in
zebrafish, as injection of core histones into the early zebrafish
embryo is sufficient to delay ZGA whereas histone depletion
accelerates ZGA*. The concentration of histones on DNA
does not change during the period leading up to ZGA, but the
non-DNA-bound core histone concentration is decreased by
early cleavage divisions®®. This results in a high nucleus-to-
cytoplasmic ratio of histones at ZGA. This observation has
led to a model in which reduced concentrations of unbound
histones allow key transcription factors to successfully compete
for DNA binding, thereby initiating ZGA”**. One challenge
to this model is that zebrafish embryos injected with mRNA
encoding the cell cycle regulator Chkl arrest development
between the 4- and 16-cell stages and maintain a low overall
nuclear-to-cytoplasmic ratio yet these embryos are still able
to activate a subset of zygotic genes™. Although further inves-
tigation is needed, short genes seem to be less affected by the
nuclear-to-cytoplasmic ratio during embryogenesis compared
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with long genes**. This raises the possibility that ZGA is
differentially regulated at different subclasses of sequences.

Intriguingly, in zebrafish, early replication of “first wave” zygotic
genes precedes initiation of their transcription. This finding
raises the possibility that DNA replication is controlled by the
same factors that poise these genes for transcription or that
the pre-MZT replication timing program itself helps to prime
early ZGA".

The changing chromatin landscape during maternal-
to-zygotic transition

The relatively large number of cell divisions occurring between
fertilization and ZGA has made zebrafish an appealing
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model for profiling the chromatin changes during this criti-
cal period. Genome-wide changes in DNA methylation, histone
modifications, and chromatin structure have all been profiled at
high temporal resolution during early zebrafish embryogenesis
(Figure 1 and Figure 2). As in other species, the early zebrafish
genome generally exhibits features of open chromatin, which
become increasingly constrained as development progresses.
However, recent work has also uncovered intriguing differences
between the early chromatin landscape in zebrafish and other
models.

5-methylcytosine
5-methylcytosine (SmC) is the most common DNA modification
in vertebrate genomes. It is associated with transcriptional
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Figure 1. DNA methylation and histone modifications at transcriptionally active and repressed sequences.
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Figure 2. Dynamic changes in DNA methylation, histone modifications, and chromatin structure during early zebrafish development.

hpf, hours post fertilization.
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repression and predominates at CpG dinucleotides* ™. Most
CpGs in vertebrate genomes are methylated; the primary excep-
tion consists of non-methylated islands that generally overlap
with promoters and other cis regulatory elements™~*. 5SmC is
essential for viability in vertebrates, and global loss of SmC
results in lethality in mice, frogs, and zebrafish*~-. Vertebrate
SmC is established by de novo DNA methyltransferases of the
Dnmt3 family and maintained by the maintenance DNA
methyltransferase Dnmtl and its cofactor Uhrf1°. In addition
to encoding Dnmtl and Uhrfl, the zebrafish genome encodes
six Dnmt3 orthologs, which exhibit differential expression
during development®’. Zebrafish also harbor orthologs of
the SmC dioxygenases Tetl, Tet2, and Tet3, which can promote
active 5SmC removal through the iterative oxidation of SmC’*",

The dynamics of DNA methylation are considerably differ-
ent in zebrafish and mammals. The mammalian methylome is
erased and re-established during preimplantation development
and primordial germ cell formation*>”**. In contrast, zebrafish
and other non-mammalian vertebrates do not appear to undergo
similar large-scale demethylation*>*~!, Instead, at least in
zebrafish, the developing embryo adopts the SmC landscape of the
paternally inherited genome through gradual refashioning of the
maternal methylome**. Surprisingly, the paternal genome is
not required for this process*’. The specific de novo methyltrans-
ferases involved in establishing SmC on the maternal methylome
during this window have yet to be identified. Regions of meth-
ylation loss most likely undergo passive demethylation as Tet
enzymes and oxidative derivatives of 5SmC are undetectable
during early zebrafish development**’*#%92=%,

The absence of Tets in zebrafish during early embryogenesis is
in contrast to mammals, where Tets play a critical role in shap-
ing the early embryonic methylome®™. As in mammals, Tet
enzymes are important for demethylation of enhancer chromatin
at later stages of zebrafish development’™*”’. Very recent
work suggests that SmC patterns are also broadly stable in the
zebrafish germline, although there is one curious exception™’'.
There appears to be female-specific germline amplification
and demethylation of an 11.5-kb repeat region encoding
45S ribosomal RNA”. The failure to undergo large-scale eras-
ure and re-establishment of SmC in the zebrafish embryo or the
germline may explain the transgenerational accumulation of
SmC at transgenes in zebrafish™”. These observations also
raise the possibility that inherited 5SmC drives epiallelic
regulation of endogenous zebrafish genes in some contexts.

