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Abstract

Background: Conclusive association entities (CAEs) in a biomedical article a are those biomedical entities (e.g.,
genes, diseases, and chemicals) that are specifically involved in the associations concluded in a. Identification of
CAEs among candidate entities in the title and the abstract of an article is essential for curation and exploration of
conclusive findings in biomedical literature. However, the identification is challenging, as it is difficult to conduct
semantic analysis to determine whether an entity is a specific target on which the reported findings are conclusive
enough.

Results: We investigate how five types of statistical indicators can contribute to prioritizing the candidate entities
so that CAEs can be ranked on the top for exploratory analysis. The indicators work on titles and abstracts of
articles. They are evaluated by the CAEs designated by biomedical experts to curate entity associations concluded
in articles. The indicators have significantly different performance in ranking the CAEs identified by the biomedical
experts. Some indicators do not perform well in CAE identification, even though they were used in many techniques for
article retrieval and keyword extraction. Learning-based fusion of certain indicators can further improve performance.
Most of the articles have at least one of their CAEs successfully ranked at top-2 positions. The CAEs can be visualized to
support exploratory analysis of conclusive results on the CAEs.

Conclusion: With proper fusion of the statistical indicators, CAEs in biomedical articles can be identified for exploratory
analysis. The results are essential for the indexing of biomedical articles to support validation of highly related conclusive
findings in biomedical literature.
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Introduction
Conclusive association entities (CAEs) in a biomedical
article a are those biomedical entities (e.g., genes, dis-
eases, and chemicals) that are specifically involved in the
associations concluded in a. Consider the article in
Table 1 as an example (ID in the search engine PubMed
is 6,492,995). The article is curated by CTD (Compara-
tive Toxicogenomics Database), which maintains a data-
base of associations between chemicals, genes, and
diseases [1]. An association is curated only if CTD scien-
tists verify that conclusive evidences are reported to sup-
port the association. The article mentions seven entities
in the set of entities considered by CTD. With this art-
icle, several associations are curated: the gene prolactin
interacts with two chemicals 2-bromolisuride and

lisuride; while the disease hyperprolactinaemia has a
‘marker’ association with two chemicals 2-bromolisuride
and reserpine, as well as a ‘therapeutic’ association with
the chemical lisuride. These chemicals as well as the
gene and the disease can thus be CAEs of the article.
Other entities in the article are non-CAEs: Dopamine is
not a specific target on which the conclusions are made,
while transdihydrolisuride is an entity on which the re-
ported findings may not be conclusive enough (as its ef-
fects may change in different conditions).
As CAEs are the entities on which conclusions of an art-

icle are made, identification of CAEs is essential for the
analysis of highly related conclusive findings in biomedical
literature. Biomedical scientists are often concerned with
conclusive findings on specific entities. For example, CTD,
GHR (Genetic Home Reference), and OMIM (Online
Mendelian Inheritance in Human) recruit many experts to
frequently update their entity association databases by
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carefully searching for those articles whose main findings
support the associations [2–4].
However, among the candidate entities in the title and

the abstract of an article, identification of CAEs is chal-
lenging. For the article in Table 1, it is difficult to iden-
tify the specific targets and then estimate how conclusive
the findings on the targets are (recall that Dopamine
and transdihydrolisuride are not specific entities on
which the reported findings are conclusive enough). For
another example, consider the article in Table 2. This
article mentions eight entities, and with this article,
CTD curates two associations: the disease Parkinson’s
disease has a ‘marker’ association with two chemicals
MPTP and Trichloroethylene. The disease and the two
chemicals are thus CAEs, and the other five entities are
non-CAEs. These CAEs are discussed in different ways,
and both CAEs and non-CAEs may appear at any parts
of the article, including the title of the article. For ex-
ample, Parkinsonism appears at the title of the article,
but it is not a CAE (based on the curation done by CTD
scientists). Parkinsonism refers to a group of neuro-
logical disorders that cause movement problems, but

this article focuses on Parkinson’s disease specifically,
because it investigates a neurodegeneration issue con-
cerning Parkinson’s disease, which is a neurodegenera-
tive brain disorder that causes the loss of motor control.
One possible way to tackle the challenges of identify-

ing CAEs is to build complete domain-specific know-
ledge, as well as intelligent and scalable discourse
understanding techniques that can determine whether
an entity is a specific target on which the reported find-
ings are conclusive enough. However, it is both difficult
and costly to build such domain-specific knowledge and
intelligent techniques, and no previous studies built
them to identify CAEs in biomedical articles.

Problem definition and contribution
In this paper, we investigate the development of those
techniques that, given candidate entities in the title
and the abstract of a biomedical article a, identify
CAEs in a for exploratory analysis. More specifically,
we investigate how five types of statistical indicators
can contribute to prioritizing the candidate entities so
that CAEs can be ranked on the top, without relying

Table 1 An article curated by CTD scientists. Five entities are identified as CAEs (see the boxed entities), which are the ones on
which conclusive associations in the article are presented. Two entities are non-CAEs (see the shaded entities): Dopamine is not a
specific target in the article, while transdihydrolisuride is an entity on which the findings may not be conclusive enough (see the
underlined part).
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on any domain knowledge and discourse analysis.
These indicators include:

(1) Frequency-based indicator: The indicator is
concerned with the frequencies of candidate entities
in article a. It is motivated by a hypothesis that
CAEs in an article tend to appear frequently in the
article. For example, in the examples discussed
above, some CAEs have higher frequencies in the
articles (e.g., 2-bromolisuride in Table 1 and
trichloroethylene in Table 2).

(2) Rareness-based indicator: The indicator is
concerned with how rarely the candidate entities (in
article a) appear in a collection of articles. An entity
that appears in few articles is said to appear rarely.
This indicator is motivated by a hypothesis that
specific (general) entities tend to be rare (frequent)

entity in articles. As noted above, specific entities in
an article are likely to be CAEs in the article,
making this indicator potentially helpful for CAE
identification.

(3) Co-occurrence-based indicator: The indicator is
concerned with how often a candidate entity
co-occurs with other entities in an article. It is
motivated by a hypothesis that an entity that
co-occurs with many other entities in an article
may be related to these entities, and hence is likely
to be a CAE in the article.

(4) Concentration-based indicator: The indicator is
concerned with how candidate entities (in article a)
concentrate in a collection of articles. An entity that
appears frequently in individual articles has a high
concentration in these articles. This indicator is
motivated by a hypothesis that an entity with a high

Table 2 Another article curated by CTD. Three entities are identified as CAEs (see the boxed entities). More entities are not
identified as CAEs (see the shaded entities), even though some of them appear at several places in the article, including the title.
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concentration in articles may be a target of these
articles, and hence it is likely to be a CAE of
another article as well.

(5) Locality-based indicator: The indicator is concerned
with the positions of candidate entities in article a.
It is motivated by a hypothesis that CAEs of an
article may tend to be mentioned at certain parts
that may be related to the goals and conclusions of
the article. Such parts may include the title (e.g.,
prolactin in Table 1 and trichloroethylene in
Table 2), the beginning part (e.g., 2-Br-LIS in
Table 1 and Parkinson’s disease in Table 2), and the
ending part (e.g., 2-Br-LIS in Table 1 and MPTP in
Table 2) of the article.

