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In Brief
Alternative splicing of known
protein-coding genes and
expression of noncoding
sequences of the human
genome are increasingly
expanding the functional
diversity of proteins. These
events may be specific to cell
type or physiological condition of
the cells and may be deregulated
in cancer. Using proteogenomic
analysis, we have identified novel
peptides in breast cancer that
arise from such events. High
expression of some of them is
associated with patients' survival
and may be studied as
prognostic indicators.
Highlights
• Novel protein variants and peptides from noncoding sequences are rapidly emerging.• Mining of mass spectrometry data using proteogenomic analysis reveals such entities.• Novel peptides from coding and noncoding sequences identified in breast cancer.• Novel peptides mapped to cancer hallmark genes in breast cancer.• Panel of novel peptides with prognostic potential found for HER2-enriched subtype.
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RESEARCH
Proteogenomic Analysis of Breast Cancer
Transcriptomic and Proteomic Data, Using De
Novo Transcript Assembly: Genome-Wide
Identification of Novel Peptides and Clinical
Implications
P. S. Hari1,‡, Lavanya Balakrishnan1,‡, Chaithanya Kotyada1, Arivusudar Everad John1,
Shivani Tiwary2, Nameeta Shah1,* , and Ravi Sirdeshmukh1,3,4,*
We have carried out proteogenomic analysis of the
breast cancer transcriptomic and proteomic data, avail-
able at The Clinical Proteomic Tumor Analysis Con-
sortium resource, to identify novel peptides arising from
alternatively spliced events as well as other noncanoni-
cal expressions. We used a pipeline that consisted of de
novo transcript assembly, six frame-translated custom
database, and a combination of search engines to iden-
tify novel peptides. A portfolio of 4,387 novel peptide
sequences initially identified was further screened
through PepQuery validation tool (Clinical Proteomic
Tumor Analysis Consortium), which yielded 1,558 novel
peptides. We considered the dataset of 1,558 validated
through PepQuery to understand their functional and
clinical significance, leaving the rest to be further verified
using other validation tools and approaches. The novel
peptides mapped to the known gene sequences as well
as to genomic regions yet undefined for translation, 580
novel peptides mapped to known protein-coding genes,
147 to non–protein-coding genes, and 831 belonged to
novel translational sequences. The novel peptides
belonging to protein-coding genes represented alterna-
tively spliced events or 5′ or 3′ extensions, whereas
others represented translation from pseudogenes, long
noncoding RNAs, or novel peptides originating from
uncharacterized protein-coding sequences—mostly from
the intronic regions of known genes. Seventy-six of the
580 protein-coding genes were associated with cancer
hallmark genes, which included key oncogenes, tran-
scription factors, kinases, and cell surface receptors.
Survival association analysis of the 76 novel peptide se-
quences revealed 10 of them to be significant, and we
present a panel of six novel peptides, whose high
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expression was found to be strongly associated with
poor survival of patients with human epidermal growth
factor receptor 2–enriched subtype. Our analysis repre-
sents a landscape of novel peptides of different types
that may be expressed in breast cancer tissues, whereas
their presence in full-length functional proteins needs
further investigations.

As per the recent database information, human genome is
believed to have close to 20,000 protein-coding genes,
about 2,000 of them are yet to have experimental evidence
for their existence (1). Rest of the genome was until recently
considered to be noncoding and harbors genes for several
types of RNAs and other intergenic sequences that may have
elements of long-range interactions involved in chromatin
remodeling and regulation of gene expression. There has
been growing evidence indicating that these gene sequences
that were once thought to be noncoding may actually be
translated (2, 3) and reveal peptides mapping to long non-
coding RNAs (lncRNAs), pseudogenes, or other sequences.
The classic examples of protein-coding pseudogenes
include phosphoglycerate mutase 3, pseudogene (PGAM3),
and OCT4-pg1. A small ORF (sORF) derived from the
pseudogene, BRAFP1, has been reported to enhance
tumorigenesis in thyroid tumors. Some of the peptides from
sORFs within the lncRNA sequences, such as, SPAR,
Minion, HOXB-AS3, and NOBODY, were shown to be
associated with the progression of various cancers (4–6).
Proteogenomic approaches integrating RNA-Seq and mass