Histone modifications

Modification of the N-terminal tails of histones plays an instru-
mental role in shaping genomes into regions that are restrictive
or permissive for transcription'®'">.  Unlike mammalian
sperm, where the bulk of histones are replaced with protamine,
zebrafish sperm rely entirely on histones to package their
DNA'%1% " In contrast to 5mC, most histone modifications
undergo erasure and re-establishment during early zebrafish
development, although reprogrammed histone modifications do
not necessarily match the pattern of either gamete?’-*%'%>-1%%,
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H3K27ac. One of the earliest histone modifications detected
in the developing zebrafish embryo is histone H3 lysine 27
acetylation (H3K27ac), a modification associated with tran-
scriptional activation’’. Deposition of H3K27ac is associated
with initial access to promoters for early transcribed genes, and
the highest H3K27ac enrichment occurs at Pou5f3-, SoxBl-,
and Nanog-primed loci at ZGA”!. Maternal depletion of the
histone acetyltransferases ep300b, crebbpa, and crebbpb
reduces detectable zygotic transcripts at the dome stage
(4.3 hpf). Conversely, premature increases in the histone acetyl-
transferases Brd4 and P300 are sufficient to prematurely acti-
vate zygotic transcription™. Together, these findings suggest a
fundamental requirement for H3K27ac in promoting transcrip-
tion during ZGA. Mechanistically, it is likely that increased
histone acetylation during MZT helps relieve the repressive
activity of histones, thereby promoting zygotic transcription™.

H3K4me3/H3K27me3. Trimethylation of histone H3 lysine
4 (H3K4me3) and trimethylation of histone H3 lysine 27
(H3K27me3) have important antagonistic roles in transcrip-
tional regulation. H3K4me3 is typically associated with activa-
tion whereas H3K27me3 is associated with repression. A third
class of bivalently marked genes harbor both modifications
and exist in a state that is poised for transcription''""'"". In
zebrafish, H3K4me3 and H3K27me3 are present in sperm but
are erased in the early embryo”"!0%10610%19 " Early chromatin
microarray experiments revealed colocalized enrichment of
H3K4me3 and H3K27me3 at promoters and transcriptional start
sites at ZGA and these findings have recently been confirmed
using chromatin immunoprecipitation followed by deep
sequencing (ChIP-seq)”'"*!"7!", Only a subset of genes marked
by H3K4me3 or H3K4me3/H3K27me3 are actively transcribed
at ZGA, and many bivalently marked genes remain poised
for later expression. In addition, a large class of promoters
is marked only by H3K4me3 in sperm and the pre-ZGA embryo.
Some of these become bivalent after ZGA. Other genes are
newly marked exclusively with H3K4me3 at ZGA'™'07%1%
Large-scale resetting of H3K4me3 and H3K27me3 is also
observed in early mammalian embryos'' "7,

Somewhat surprisingly, H3K27me3-mediated repression may
have only limited roles in the zebrafish embryo. Mouse mutants
for the H3K27 methyltransferase Ezh2 die during embryo-
genesis between 7.5 and 10.5 days post coitum''®. However,
although maternal/zygotic zebrafish mutants lacking this
enzyme exhibit global depletion of H3K27me3, they show only
limited changes in early gene expression, develop normally
through gastrulation, and form a normal body plan''*"*".

H3K9me3. Trimethylation of histone H3 lysine 9 (H3K9me3)
is enriched at repetitive sequences, including transposons, peri-
centromeric satellite sequences, telomeres, and some gene
clusters'”. H3K9me3 is an essential component of highly con-
densed constitutive heterochromatin, which silences expres-
sion from repetitive sequences'”’. H3K9me3 is broadly depleted
in early mouse, worm, fly, and zebrafish embryos, and large-
scale establishment follows ZGA'**!>*> In zebrafish, the
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establishment of H3K9me3 appears to rely on miR430-
mediated degradation of maternally loaded Smarca2, an ATP-
dependent chromatin remodeling protein typically associated
with the BAF complex'”. Other mechanisms have been
proposed in flies and worms'*'*. The lack of H3K9me3-marked
heterochromatin in early embryos is somewhat surprising, as
H3K9me3 is thought to promote genome stability'”*'?’. The
mechanisms that allow early embryos to maintain genome
integrity in the absence of H3K9me3-marked constitutive
heterochromatin are not known.

Structural changes

Beyond the direct modification of histones and DNA, pro-
found structural changes are observed as the embryonic genome
passes through early development'”®'”. Chromatin structure
can be visualized on multiple levels that reflect distinct aspects
of DNA packaging. Structure in the zebrafish embryo has been
recently assessed at the level of local chromatin accessibility
by assay for transposase-accessible chromatin using sequenc-
ing (ATAC-seq), at the level of chromatin interactions by high-
throughput chromatin conformation capture (Hi-C), and at
the level of cellular ultrastructure by transmission electron
microscopy (TEM).