Obviously, these indicators cannot always succeed in
distinguishing CAEs from non-CAEs, because CAEs in
an article may be discussed in different ways in different
parts of the article. We thus have two research
questions:

(Q1) How does each indicator perform in identifying
CAEs?
(Q2) Can these indicators be fused to improve CAE
identification?

We investigate these questions by those articles that
biomedical experts believe to be targeted at specific as-
sociations among genes, diseases, and chemicals. Investi-
gation of these questions can provide fundamental
guidelines for the development of systems to index bio-
medical articles to support validation of highly related
conclusive findings in biomedical literature.

Related work
Our goal in this paper is to investigate how the five types
of statistical indicators can be used to prioritize entities
in titles and abstracts of articles so that CAEs, which are
specific entities involved in the entity associations con-
cluded in the articles, can be ranked on the top for ex-
ploratory analysis. To our knowledge, no previous
studies focused on the same goal, and hence we discuss
several types of related studies to clarify the contribu-
tions of the paper.

Extraction of biomedical entity associations
CAEs are those entities that are involved in specific as-
sociations concluded in an article, and hence CAE iden-
tification is related to the task of extracting associations
from the article. However, an association that happens
to be mentioned in an article is not necessarily the con-
clusive finding of the article, due to two reasons: (1) the
association may have been published, and it is men-
tioned in the article simply because it is related to the

background of the article (rather than the main finding
concluded in the article), and (2) the associated entities
may not be the specific targets on which the reported
findings are conclusive enough (e.g., the non-CAEs in the
last sentence of the article shown in Table 2). Therefore,
entities in an association extracted from an article are
not necessarily CAEs of the article. We aim at prioritiz-
ing candidate entities so that CAEs in the articles can be
ranked on the top.
Moreover, from a technical viewpoint, the statistical in-

dicators investigated in this paper may provide different
kinds of information to improve association extraction
techniques, which often extracted associations by prede-
fining a set of rules (e.g., [5–9]) and lexical-syntactic pat-
terns (e.g., [7, 8, 10, 11]). As performance of association
extraction was limited, various approaches were devel-
oped, such as integrating the rules and the patterns (e.g.,
[7–9, 12, 13]) and designing domain-specific rules and
patterns (e.g., for protein-protein interaction [14], protein
phosphorylation [15], and drug-drug interactions [16]).
These previous techniques strived to design and tune the
rule/pattern sets to consider the lexical, syntactic, seman-
tic, anaphoric, and discourse aspects of understanding
those sentences that might indicate associations. Instead
of striving to understand these sentences, the indicators
investigated in this paper rank CAEs based on statistical
analysis on how candidate entities individually appear in
the whole set of articles. Those entities that are ranked on
the top in an article are likely to be entities of the associa-
tions reported in the article. These indicators may thus
provide different types of information to further improve
association extraction, without relying on a complete and
scalable set of rules and patterns.

Indexing of biomedical articles
CAEs are different from those MeSH (Medical Subject
Heading) terms employed by PubMed to index articles.
For example, for the article in Table 1, PubMed employs
over ten MeSH terms as indexes, however many of them
are not in the above set of CAEs (e.g., Animals and
Ergolines) and some of the above CAEs are not
employed as indexes (e.g., Hyperprolactinaemia and
2-bromolisuride). Index terms for an article are not ne-
cessarily those CAEs that biomedical experts employ to
curate specific associations concluded in the article.
Identification of CAEs in an article is thus different from
indexing (labeling or classification) of the article with
MeSH terms, which was a goal of many previous studies
(e.g., techniques reported in the BioASQ workshop [17]
and the Medical Text Indexer tool [18]).

Ranking of entities
We model CAE identification as an entity ranking task,
which aims at prioritizing candidate entities so that
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CAEs in an article can be ranked on the top. Many pre-
vious studies focused on entity ranking as well. However
they have various goals different from ours in the paper.
Entity ranking was ever defined as a task to find a

ranked list of entities that are of a specified type and
have a certain relationship with a given entity [19, 20]. It
was thus concerned with how a system ranked entities
in response to a query, which consisted of three ele-
ments: an input entity, the type of the target entity, and
a description of the relation. For example, to find “man-
ufacturers of vehicles used by UPS”, the input entity
may be “UPS”, the type of the target entity may be
“manufacturer”, and the relation description may be
“manufacturers of vehicles used by UPS” [20]. Many
techniques were developed (e.g., [21]), and several vari-
ants of the problem scenarios were investigated, such as
consdiering a chronologically ordered list of relevant
documents [22] and providing support sentences for the
entities retrieved [23]. When compared with these previ-
ous studies, we have a different goal: finding CAEs in a
given article (rather than for a query). To identify the
CAEs, no query is entered as input.
Another scenario of entity ranking was concerned with

the ranking of entities in a given set D of documents,
based on several factors such as the probability of the
topics discussed in D as well as the correlation between
the topics and the entities [24]. Therefore, its goal was
to identify “popular” topic entities in D, while we have a
different goal: finding those entities on which conclusive
findings are reported (rather than popular topic entities)
in an article (rather than a document collection).
Many previous studies aimed at ranking (extracting)

entities (keywords) in an article as well, however their
goals were different from ours as well. In the biomedical
domain, the MetaMap indexing tool (MMI) was a com-
ponent of Medical Text Indexer to index (label) articles
with MeSH terms [18]. MMI only worked on MeSH
terms in an article [25]. It employed the depth of each
term in the MeSH tree as a critical factor to rank MeSH
terms [25]. Therefore, effective techniques need to be
developed to deal with those entities not in MeSH but in
other ontologies (e.g., OMIM and the Entrez-Gene data-
base, which are considered by curators of CTD [26]).
We investigate potential contributions of five types of
statistical indicators to identifying CAEs from various
ontologies.
Another interesting feature of our goal is to identify

CAEs in titles and abstracts of articles, which are more
commonly available than full texts of the articles. Many
previous studies worked on full texts of biomedical arti-
cles to identify important entities or keywords [27, 28].
For example, BioCreative defined entity ranking as a task
of identifying important genes in a full-text article [27].
Important genes were those genes whose experimental

settings contributed to main assertions of the article,
and hence were essential for biomedical information
curation [27]. Participants of BioCreative employed vari-
ous strategies to rank genes, however many of the strat-
egies cannot work well when only titles and abstracts are
available (e.g., preferring those genes in the abstract, fig-
ure legends, table captions, or certain sections of the art-
icle [27]). As titles and abstracts are more commonly
available than full texts, the techniques developed in the
paper can be applicable to more articles. In the title and
the abstract of an article, several entities may be related
to experimental assertions of the article, but they are not
necessarily CAEs, based on the curation done by CTD
experts. Only specific entities on which conclusive find-
ings are reported were selected as CAEs (recall that
Lisuride was a CAE but Dopamine was not in Table 1;
Parkinson’s disease was a CAE but Parkinsonism was
not in Table 2).
We are thus concerned with the potential contribu-

tions of the five types of statistical indicators to ranking
entities in titles and abstracts of articles. Some types of
the indicators were considered by previous keyword
rankers (extractors) as well. For example, a frequency--
based indicator was employed to select keywords [25].
Integration of frequency-based and rareness-based indi-
cators was one of the best techniques to extract key-
words in articles [29, 30]. A locality-based indicator was
employed by preferring those terms appearing in the
title of a biomedical article [25]. A co-occurrence-based
indicator was employed by keyword extractors in the
biomedical domain [28], as well as other domains such
as news [30, 31], computer science [32], and artificial
intelligence [29].
When compared with these keyword rankers, we in-

vestigate how more types of indicators (and their fusion)
perform in identifying those CAEs that are involved in
the entity associations concluded in biomedical articles.
Interestingly, we find that the indicators do not neces-
sarily perform well in identifying the CAEs, and
learning-based fusion of the indicators can further im-
prove performance (ref. Results).