spectrometry (MS) data allow identification of the translational
potential of such sequences as well as mutations, alternate
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Proteogenomics of Breast Cancer and Novel Peptides
start sites, alternative splicing events, and gene fusions at the
protein level. Many of them have been reported to have cell
type–specific expression and are also associated with tumor
development (7). Advances in next-generation RNA
sequencing and high-resolution MS have greatly enhanced
the application of proteogenomic methods especially in the
field of cancer biology, to identify tumor-specific novel pep-
tides, splice variants, and fusion products that can serve as
diagnostic or prognostic biomarkers or as a source of tumor
neoantigens with immunotherapy potential (8, 9). Considering
this, The Human Proteome Project has also included this as a
thematic objective. In one of the major initiatives, The
Clinical Proteomic Tumor Analysis Consortium (CPTAC) has
carried out proteogenomics analysis of a number of cancers,
such as breast (10), colorectal (11), ovarian cancer (12), and
glioblastoma providing new molecular insights such as
protein-centric subtypes (13). In addition, proteogenomic
characterization of hepatitis B-related hepatocellular carci-
noma and early onset gastric cancer has been reported by
other research groups (14, 15).
Proteogenomic analysis carries several challenges espe-

cially in terms of the use of in silico-developed custom da-
tabases for peptide searches, their size, and reliability of
novel peptide identifications (16). Generation of sample-
specific databases derived from RNA-Seq data for MS
searches has been shown to be beneficial for identifying any
sample-specific variability resulting from transcriptional and
post-transcriptional processes (17, 18). Several tools and
pipelines have been developed for customized database
generation for performing proteogenomic analysis, including
QUILTS (19), PGA (20), PGMiner (21), Splicify (22), ASV-ID
(23), JUMPg (24), and ProteomeGenerator (25). Recently,
an integrated proteogenomic analysis workflow was devel-
oped by Zhu et al. (26) for the discovery, curation, and
validation of novel as well as single amino-acid variant
peptides.
Unlike using the reference genome, de novo transcript as-

sembly offers the advantage of detecting full transcript of a
gene sequence and any variation therein such as alternatively
splice events and relate them at protein level (27). Mittal et al.
(28) reported the identification of a large number of novel
fusion-gene transcripts by de novo assembly of breast cancer
(BRCA) transcriptome. In our study, we developed a proteo-
genomics pipeline, which builds the custom database using
longest ORF from six-frame translation of de novo assembled
transcripts to identify novel peptides and protein variants. In a
pilot study, using this pipeline, we reanalyzed publicly avail-
able data that include patient-specific RNA-Seq data for
BRCA samples drawn from The Cancer Genome Atlas (TCGA)
and the MS-based proteomic data for the same specimens
generated by CPTAC. We identified translational evidence for
several noncoding sequences as well as alternative splicing
events of genes.
2 Mol Cell Proteomics (2022) 21(4) 100220
EXPERIMENTAL PROCEDURES

Datasets

For the primary proteogenomics analysis, we used BRCA RNA-Seq
and MS proteomics data for a matched sample cohort obtained from
TCGA and CPTAC resources, respectively. A total of 105 BRCA
samples were used for the analysis. TCGA RNA-Seq data generated
for 105 BRCA samples using Illumina HiSeq sequencer to a depth of
60 to 150 million reads per sample was downloaded. The respective
RNA-Seq fastq files were downloaded from GDC legacy archive
(https://portal.gdc.cancer.gov/legacy-archive). Of 105 samples, there
were 25 basal-like, 29 luminal A, 33 luminal B, and 18 human
epidermal growth factor receptor 2 (HER2)-enriched tumors. The fastq
files of BRCA samples were concatenated by merging right and left
reads separately. Proteomics data generated for the same samples
were downloaded from CPTAC data portal (https://cptac-data-portal.
georgetown.edu/cptac/s/S029). Proteomic data consisted of a total of
36 isobaric tag for relative and absolute quantitation (iTRAQ) (4-plex)
experiments, each with three tumor samples (labeled with 114, 115,
and 116 iTRAQ labels) and one pooled internal reference (iTRAQ label
117). Twenty-four mzML files were obtained from each iTRAQ
experiment, corresponding to 24 LC fractions of the protein digests
analyzed on Orbitrap Q Exactive mass spectrometer (Thermo Fisher
Scientific).

De Novo Transcript Assembly and Development of Custom
Database

De novo transcript assembly of the combined RNA-Seq fastq files
for each set of three samples, used in 36 iTRAQ (4-plex) experi-
ments, was carried out using Trinity (version 2.8.3) (developed by
Broad Institute; https://github.com/trinityrnaseq/trinityrnaseq/wiki),
after trimming low-quality reads through Trimmomatic option (27).
Trinity fastq files obtained for each set of samples were then run
through the function createProDB4DenovoRNA-Seq in PGA (version
1.16.0) to obtain six-frame translated protein sequences for the
assembled transcripts. Only the longest protein sequences were
selected and digested with trypsin, in silico, and database gener-
ated. Tryptic peptide sequences for proteins from Human National
Center for Biotechnology Information RefSeq Release 96 (no. of NP
entries = 54,216) were also incorporated into the database for
identifying known peptides along with the novel ones, using the
respective labels.