Accessibility. Fine-scale structural organization of chromatin is
achieved through nucleosome positioning, which can promote
or constrain transcription factor access to DNA. In zebrafish,
prior to the major wave of ZGA, nucleosomes already appear
positioned downstream of zygotic transcriptional start sites.
During ZGA, these nucleosomes become organized into regu-
lar, well-positioned arrays near gene promoters’™'*. Accessi-
bility, as assessed by ATAC-seq, is detected at a small subset of
sequences, including the miR-430 cluster at the 64-cell stage, but
far more regions of accessibility emerge by the 1000-cell stage.
At the onset of the major wave of ZGA, the majority of accessible
regions are in promoters whereas by the dome stage accessibility
at distal regulatory regions predominates™-*'.

Compartments and topologically associated domains. Hi-C—
based mapping of chromatin interactions in somatic cells has
revealed two levels of organization. First, chromatin can be
segregated into distinct compartments; the A compartments con-
tain transcriptionally permissive chromatin, and B compartments
contain repressed chromatin’’. Compartments can be fur-
ther subdivided into genomic regions known as topologically
associated domains (TADs), which are thought to serve as
regulatory scaffolds”'="**. At 24 hpf, zebrafish have A/B com-
partments and TADs with genomic features similar to those
observed in mammals, including enrichment of binding sites
for the regulatory factor CTCF at TAD borders'**'*. In most
studied organisms, there is an absence of both compartments
and TADs in early embryogenesis and these structures emerge
during the major wave of ZGA'!*!5%13%140  In contrast, Hi-C
in zebrafish reveals evidence of compartments and TADs at
the 128-cell stage (2.25 hpf) prior to the major wave of ZGA.
These structural features are lost during major ZGA and then
re-established as embryonic development progresses'**. The
mechanisms that drive these very early chromatin interactions
are not clear, nor are the reasons that TADs dissolve at ZGA.

F1000Research 2020, 9(F1000 Faculty Rev):299 Last updated: 29 MAY 2020

There is also a possibility that formation of karyomeres in
the early embryo impacts TAD organization, although this
has not been explored experimentally. Along with CTCE
the cohesin complex has been implicated in TAD formation.
Intriguingly, there is global shift in the genomic distribution
of the cohesion complex component Rad21 during the window
in which TADs are remodeled in zebrafish, raising the
possibility that there is a causative relationship between these
events'*'7'%.

Ultrastructure. TEM provides an additional approach for
visualization of condensed chromatin ultrastructure. By this
approach, condensed chromatin regions appear as electron-
dense aggregates within cell nuclei. Consistent with the lack of
histone modifications associated with heterochromatin, early
zebrafish embryos also lack condensed chromatin ultrastruc-
ture. Just prior to the major wave of ZGA, at the 512-cell stage,
embryonic nuclei are completely devoid of the electron-dense
aggregates, and aggregates similar to those classically observed
in somatic cells emerge in all embryonic nuclei between 3.7
and 6 hpf'”. This time line of compaction correlates with
H3K9me3 establishment in the embryo'”. The clear presence
of A and B compartments in zebrafish embryos by Hi-C at the
128-cell stage is curious in light of the lack of ultrastructure
visualized by TEM at the 512-cell stage. Future analysis will
be required to determine whether differences reflect minor
discrepancies in timing between analyses or rather suggest
that early Hi-C interactions are insufficient to drive chromatin
segregation at the ultrastructure level.

Conceptual advances and emerging directions
Conceptual advances

In addition to foundational work profiling chromatin changes
during embryogenesis, a number of important conceptual
advances have emerged from recent studies in zebrafish. Among
these is the concept of the placeholder nucleosomes, which
enable programming of DNA methylation on the maternal
genome during early embryogenesis and prime promoters for
later expression. Placeholder nucleosomes contain the histone
H2A variant H2A.Z and H3 histones that are monomethyl-
ated on lysine 4 (H3K4mel). In both sperm and cleavage-stage
zebrafish embryos, placeholder nucleosomes occupy virtu-
ally all regions lacking DNA methylation, and perturbation of
these placeholders causes expansion of SmC domains'*'*. At
ZGA, genes marked by placeholders become either active and
marked by H3K4me3 and H3K27ac or silenced and marked
by H3K4me3/H3K27me3. The accumulation of these modifi-
cations suggests that these specialized nucleosomes poise gene
promoters in an unmethylated state that can be readily
activated at ZGA or during later development’'". The pres-
ence of placeholders also suggests a clear mechanism by which
methylation of the maternal methylome is remodeled during
embryogenesis in the absence of information from the paternal

methylome'®.