Retrieval of articles for specific entities
Retrieval of relevant articles for a query term (entity) is
often based on the estimation of the relatedness between
the term and each article. A CAE identifier requires such
a relatedness estimation component as well. However,
when compared with article retrievers, instead of retriev-
ing articles for a query entity, a CAE identifier con-
versely finds entities that are related to the conclusive
findings of a given article. Therefore, although article re-
trievers do not aim at CAE identification, some of their
term-article relatedness components may have potential
contributions to CAE identification.
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The frequency-based and the rareness-based indicators
were routinely considered by biomedical article re-
trievers. Among the previous article retrievers that con-
sidered the two indicators, BM25 [33] was one of the
best techniques in finding biomedical articles [34]. A
concentration-based indicator was considered by an art-
icle retriever ES, which was tested in [35] and found to
be one of the best biomedical articles retrievers [36].
Locality-based indicators were employed by many article
retrievers, which preferred those articles in which the
entities of interest appeared at certain parts of the arti-
cles, including the titles, the first sentences, and the last
sentences of the articles [26, 37, 38]. Similar locality in-
formation was employed to retrieve articles about spe-
cific gene-disease associations [39] and estimate
inter-article similarity [40]. The locality-based informa-
tion was also used to extract text passages (e.g., sen-
tences) about gene functions [41] and evidence-based
medicine [42].
Note that the previous article retrievers also employed

several indicators that are helpful for article retrieval but
not CAE identification. We thus do not investigate them
in this paper. For example, PubMed considered the
query length as an indicator to improve article retrieval
[38]. This indicator is query-specific without providing
helpful information to CAE identification in which no
input query is assumed. Similarly, we do not investi-
gate article-specific indicators, such as the article
length, as well as the field length (e.g., the lengths of
the title and the abstract), publication type, and publi-
cation year, which were considered by PubMed [38].
They are not helpful for CAE identification, which
aims at finding CAEs in a given article, rather than
ranking multiple articles with different article-specific
characteristics.

It is thus interesting to identify those indicators that
have potential contributions to CAE identification, and
investigate how they really perform in CAE identifica-
tion. We identify the five types of indicators based on
the observation of how CAEs may appear in biomedical
articles. These indicators are investigated both individu-
ally and collectively, and case studies are conducted to
further investigate their practical contributions to cur-
ation of biomedical databases.

Methods
The steps to conduct the research include (1) selection
of the potential indicators for CAE identification, (2) fu-
sion of the indicators, and (3) performance evaluation.

Potential indicators
Table 3 defines the five types of indicators investigated
in the paper. The first indicator is TF (term frequency),
which is a frequency-based indicator. It counts the num-
ber of times an entity appears in an article. As CAEs in
an article may appear frequently in the article, one may
expect that an entity with a high TF is likely to be a
CAE of the article. The second indicator is IDF (inverse
document frequency), which is a rareness-based indica-
tor. An entity that appears in fewer articles will have a
larger IDF, which may also indicate that the entity is
more specific. As CAEs in an article a tend to be specific
ones, we expect that an entity with a higher IDF is likely
to be a CAE in a.
The third indicator is CoOcc, which is a

co-occurrence-based indicator. Following [28], it is de-
fined in Eq. 1. For an entity e in an article a, CoOcc is
the sum of the probabilities of e co-occurs with other
entities in sentences in a. One may expect that an entity

Table 3 Definitions of individual indicators

Type Indicator Definition

(1) Frequency-based TF TF(e, a) = Number of times e appears in a

(2) Rareness-based IDF IDFðeÞ ¼ Log2
jAjþ1½i�

DFðeÞþ1½ii�

(3) Co-occurrence-based CoOcc
CoOccðe; aÞ ¼

X
x∈a;x≠e

jSe∩xðaÞj½iii�
jSeðaÞj½iv�

(4) Concentration-based AvgTF AvgTFðeÞ ¼ cðe;CÞ½v�
DFðeÞ

(5) Locality-based TITLE
TITLEðe; aÞ ¼ 1; if e appears in title of a;

0; otherwise:

�

AbstractX
AbstractXðe; aÞ ¼

1; if e appears in the first X or Last X
sentences in abstract of a;

0; otherwise:

8<
:

[i] |A| = Number of articles in the collection of articles C;
[ii]DF(e) = Number of articles (in C) mentioning e;
[iii]Se∩x(a) = Set of sentences (in a) that e and x co-occur;
[iv]Se(a) = Set of sentences (in a) mentioning e;
[v]c(e,C) = Number of times e appears in articles in C
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with a larger CoOcc in an article a may be related to
more entities in a, and hence is likely to be a CAE in a.
The fourth indicator is AvgTF, which is a

concentration-based indicator. For an entity e, AvgTF is
the micro average frequency of e appearing in a collec-
tion of articles. An entity with a larger AvgTF in a collec-
tion of articles may be a target of these articles, and
hence it is likely to be a CAE of articles as well.
The fifth and the sixth indicators are TITLE and

AbstractX, which are locality-based indicators. For an
entity e in an article a, TITLE is concerned with whether
e appears in the title of a, while AbstractX is concerned
with whether e appears in the first X or last X sentences
in the abstract of a. As the title, the first sentences, and
the last sentences of an article are often treated as crit-
ical parts for retrieval of biomedical articles [26, 37, 38],
one may expect that an entity with larger TITLE and
AbstractX is likely to be a CAE of a.

Fusion of the indicators
Proper fusion of the above indicators may improve CAE
identification. We thus investigate two kinds of fusion
strategies: learning-based strategies and typical strat-
egies. For the learning-based strategies, we employ Ran-
kingSVM [43], which is one of the best techniques
routinely used to integrate multiple indicators by SVM
(Support Vector Machine) to achieve better ranking
(e.g., [36, 44]). We employ SVMrank [45] to implement
RankingSVM. All the indicators are integrated by Ran-
kingSVM. Different combinations of the indicators are
also tested to identify the best ways to fuse the
indicators.
For the typical fusion strategies, Table 4 summarizes

several indicators that are defined based on
state-of-the-art keyword extractors and article retrievers.
The first type of typical strategies fused the
frequency-based (TF) and rareness-based (IDF) indica-
tors. TFIDF and BM25e are two indicators of this type.
TFIDF is the product of TF and IDF. It was found to be
one of the best techniques to extract keywords in articles
[29, 30]. BM25e is defined based on BM25, which was
found to be one of the best techniques to retrieve

biomedical articles [34]. It employs Eq. 1 to estimate the
similarity between and entity e and an article a, where k1
and b are two parameters, |a| is the number of terms in
article a (i.e., length of a), and avgal is the average
length of a collection of articles.