Database Searching and Identification of Novel Peptides

mzML files of the MS data were converted to mgf files with Peak-
Picking MS2 spectra option using msConvert (3.0.9393) (29). The
custom database generated for the sample sets used in each of the 36
experiments was searched against the respective mgf files using three
search engines available in SearchGUI (version 3.3.15)—X!Tandem,
MSGF+, and Tide (30). The decoy sequences were created by
reversing the target sequences in SearchGUI. Carbamidomethylation
on cysteine residues, iTRAQ reagent tags on lysines, and peptide N-
termini were chosen as static modifications, whereas oxidation of
methionine, acetylation of protein N-termini, and deamidation on
asparagine were chosen as dynamic modifications. Precursor ion
tolerance and fragment ion tolerance were set as 10 ppm and 0.05 Da,
respectively. The number of missed cleavages allowed was 2, and the
length of peptides allowed was between 7 and 30 amino acids
(however, the average length of the peptides identified was 12 amino-
acid residues; see Results section). PeptideShaker (version 1.16.40)
(31) was used to combine the results of aforementioned three search
engines and to convert the scores of search engines to posterior error
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Proteogenomics of Breast Cancer and Novel Peptides
probability values. The corresponding peptide-spectrum matches
(PSMs) were marked as significant by a quality filter in PeptideShaker,
which is based on mass deviation and fragment ion coverage. Peptide
confidence was calculated based on the combined score of PSMs of
the respective peptides. The significant peptide output data from
PeptideShaker with 1% false discovery rate were taken for further
processing. Peptides that mapped to multiple genomic locations were
removed. We in addition mapped these peptides to ENSEMBL to
verify and exclude any of the identified sequences that are reported
there. Peptides that did not map to RefSeq and ENSEMBL protein IDs
were considered as novel.

To add further strength to the identification of the novel peptides,
we tried to crossverify the identifications using additional verification
tools, namely PepQuery (Standalone version, 1.3.0) (developed by
CPTAC Consortium; http://www.pepquery.org/) (32) and Deep-
Mass:Prism (developed by Verily Life Sciences in collaboration with
Cox Lab, Max Planck Institute of Biochemistry; https://github.com/
verilylifesciences/deepmass/tree/main/prism) (33). PepQuery is a
peptide-centric search engine developed by CPTAC and based on
millions of experimental fragmentation spectra for peptide se-
quences detected in cancer proteomic datasets. PepQuery could be
used for fast proteomic validation of novel peptides. Conceptually
similar to BLAST, it allows querying the peptide MS/MS spectral
database with a sequence of interest. Given a novel peptide
sequence of interest, PepQuery comprehensively analyzes and
searches for the PSMs in the input spectral database, sequentially
filtering PSMs of known peptide sequences (RefSeq) and randomly
reshuffled target peptide sequences and narrows down the most
probable spectral matches for the target peptide sequences, which
could now be scored as novel peptides, and the two spectra (Pep-
Query revealed and the original) may be compared. An additional
advantage of using PepQuery is that it reduces the false positives by
considering the sequence modifications as well. The PSM signifi-
cance score is determined in terms of a permutation p value calcu-
lated based on randomly shuffled peptide sequence of interest.
DeepMass:Prism is a prediction tool that uses neural network based
deep/machine learning algorithm trained on a library of millions of
experimental fragmentation spectra of unmodified tryptic peptides
and can predict peptide fragment intensities, which are usually
dependent upon fragment charge, the amino acid chemistry, and the
sequence context. Although this tool has been trained for verification
of data-dependent peptide identifications or as a guide for spectral
prediction in data-independent acquisition, we have used it to pre-
dict the fragment intensities in of the fragment ions for the novel
peptide sequences and using them for the verification of the
experimental spectra that identified the peptide sequence.

While we briefly discuss the DeepMass:Prism validation output (see
Results section), we used the PepQueryverified novel peptides for
clinicobiological interpretations. Wherever possible, we also assessed
the confidence of the novel peptide identification through additional
comparisons with known datasets (see Results section). Furthermore,
for the select, biologically, or clinically significant novel peptides, the
quality of the MS/MS spectra was evaluated through manual in-
spection using PDV (version 1.5.1) (34). Spectra of individual peptides
were extracted from their corresponding mgf files, and the exported
spectra were loaded on to PDV, and the coverage of b and y ions
within each peptide sequence was examined to ensure that the novel
peptide identification conformed to good spectral quality as judged by
number of assigned ions (80%), signal-to-noise ratio, and sequence
contiguity.