Another emerging theme arising from work in zebrafish is the
importance of maternally loaded RNA and protein in shaping
the early chromatin landscape. Depletion of maternally loaded
histones is implicated in activation of zygotic transcription,
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while clearance of the maternal factor Smarca2 is required
for H3K9me3 establishment and condensed chromatin
ultrastructure’®'”®, Recent evidence also suggests that resolu-
tion of primed promoters into active or silenced states relies
predominately on maternal factors, although the specific fac-
tors involved have not been identified”’. Around one third of
zebrafish embryonic transcripts are exclusively maternal,
whereas most additional transcripts are expressed both mater-
nally and zygotically'®. These RNA pools include transcripts for
many candidate chromatin regulators. To date, one challenge to
understanding the function of maternally loaded gene products
has been the need to generate maternal/zygotic mutant embryos.
For genes that are also required later in development, generation
of maternal zygotic mutants often requires the labor-intensive
process of germ cell transplantation, which can present an
obstacle to rapid progress'*. New technologies for germline-
specific CRIPSR/CAS9-mediated mutation or degradation of
maternally loaded gene products in the embryo are expected
to aid in probing the functions of these maternally loaded
factors' 7!,

Emerging strategies

The ability to readily manipulate the chromosomal content of
the early embryo provides a unique tool for probing early chro-
matin regulation. Haploid zebrafish embryos are relatively
normal during the first day of development, and triploid
zebrafish are viable to adulthood>”~'*. Haploid embryos have
been elegantly used to demonstrate that the female methy-
lome can reset without any input from male chromosomes
and to show that decreased DNA content leads to delayed
ZGA**. The recent discovery of the Ly6/uPAR protein Bouncer
as necessary for species-specific fertilization in fish also
opens up the opportunity to make hybrid embryos from
medaka sperm and zebrafish eggs®. A detailed assessment
of ZGA or the early chromatin environment has yet to be
undertaken in these embryos, but they offer a unique system
in which to probe DNA intrinsic versus extrinsic factors that
contribute to the shifting landscape during early embryogenesis.

In addition to the ability to manipulate chromosome content,
the clarity and accessibility of the zebrafish embryo provide an
exciting opportunity to visualize zygotic transcription and
associated chromatin dynamics in intact embryos. Visualiza-
tion of newly synthesized transcripts in the early embryo can
be achieved by 5-ethynyl uridine (EU) labeling bulk RNA
followed by click chemistry or through targeted visualization
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of highly expressed RNAs wusing fluorophore-conjugated
morpholinos'’*¥, At the same time, CRISPR-dCAS9-GFP
complexes can be used to visualize specific DNA loci within
embryonic nuclei®. With these approaches, two foci of
miR-430 expression, corresponding to the two chromosomal
miR-430 gene clusters, can be visualized in a small fraction of
embryonic nuclei beginning at the 64-cell stage, and all nuclei
show two miR-430 foci by the 512-cell stage'”**. In addition
to containing miR-430 transcripts, foci contain activated RNA
polymerase II and RNA transcripts derived from gene clusters
encoding zinc finger transcription factors'’. Signal from these
transcriptional hubs appears to be specific to the early embryo
as they dissolve after the major wave of ZGA®.

Injection of fluorescently labeled modification-specific antigen-
binding fragments (Fabs) provides an additional new tool,
allowing monitoring of chromatin changes in live zebrafish
embryos'”’~'*°. By this approach, H3K27ac is observed in two
nuclear foci corresponding to the miR-430 gene clusters in
64- to 1000-cell stage embryos. Intriguingly, H3K27ac still
appears at these foci when zygotic transcription is inhibited,
suggesting that the establishment of H3K27ac at these foci

precedes activation of transcription'”’.

Additional new technologies for visualizing chromatin and tran-
scription in the early zebrafish embryo continue to emerge.
Light-sheet microscopy tracking transcription factors, includ-
ing Sox19b, was recently used to demonstrate that the chroma-
tin-bound fraction of transcription factors increases over early
embryonic cell divisions. Furthermore, new preprinted work
visualizing transcriptional activity by three-color stimulated
emission depletion (STED) super-resolution and live-cell micro-
scopy suggests that, after transcription initiates, regions of
active euchromatin form RNA-enriched microenvironments that
exclude inactive euchromatin®”-'",

Conclusions

The past few years have led to an explosion in articles exploiting
the zebrafish system to understand chromatin dynamics and
their relationship to transcription during the initial activation of
the zygotic genome. Recent high-resolution profiling of DNA,
histone modification, and structural changes occurring during
this period offer a critical foundation for understanding how
these many signals are integrated in the early embryo, while
new technologies that are well suited to the zebrafish model
offer the opportunity for continued advances.
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