BM25e e; að Þ ¼ TF e; að Þ k1 þ 1ð Þ
TF e; að Þ þ k1 1−bþ b

aj j
avgal

� � IDF eð Þ

ð1Þ

The second type of typical strategies fused frequency-
based, rareness-based, and concentration-based indica-
tors. ESe is an indicator of this type. It is defined based
on ES, which was one of the best techniques to retrieve
biomedical articles as well [36]. ESe employs Eq. 2 to es-
timate the similarity between and entity e and an article
a, where, where DF(e) is the number of articles contain-
ing e (i.e., document frequency of e); C is a collection of
articles; N is the total number of articles in C; c(e,C) is
the number of times e appears in C. Therefore, ESe im-
plements a concentration-based indicator by the ratio of
c(e,C) to DF(e), which measures how e concentrates in
articles by computing the micro average TF of e in the
articles.

ESe e; að Þ ¼ TF e; að Þ

TF e; að Þ þ 0:45 �
ffiffiffiffiffiffiffiffiffiffiffi
aj j

avgdl

s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c e;Cð Þ
DF eð Þ

� �3

� N
DF eð Þ

s
ð2Þ

The third type of typical strategies fused
frequency-based and locality-based indicators. CCSEe
and eGRABe are two indicators of this type. CCSEe is
defined based on a locality-based biomedical article re-
triever CCSE (core content similarity estimation [40]).
The CCSEe score of an entity e in an article a is the sum
of three factors concerning how e is related to the goal,
background, and conclusion of a. The factors are defined

Table 4 Typical strategies to fuse the indicators
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as linear weights that are derived based on the positions
of e in a (for detailed definitions for the linear weights,
the reader is referred to [40]). For example, e is related
to the goal of a if it occurs in the title of a; e is related
to the background of a if it occurs in the beginning part
of the abstract of a; and e is related to the conclusion of
a if it occurs in the ending part of the abstract of a.
Similarly, eGRABe considers locality information as well.
It is defined based on a gene article retriever eGRAB
(extractor of gene-relevant abstracts [37]). The eGRABe
score of an entity e in an article a is increased by 1 if (1)
e appears in a at least three times; (2) e appears in the
title of a; or (3) e appears in first X or last X sentences
in the abstract of a. We set X to 1 ~ 3, and hence have
three respective versions: eGRABe-1, eGRABe-2,
eGRABe-3. Note that, in addition to the locality-based
information of an entity, both CCSEe and eGRABe have
incorporated frequency-based information as well, be-
cause an entity with multiple occurrences in different
parts of an article will get amplified scores.

Performance evaluation
The data
Experimental data is collected from CTD (available at
http://ctdbase.org/), which recruits biomedical experts
to maintain a database of biomedical articles with main
research focuses on associations between chemicals,
genes, and diseases [1, 26]. CTD recruited and trained a
number of biomedical experts to curate the associations
with a controlled vocabulary. An experiment showed
that the experts achieved a high degree of agreement in
selecting articles to curate (77% agreement among all
curators, and 85% average agreement between every two
curators), with good accuracy in curating associations in
the articles (average precision and recall were 0.91 and
0.71 respectively) [26]. Associations curated by CTD ex-
perts are also reviewed for quality control before they
are released [26].
We thus evaluate how CAEs curated by the experts

are identified by systems. We randomly sample 300 en-
tities from three kinds of association files in CTD:
<chemical, gene>, <chemical disease>, and < gene, dis-
ease>. For each entity e all associations involving e are
collected. These associations can serve as the basis to
comprehensively collect test articles. For each of the as-
sociations, we collect all articles that CTD experts se-
lected to curate the association. For each article a, we
collect all associations that CTD experts curated with a.
Entities involved in these associations can thus be the
CAEs in a (i.e., the gold standard for a). We totally have
60,507 articles with their CAEs appearing in their titles
or abstracts (see Additional file 1). These articles
amount to about 50% of all articles in CTD.

As we are evaluating how systems perform in identify-
ing CAEs among a given set of candidate entities in an
article, candidate entities in each article should be iden-
tified. For our evaluation purpose, the candidate entities
need to be identified based on the vocabulary of CTD,
because CTD experts have employed this vocabulary to
curate CAEs in the articles. Other potential entities not
in the vocabulary are beyond the scope of consideration,
because whether they are CAEs in the articles is not
verified by domain experts.
More specifically, this vocabulary comprehensively in-

cludes about 2.5 million (2,535,754) terms for the names,
symbols, and synonyms of entities of three types: genes,
diseases, and chemicals. They are selected and modified
from multiple sources, such as MeSH (for chemicals and
diseases), the Entrez-Gene database (for genes, devel-
oped by National Center for Biotechnology Information),
and OMIM (for diseases) [26]. The vocabulary is thus
“customized” for the curation purpose of CTD (e.g., en-
tities for species-specific entities are added, while some
entities not considered by CTD are removed [46–48]).
Candidate entities in each article are mapped to their
IDs by a dictionary-based normalization approach,
which was employed by many previous studies as well
(e.g., [6, 49, 50]). To further fit the approach to our
evaluation purpose, given an article a, all terms that are
CAEs of a are first mapped to their corresponding entity
IDs, as the existence of the entities in a has been con-
firmed by CTD experts. Other terms are then identified
by checking whether official symbols or names of en-
tities in the vocabulary appear in a; and if no, synonyms
of entities are checked. Moreover, authors of articles
often employ their own abbreviations (or symbols) to
represent an entity. For example, the article in Table 1
contains several “author-defined” abbreviations
expressed in parentheses, such as DA (for dopamine),
LIS (for lisuride), and TDHL (for transdihydrolisuride).
We thus map these abbreviations to their corresponding
entity IDs as well.
As noted above (ref. Fusion of the indicators), we also

investigate several learning-based strategies to fuse indi-
vidual indicators, and hence we require training data to
train the fusion systems. We thus evenly split the 60,507
articles into five parts on which 5-fold cross validation is
conducted. In each experiment fold, a part of the data is
used for testing while the other four parts are used for
training, and the cross-validation process is repeated five
times, with each of the five parts being used exactly once
as testing data.

