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ABSTRACT Bacteriophages that infect the foodborne pathogen Listeria monocyto-
genes were previously isolated from New York dairy farms. The complete genome
sequences for three of these Listeria phages, with genome sizes of 64.6 to 65.7 kb,
are presented here. Listeria phages LP-010, LP-013, and LP-031-2 are siphoviruses
that belong to the genus Homburgvirus.

Lytic bacteriophages can be used as a biocontrol agent targeting the foodborne
bacterial pathogen Listeria monocytogenes in food or food processing environments

(1–4). L. monocytogenes caused 116 laboratory-confirmed infections in the United
States in 2015, with relatively high hospitalization and mortality rates compared to
those caused by other foodborne pathogens (5, 6). Previously studied Listeria phages
suitable for food-related biocontrol include Homburgvirus P70 (7). Homburgvirus phages
have a unique morphology (flexible, noncontractile tails and elongated capsids, as seen
in Enterococcus phages [8]) and improved lytic ability at lower temperatures (9).

Phages LP-010, LP-013, and LP-031, which infect L. monocytogenes, were previously
isolated from dairy farm silage collected in New York (10). These were selected for
sequencing because they exhibited activity against mutant L. monocytogenes strains
that were resistant to most of our phage collection (11). LP-010 and LP-013 were
isolated with L. monocytogenes strain FSL J1-208 and LP-031 with strain MACK (8, 10, 12,
13). All of the phages were propagated on MACK. DNA was extracted from purified
phage stocks following a modified phenol-chloroform method (14). Libraries were
prepared using Nextera XT kits and sequenced with an Illumina MiSeq platform using
300-bp paired-end read chemistry and 275 cycles. An average of 217,825 total reads per
sample were acquired, and the average read length was 250 bp. Raw reads were
trimmed with Trimmomatic v0.35 (ILLUMINACLIP:NexteraPE-PE.fa:2:30:10 LEADING:3
TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36) (15) and quality checked with FastQC
v0.11.7 (16). Trimmed reads were assembled with SPAdes v3.12.0 (using defaults but
with the careful setting) (17), and assembly statistics were generated using BBMap
v38.08 (18), SAMtools v0.1.8 (19), and QUAST v4.6.3 (20). Assemblies were reoriented to
start at the large terminase subunit and were then annotated using RASTtk (modifying
pipeline to run “annotate-proteins-phage” before “annotate-proteins-kmer-v2”) (21).
The read coverage across the newly formed contig junction, where the original contig
ends were joined, was consistent with the rest of the assembly. This confirmed that the
genomes are circularly permuted, which is consistent with other Homburgvirus phages
(7, 8). Average nucleotide identity (ANI) between phages and Homburgvirus RefSeq
assemblies was calculated with MUMmer (ANIm) using JSpeciesWS (22, 23).

LP-031 assembled into two contigs (133.2 kb and 65.5 kb), which were redesignated
LP-031-1 and LP-031-2, respectively. LP-031-1 was similar to Pecentumvirus phages and
is not discussed here. LP-010, LP-013, and LP-031-2 have 64.6- to 65.7-kb circularly
permuted genomes. The assemblies had 104� to 1,129� coverage and �36.4% G�C
content and contained 108 to 114 coding sequences and no tRNAs. These three
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genomes have 97.65 to 99.35% ANIm across 95.80 to 99.58% of the aligned sequences.
They are most similar to LP-114 (Homburgvirus genus), with 97.5 to 97.8% ANIm across
93.6 to 96.5% of the aligned sequences. LP-010 and LP-013 are Siphoviridae phages with
elongated capsids measuring 66 by 133 nm and 58 by 129 nm, respectively, and tail
lengths of 167 nm (Fig. 1).

Data availability. These phages are under BioProject number PRJNA544516
(BioSample numbers SAMN12053434, SAMN12053435, and SAMN12053437). Raw reads
were deposited in the SRA (SRR9597079, SRR9597080, and SRR9597081) and the
annotated genomes in GenBank (accession numbers MN114082, MN114083, and
MN128593).
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