Evaluation criteria
As the systems aim at prioritizing candidate entities in
an article so that CAEs of the article can be ranked on
the top, we employ three evaluation criteria to measure
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how CAEs are ranked high. The first criterion is mean
average precision (MAP), which is defined in Eq. 3,
where |A| is the number of test articles in the experi-
ment (i.e., |A| = 60,507), ki is number of entities that are
believed (by CTD experts) to be CAEs of the ith article,
and Seeni(j) is the number of entities whose ranks are
higher than or equal to that of the jth CAE for the ith art-
icle. Therefore, AP(i) is actually the average precision
(AP) for the ith article. It is the average of the precision
when each CAE is seen in the ranked list. Given an art-
icle, if a system can rank higher those CAEs in the art-
icle, AP for the article will be higher. MAP is simply the
average of the AP values for all test articles.

MAP ¼

XjAj
i¼1

AP ið Þ

j A j ; AP ið Þ ¼

Xki
j¼1

j
Seeni jð Þ
ki

ð3Þ

The second criterion is average precision at top-X
(Average P@X, see Eq. 4), which is the average of the
P@X values for all test articles. P@X is the precision
when top-X entities are shown to the readers (see Eq. 5).
Therefore, when X is set to a small value, P@X measures
how a system ranks CAEs very high. In the experiments,
we set X to 1, 3, and 5.

Average P@X ¼

XjAj
i¼1

P@X ið Þ

j A j ð4Þ

P@X ið Þ

¼ Number of top‐Xentities thatare CAEs in the ith article
X

ð5Þ

The third evaluation criterion is %P@X > 0, which is
the percentage of the test articles that have at least one
CAE ranked at top-X positions (X = 1, 2 and 3). It can
be a good measure to indicate whether a system can suc-
cessfully identify CAEs for a large portion of the test ar-
ticles. This measure is of practical significance, because
a CAE identification system can provide practical sup-
port to biomedical researchers only if it can successfully
identify CAEs for most articles.

Results
We separately present the experimental results, which
aim at answering the two research questions (Q1 and
Q2) respectively. Case studies are also conducted to
show how the identified CAEs can be visualized to sup-
port exploratory analysis for curating biomedical
databases.

Q1: How does each indicator perform in identifying CAEs?
Figure 1 shows the performance of each individual indi-
cator in CAE identification. To verify whether the per-
formance differences between two indicators are
statistically significant, we conduct paired t-test with
99% as the confidence level. The results show that the
concentration-based indicator (i.e., AvgTF) performs sig-
nificantly better than all the other indicators.

Fig. 1 Performance of individual indicators: The concentration-based indicator (i.e., AvgTF) performs significantly better than all the other
indicators (‘•’ denotes that the indicator performs significantly better than others)
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We further analyze each indicator by investigating
how CAEs and non-CAEs distribute with the informa-
tion provided by each indicator. For an indicator c, Eq. 6
is used to compute the probability of CAEs whose values
(estimated by c) fall in a specific interval. Similarly, Eq. 7
is defined for the probability of non-CAEs. Therefore,
given an indicator c, these probabilities aim at measuring
the “prevalence rate” of CAEs and non-CAEs in each
interval. Moreover, we are also concerned with the prob-
ability gain of finding CAEs (ProbGain) in each interval
(see Eq. 8). It is the difference between the probability of
finding CAEs in an interval and the overall probability
of finding CAEs. Therefore, a positive (negative) Prob-
Gain in an interval indicates that it is generally more
(less) likely to find CAEs in the interval.

Pi CAEð Þ ¼ Number of CAEs that fall in interval i
Total number of CAEs in all articles

ð6Þ

Pi NonCAEð Þ ¼ Number of non‐CAEs that fall in interval i
Total number of non‐CAEs in all articles

ð7Þ

ProbGaini ¼ Number of CAEs in interval i
Number of entities in interval i

−
Number of CAEs in all articles

Total number of entities in all articles
ð8Þ

Figure 2 shows how CAEs and non-CAEs distribute
with the information provided by CoOcc. The two
dashed lines respectively show the prevalence probabil-
ities of CAEs and non-CAEs. They indicate that CAEs
and non-CAEs mainly fall in the area where 0 <CoOcc ≤
10. However in this area, ProbGain oscillates around
zero with small absolute values. Therefore, most CAEs
and non-CAEs have similar CoOcc values, making
CoOcc less capable of distinguishing CAEs from
non-CAEs. Given that co-occurrence-based information
was found to be one of the best information to extract
keywords [29, 30], the result show that it is not necessar-
ily quite helpful for identifying CAEs in biomedical
articles.
Figure 3 shows how CAEs and non-CAEs distribute

with the information provided by the locality-based indi-
cators (i.e., AbstractX and TITLE). Positions of entities

Fig. 2 Analysis of the co-occurrence-based indicator (CoOcc): Both CAEs and non-CAEs mainly fall in the area where 0 < CoOcc≤ 10 (see the two
dashed lines), however in this area, probability gain of finding CAEs (ProbGain) oscillates around zero with small absolute values (see the solid
line), and hence most CAEs and non-CAEs have similar CoOcc values. This is the reason why CoOcc is less capable of distinguishing CAEs
from non-CAEs
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can be measured in terms of words or sentences. An ab-
stract is divided into 20 parts, and in each part we com-
pute the prevalence probabilities of CAEs and
non-CAEs, as well as ProbGain. The results show that,
when considering the abstracts of the articles, both
CAEs and non-CAEs have somewhat uniform distribu-
tions at different positions, and they have very similar
distributions (and hence ProbGain in the abstract parts
oscillates around zero with small absolute values).
Therefore, although the first sentences and the last sen-
tences of abstracts were used to retrieve biomedical arti-
cles [26, 37, 40], they are not necessarily quite helpful
for CAE identification. On the other hand, TITLE works
better, as CAEs are more likely to appear in titles than

non-CAEs. However, TITLE has weaknesses as well, be-
cause most CAEs do not appear in titles (as shown in
the leftmost part of Fig. 3, only 11.4% of CAEs appear in
titles).
Figure 4 shows how CAEs and non-CAEs distribute

with the information provided by the rareness-based in-
dicators (i.e., IDF). The IDF spectrum is divided into 20
parts. IDF values of non-CAEs fall in the whole
spectrum, however nearly no CAEs have IDF values fall-
ing in the lower 30% part. ProbGain of IDF thus
oscillates more dramatically than those of the
co-occurrence-based and locality-based indicators noted
above, making IDF more helpful for CAE identification,
especially for those entities with lower IDF values.

a

b

Fig. 3 Analysis of the locality-based indicators (AbstractX and TITLE): Positions of entities can be measured in terms of words or sentences, as
shown in (a) and (b) respectively. When compared with non-CAEs, CAEs are more likely to appear in titles of articles, as shown in the left-most
parts of (a) and (b). On the other hand, when considering the abstracts of the articles, both CAEs and non-CAEs have somewhat uniform
distributions at different positions, and moreover they have very similar distributions (see the two overlapping dashed lines). Therefore, TITLE
works better than AbstractX in distinguishing CAEs from non-CAEs (see the solid line). However, TITLE has weaknesses as well, because most CAEs
do not appear in the titles of articles (only 11.4% of CAEs appear in the titles)
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However, many entities have IDF values fall in the mid-
dle parts of the spectrum (i.e., between 35 and 65%). For
these entities, IDF may not work well.
Figure 5 shows how CAEs and non-CAEs distribute

with the information provided by the frequency-based
indicator (TF). Most entities have TF values less than 6.
Most non-CAEs have TF = 1, and ProbGain of finding
CAEs becomes large when TF ≥ 4 (see the solid line). TF
thus performs well in identifying CAEs whose TF = 1 or
TF ≥ 4. However, many entities have TF values falling be-
tween 2 and 3, and for these entities TF has difficulty in
distinguishing them (absolute value of ProbGain is small
for TF = 2 or 3). Therefore, although it is reasonable to
retrieve articles for an entity by preferring those articles
in which the entity appears at least three times [37], this
strategy may not be suitable for identifying CAEs.
Figure 6 shows how CAEs and non-CAEs distribute

with the information provided by the concentration--
based indicator (AvgTF). The AvgTF spectrum is divided
into 20 parts, and most CAEs have AvgTF values falling
between 10 to 40% of the maximum AvgTF, while most
non-CAEs have AvgTF values falling below 10% of the
maximum AvgTF. Therefore, when compared with other
indicators, AvgTF has ProbGain that oscillates more dra-
matically, making it more capable of distinguishing
CAEs from non-CAEs.

Table 5 summarizes the potential and the limitation of
each indicator in CAE identification. In conclusion,
these indicators have significantly different performance
in CAE identification. AvgTF has significantly better per-
formance than all other indicators. Concentration of an
entity in a collection of articles is thus a good way to
distinguish CAEs from non-CAEs. CoOcc and AbstractX
are less capable of distinguishing CAEs from non-CAEs,
although they have been used in many article retrievers
and keyword extractors. Other indicators may have their
own weaknesses as well, especially when identifying
CAEs with different statistical characteristics.

Q2: Can these indicators be fused to improve CAE
identification?
It is thus interesting to fuse the indicators to further im-
prove performance. A poorer indicator may still contrib-
ute, especially if it can provide helpful information that
is not provided by other indicators. Figure 7 shows the
performance of the typical fusion strategies. As noted
above (ref. Fusion of the indicators), all the fusion strat-
egies consider TF, however they have significantly differ-
ent performance.
CCSEe and eGRABe, which considers both TF and

locality-based information, perform even worse than TF.
They have lower MAP than TF (CCSEe: 0.6329;

Fig. 4 Analysis of the rareness-based indicator (IDF): IDF values of non-CAEs fall in the whole IDF spectrum, while nearly no CAEs have low IDF
values (see the two dashed lines). IDF may thus be a useful indicator for CAE identification, especially for those entities with lower IDF values (i.e.,
the lower 30% of the IDF spectrum, see the solid line for probability gain of finding CAEs). However, many entities have IDF values fall in the
middle parts of the spectrum (i.e., between 35 and 65%). For these entities, IDF may not work well (see the solid line for ProbGain)
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eGRABe-3: 0.6500; but TF: 0.6633, ref. Fig. 1). As noted
above (ref. Fusion of the indicators), CCSEe and
eGRABe are respectively based on two article retrievers
CCSE [40] and eGRAB [37]. They consider TF and
TITLE, which are helpful indicators in certain cases (ref.
Fig. 3, and ref. Fig. 5). However, TF has weaknesses as
well because many CAEs and non-CAEs have TF values
falling between 2 and 3 (as noted in the discussion for
Fig. 5). CCSEe and eGRABe cannot properly tackle this
weakness, even though they also consider the positions
of entities in the abstract, which are less helpful for CAE
identification (ref. the poor performance of AbstractX,
noted in the discussion for Fig. 3).
BM25e and TFIDF, which fuse TF and the

rareness-based indicator IDF, can successfully improve
TF. TFIDF performs better than BM25e, which fuses TF
and IDF in a more complicated way (ref. Equation 1).
TFIDF performs significantly better than others in Aver-
age P@1 and P@2, but not Average P@3 and MAP. On
the other hand, ESe fuses TF, IDF, and the
concentration-based indicator (AvgTF). It performs sig-
nificantly better than others in Average P@3 and MAP.
However, it does not further improve Average P@1 of
AvgTF (ESe: 0.6809 vs. AvgTF: 0.6979, ref. Figure 7 and
Fig. 1). Therefore, both TFIDF and ESe have their

weaknesses in CAE identification as well, although they
are respectively defined based on the best keyword ex-
tractors and article retrievers (ref. Fusion of the
indicators).
It is thus interesting to investigate other ways to

fuse the indicators properly. Figure 8 shows the con-
tribution of learning-based fusion by SVM. All the six
indicators defined in Table 3 are fused (for the
AbstractX indicator, we employ Abstract2, as it is the
best setting for AbstractX, ref. Figure 1). Contribution
of an indicator to the fused system can be investi-
gated by removing it from the fused system. The re-
sults show that removal of a better indicator tends to
deteriorate performance more seriously. ALL-Ab-
stract2, which fuses all indicators except for Ab-
stract2, performs better than all others, including
ALL, which fuses all the six indicators. Further Re-
moving CoOcc from ALL-Abstract2 gets poorer per-
formance. The performance differences between
ALL-Abstract2 and others are statistically significant,
except for ALL-CoOcc on Average P@1. Therefore, it
may not be necessary to fuse all the six indicators.
Without the locality information provided by Ab-
stract2, collaboration of the other five indicators has
been good in distinguishing CAEs from non-CAEs.

Fig. 5 Analysis of the frequency-based indicator (TF): Most entities have TF less than 6 (see the two dashed lines). Most non-CAEs have a TF value
equal to 1, and probability gain of finding CAEs (ProbGain) becomes large when TF ≥ 4 (see the solid line). TF thus performs well in identifying
CAEs whose TF= 1 or TF≥ 4. However, many entities have TF values falling between 2 and 3, and for these entities TF has difficulty in distinguishing
CAEs from non-CAEs
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Moreover, as noted above, the two best typical fusion
strategies TFIDF and ESe have weaknesses. ALL-Ab-
stract2 tackles the weaknesses by learning-based fusion
of five indicators. It performs significantly better than all
the typical fusion strategies. There are 9.6% improve-
ment in Average P@1 (0.7934 vs. 0.7239 by TFIDF);
10.9% improvement in Average P@2 (0.6989 vs. 0.6302
by TFIDF); 8.5% improvement in Average P@3 (0.6153
vs. 0.5669 by ESe); and 8.3% improvement in MAP
(0.7824 vs. 0.7226 by ESe).

Figure 9 investigates how CAEs are ranked at top posi-
tions for a large percentage of articles (i.e., %P@X > 0,
ref. Evaluation criteria). For 92.46% of the articles,
ALL-Abstract2 ranks at least one of their CAEs at top-2
positions. The percentage achieved by randomly ranking
the entities is only 42.33%. TFIDF and ESe, which have
better MAP noted above, do not necessarily perform
better than the best individual indicator AvgTF in
%P@X > 0, especially when X is 2 and 3. ALL-Abstract2
performs better than them as well. The results are of

Fig. 6 Analysis of the concentration-based indicator (AvgTF): Most CAEs have AvgTF values falling between 10 to 40% of the maximum, while
most non-CAEs have AvgTF values falling below 10% of the maximum (see the two dashed lines). Therefore, probability gain of finding CAEs
(ProbGain) oscillates more dramatically with larger absolute values (see the solid line), and hence AvgTF performs better than all the other
indicators in CAE identification

Table 5 Summary of the performance of each indicator

Indicator Potential in CAE identification Limitation in CAE identification

TF TF works well for those entities whose TF = 1 or TF≥ 4, as non-CAEs
tend to have TF = 1, and few of them have TF ≥ 4.

Many CAEs and non-CAEs have TF values falling between 2 and 3.

IDF IDF values of non-CAEs fall in the IDF spectrum, while nearly no
CAEs have IDF values falling in the lower 30% part, making IDF help-
ful to filter out non-CAEs with lower IDF values.

Many CAEs and non-CAEs have IDF values fall in the middle parts of
the spectrum (i.e., between 35 and 65%).

CoOcc None. CAEs and non-CAEs tend to have similar CoOcc values.

AvgTF CAEs tend to have AvgTF > 10% of the maximum AvgTF, while non-
CAEs tend to have AvgTF≤ 10% of the maximum.

None.

TITLE When compared with non-CAEs, CAEs are more likely to appear in
titles of articles.

Most CAEs do not appear in the titles of articles.

AbstractX None. CAEs and non-CAEs have somewhat uniform and similar distribu-
tions at different positions in the abstract.
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practical significance to stable identification of CAEs for
most articles.
In conclusion, proper fusion of the indicators is not a

trivial task. Typical fusion strategies do not necessarily
have better CAE identification performance than

individual indicators, even though these fusion strategies
were employed by state-of-the-art article retrievers and
keyword extractors. Learning-based fusion by SVM is a
good way to fuse the indicators. However, it is not ne-
cessary to fuse all the indicators. Without the locality

Fig. 7 Fusion of indicators by typical strategies: All the typical strategies have considered the frequency-based indicator (TF). However, CCSEe and
eGRABe, which fuse TF and locality-based indicators, even deteriorates performance (TF has been able to achieve a higher MAP of 0.6633, ref. Fig. 1).
BM25e and TFIDF, which fuse TF and the rareness-based indicator IDF, can further improve performance. TFIDF performs significantly better than
others in Average P@1 and P@2 (‘•’ denotes that the indicator performs significantly better than others). ESe fuses TF, IDF, and the concentration-based
indicator (AvgTF). It performs significantly better than others in Average P@3 and MAP

Fig. 8 Fusion of indicators by SVM: All the six indicators are fused (see ALL), and removal of an indicator X from ALL is denoted as ALL-X. We find
that removal of a better indicator tends to deteriorate performance more seriously. ALL-Abstract2 performs significantly better than ALL (‘•’ denotes
that the indicator performs significantly better than others), indicating that it would be good to integrate all indicators except for Abstract2. It
performs significantly better than others except for ALL-CoOcc on Average P@1 (denoted by ‘ο’). It also performs significantly better than typical
fusion strategies (ref. Fig. 7)
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information collected from the abstracts of the articles,
collaboration of the other indicators has been able to
achieve significantly better performance, with most arti-
cles (over 92%) having at least one of CAEs successfully
ranked at top-2 positions.

Case studies
To further investigate potential contributions of the
identified CAEs, we conduct case studies to show how
the identified CAEs can be visualized to support cur-
ation of biomedical databases in practice. Visualization
of the CAEs identified from a collection of articles aims
at supporting the exploratory analysis of the CAEs. We
are motivated by a typical need of biomedical re-
searchers: analysis of a specific research finding is often
based on validation of the evidence recently published in
multiple articles with focuses on the finding. For ex-
ample, to curate a gene-disease association, GHR experts
need to check multiple articles focusing on the associ-
ation so that conflicting or unclarified information can
be excluded [51]. Therefore, the identified CAEs should
be visualized to support the exploration of how fre-
quently and recently the CAEs are published in articles,
as well as how two entities are CAEs in the same arti-
cles, which indicates that the two entities may be highly
related to each other.
More specifically, for each article, top-2 entities identi-

fied by ALL-Abstract2 are treated as CAEs of the article.
For each entity e, we compute two items: (1) frequency:
number of articles having e as a CAE, and (2) recency:

average publication year of these articles. A frequency-re-
cency map can thus be constructed to visualize the CAEs
(see Fig. 10a). With the map, researchers can have a glo-
bal view to navigate on the space of how frequently and
recently the CAEs are published in the articles. Consider
three CAEs that are published relatively frequently and
recently: cocaine (ID in CTD: D003042), resveratrol (ID
in CTD: C059514), and SIRT1 (sirtuin 1, ID in CTD:
23411). They are CAEs of 1838, 772, and 135 articles, re-
spectively. To investigate whether the results are helpful
for biomedical curators, for each CAE, Eq. 9 is used to
measure Jaccard similarity between the sets of articles
that are recommended by the system and CTD experts
respectively.

JaccardSimilarity A1;A2ð Þ ¼ j A1∩A2 j
j A1∪A2 j ð9Þ

Jaccard similarities for cocaine, resveratrol, and SIRT1
are 0.8796, 0.875, and 0.8252, respectively. The map can
thus serve as a helpful guide to the space of how fre-
quently and recently the CAEs are published in the
articles.
Moreover, given the map, two kinds of navigation can

be supported: focused view of an entity and zoom-in view
of multiple entities. The focused view is triggered for a
specific entity. As a case study, consider a focused view
of cocaine (ID in CTD: D003042), which is a CAE with
the largest frequency in Fig. 10a. This view focuses on

Fig. 9 Percentage of articles with CAEs ranked at top positions (i.e., %P@X > 0): For 92.46% of the articles, ALL-Abstract2 ranks at least one of their
CAEs at top-2 positions. The percentage achieved by randomly ranking the entities (i.e., the Random baseline) is only 42.33%. ALL-Abstract2 also
performs better than the best indicators noted in Figs. 1 and 7 (i.e., AvgTF, TFIDF, and ESe). It can thus be used to stably identify CAEs for most
articles in practice

Liu Journal of Biomedical Semantics            (2019) 10:1 Page 16 of 20



those articles with cocaine as a CAE (see Fig. 10b). It
provides a new frequency-recency map to show those
entities that are CAEs of those articles with cocaine as a
CAE. Therefore, with the focused-view map, researchers
can navigate through the information space of how co-
caine is related to other entities, as well as those articles
that report conclusive findings of both cocaine and the
related entities. For example, in Fig. 10b, seizures (ID in
CTD: D012640) is an entity with the largest frequency
(63 articles), indicating that many articles may have both
cocaine and seizures as CAEs, and hence the association
between cocaine and seizures deserves investigation. Ac-
tually CTD experts used almost all of these articles (61

out of the 63 articles) to curate this association. The fo-
cused view can thus support the curation task.
The zoom-in view is triggered by selecting a zone in

Fig. 10a. There are four zones derived by setting the
thresholds for the frequency and the recency. In Fig. 10a,
the frequency threshold is set to 100 articles, and the re-
cency threshold to the year of 2012. The four zones aim
at supporting different kinds of exploratory analysis. Fig-
ure 10c provides a zoom-in view on zone IV, which sup-
ports the navigation of those entities that are being
studied in fewer articles more recently. Navigation on this
zone can thus facilitate the validation of “emerging”
studies on these entities. As case studies, consider three

a

b

c

Zoom-in view 
of multiple 
entities 

Focused view of 
a specific entity

Fig. 10 Visualization of the CAEs identified for online exploration: (a) A frequency-recency map for the CAEs identified from a collection of articles;
(b) Focused view of a specific entity of interest (e.g., cocaine, which is a CAE of a large number of articles); (c) Zoom-in view of multiple entities
(e.g., Zone IV, which contains those entities being studied recently)
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CAEs of multiple articles published most recently. Each
of them is CAEs of two articles published in 2015: schi-
zandrol B (entity ID: C033585, article IDs: 25319358,
25,753,323), ETV6 (ETS variant 6, entity ID: 2120, article
IDs: 25581430, 25,807,284), and polyhexamethylenegua-
nidine (entity ID: C060540, article IDs: 25716161,
24,769,016). We find that CTD experts have employed
all these articles to curate these CAEs. The zoom-in view
can thus be helpful for the curation task as well.

Discussion
Application and suggestion
Identification of CAEs can be a new service provided by
biomedical search engines (e.g., PubMed), which rou-
tinely collect and preprocess articles for subsequent re-
trieval. For each collected article, the preprocessing
process of the search engines can be enhanced by com-
puting the individual and fused indicators for CAE iden-
tification. With the CAEs identified for each article, the
search engines can facilitate timely and comprehensive
dissemination of conclusive findings in biomedical litera-
ture. The new service can also be a good tool for bio-
medical researchers, curators (e.g., CTD, OMIM, and
GHR), and text mining systems that cross-validate con-
clusive findings on certain entities in multiple articles.
Visualization of CAEs by a frequency-recency map can

be a new service provided by biomedical search engines
as well. With the new service, researchers can explore
the space of CAEs in a collection of articles retrieved for
a specific query. The visualization strategy can also be
adopted by biomedical databases curated by experts,
such as those entity databases that are being maintained
by CTD and GHR. By setting a certain condition (e.g.,
frequency, recency, and entities of interest), researchers
can navigate on the space of highly related entities and
articles for exploratory analysis.
Another interesting application is the extraction of key

sentences in biomedical articles. Those sentences that
mention CAEs of an article may be the key sentences
that describe the main findings of the article. Extraction
of the key sentences is thus helpful for the identification
and mining of the main findings reported in biomedical
literature (e.g., mining associations among entities),
which are main goals of many biomedical information
extraction and mining systems.

Limitation and future research
As noted above (ref. The data), for our evaluation pur-
pose, candidate entities in articles are identified based
on the vocabulary of CTD, which contains millions of
terms for the names, symbols, and synonyms of genes,
diseases, and chemicals. The experimental setting pro-
vides reliable evidence for performance evaluation, be-
cause CTD has employed the vocabulary to curate CAEs

in the articles. Other entities not in the vocabulary are
not verified by the domain experts of CTD, and hence
their effects are not investigated in the paper.
As the CAE identification techniques investigated in

this paper work on a given set of candidate entities, they
can collaborate with different techniques that map en-
tities in articles to their normalized names or IDs. Previ-
ous entity mapping techniques were often developed for
specific applications with different performance in differ-
ent cases. For example, entity recognition techniques
were developed for specific domains or types of entities,
such as chemicals [52], genes [53], and diseases [54].
Mapping the entities into suitable IDs is an important
research topic as well (e.g., mapping of genes [55]) for
which tools were implemented (e.g., MetaMap, available
at https://metamap.nlm.nih.gov/) and techniques were
developed with different performance in different cases
[56]. By collaborating with those entity mapping tech-
niques that are tuned for specific applications, CAE
identification may be improved for the applications.
CAE identification may also be improved by collecting

more information from multiple articles, based on three
observations: (1) given two entities e1 and e2 that are
CAEs in an article, there may be an association <e1, e2 >
between them, (2) associations between CAEs may be
used to infer possible associations (e.g., given <e1, e2 >
and < e2, e3>, an inferred association may be <e1, e3>),
and (3) if two candidate entities in an article a are in-
volved in an inferred association (e.g., e1 and e3 are can-
didate entities in a, and < e1, e3 > is an inferred
association), they are likely to be CAEs of a. Therefore,
CAE identification for an article may be improved by
CAE-based association mining on a collection of articles.
The CAE identification techniques investigated in this
paper can be used to identify CAE associations (based
on the 1st observation). Novel techniques may be devel-
oped to infer possible associations and refine CAE iden-
tification for each article (based on the 2nd and 3rd
observations, respectively).
The CAE visualization strategy noted above (ref. Case

studies) can be extended as well. An interesting exten-
sion is network-based navigation of conclusive findings
on a set of entities of interest. Given a set Ei of entities
of interest, the system identifies a set Eh of entities that
are highly related to the entities in Ei. Two entities are
highly related if they are CAEs of the same article (i.e.,
the article reports conclusive findings on them). The sys-
tem then visualizes Ei and Eh with an association net-
work in which a node is an entity, and an edge between
two nodes indicates that they are highly related. The
users can click on any edge between two entities to
check the distribution of those articles that have the two
entities as CAEs. With the CAE network, biomedical re-
searchers can have global and detailed views on a set of
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entities among which associations are reported as con-
clusive findings in literature.

Conclusion
CAEs in a biomedical article a are specific entities on
which conclusive associations are reported in a. They
are different from keywords (e.g., MeSH terms)
employed to index (classify or label) a. This paper is the
first study to investigate how five types of statistical indi-
cators can contribute to prioritizing candidate entities in
the title and the abstract of an article so that CAEs can
be ranked on the top for exploratory analysis.
The results show that these indicators have signifi-

cantly different performance. Some indicators do not
perform well in CAE identification, even though they
were used in many article retrievers and keyword extrac-
tors. Learning-based fusion of certain indicators can suc-
cessfully rank CAEs in most articles at top-2 positions.
As it can work on titles and abstracts of articles, which
are more commonly available than full texts of the arti-
cles, it can be applicable to much more articles. By visu-
alizing the identified CAEs with frequency-recency
maps, biomedical researchers can navigate to check how
frequently and recently the CAEs are published in arti-
cles, as well as how two entities are CAEs in the same
articles (i.e., they may be highly related to each other).
The results are of both technical and practical signifi-

cance to the indexing of biomedical articles to support
validation of highly related conclusive findings in bio-
medical literature. They can also be used to enhance
biomedical search engines, curated databases, and text
mining systems, which often serve as essential compo-
nents of many biomedical information processing
systems.
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Additional file 1: Biomedical articles that are employed as the
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the articles in CTD. Each article has a PubMed ID, followed by its CAEs
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curated based on the conclusive findings of a. (TXT 4849 kb)
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