Novel Peptide Categorization

The identified peptides were processed to map the sequences to
their corresponding genomic locations using the tool, ACTG
(Standalone version 1.11) (developed byPaek Lab, Hanyang Univer-
sity, Seoul, Korea; http://prix.hanyang.ac.kr/ACTG/search.jsp) (35),
and to classify them into various categories, namely—peptides
mapping to known protein-coding genes, those mapping to known
noncoding genes, and third, peptides mapping to hitherto uncharac-
terized potential novel ORFs (nORFs). Peptides belonging to the
protein-coding genes were further classified into 5′ or 3′ UTRs,
alternative splicing types such as, exon extension, exon skipping,
frameshifts, junctional variations, and others representing novel cod-
ing frames within the known gene (coding DNA sequence). Similarly,
peptides originating from nonprotein-coding transcripts were grouped
into pseudogenes, lncRNAs, and others. We also recategorized
exonextension peptides as exon overlapping or intronic peptides.

For the purpose of the aforementioned classification, custom
scripts were developed that included Bedtools closest (36). Peptides
that mapped to Swiss-Prot or multiple genomic locations were
removed, and BlastP analysis of the remaining peptide sequences
was performed to identify sequences that are “not an ORF.” All the
novel peptides from 36 experiments were merged, and the total
number of PSMs for each peptide was calculated.

Biological and Clinical Relevance of Novel Peptides

Novel peptide identifications belonging to the known protein-
coding genes were mapped to cancer hallmark-associated genes
(http://bio-bigdata.hrbmu.edu.cn/CHG/nav_download.html) to assess
their biological and clinical significance. Survival analysis of these
candidates was carried out using TCGA patient data for BRCA (TCGA-
BRCA). The novel peptides were mapped to the corresponding tran-
scripts, and their expression levels determined (at RNA level from the
TCGA resource) by using the entire RNA-Seq data of BRCA samples
used, in various subtype-specific manner. Chromosomal locations of
the peptide sequences obtained through ACTG were processed using
bamstat04 (http://lindenb.github.io/jvarkit/BamStats04.html) across all
bam files of TCGA-BRCA data. Average coverage obtained for each
sequence in each sample was converted to counts per million values.
Survival analysis was then performed using the Kaplan–Meier method
within each subgroup of BRCA subtypes. We also checked for any
influence on survival by the parent gene sequences by independently
running the survival analysis of those sequences.
RESULTS

Novel Peptide Identification Using De Novo Transcript
Assembly–Based Proteogenomic Analysis

There are several pipelines reported in the literature that
have been used for proteogenomic analysis to identify alter-
natively spliced variations. Some of the proteogenomic pipe-
lines available in the literature and used by other investigators
during the last 5 years are given in Table 1.
For customized protein database from transcriptomics data,

the RNA-Seq reads are assembled into full-length transcripts,
using one of the two general approaches: genome alignment
and de novo transcript assembly. As shown in the table, most
of the pipelines use transcript assembly using reference
genome sequence. However, de novo transcript assembly
methods have the greater capability of identifying novel tran-
scripts that cannot be identified through reference genome-
alignment methods either because of errors in the reference
genome sequence or because of the absence of the novel
sequence. Several tools such as Trinity (used by us), Trans-
Mol Cell Proteomics (2022) 21(4) 100220 3
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TABLE 1
List of proteogenomics tools/pipelines and their salient features

Name of
pipeline/

tool
Input data (source) Custom database creation Search engines

Splice-type
interpretation

Differential
expression
information

Reference

IPAW RNA-Seq, MS/MS raw
data (A431 cells)

Genomic sequence
database or transcript
assembly aligned with
genomic sequence. Six-
frame translation of
genomic sequences, no
integrated transcript
assembler

MSGF+ Present Not present (26)

JUMPg RNA-Seq, MS/MS raw
data (Alzheimer’s
disease postmortem
brain, multiple myeloma
cell line [ANBL6])

Reference genomic
sequence used for
custom protein
database through three-
frame translation and
six-frame translation de
novo custom protein
database creation

Single tag–based
in-house built
multistage
search engine

Present Not present (24)

PGMiner RNA or complementary
DNA sequence, MS/MS
raw data (Toxoplasma
gondii RH strain)

User-defined custom
database creation with
three-frame translation
with an option of six-
frame translation based
on reference genome
sequence

MSGF+, OMSSA,
and X!Tandem

Present Not present (21)

Splicify RNA-Seq fastq files, MS/
MS raw data (colorectal
cancer cell line SW480)

Reference genome
sequence based on
three-frame translation
and custom protein
database creation

MaxQuant Present Present (22)

ASV-ID RNA-Seq fastq files, MS/
MS raw data (human
embryonic kidney 293,
HepG2, HeLa, and
MCF7 cell lines)

Reference genome
sequence based on
three-frame translation
and custom protein
database creation

Comet Present Present (23)

PGA vcf, bed, and gtf files from
RNA-Seq, MS/MS raw
data. (Jurkat cell line)

Reference genome
sequence based on
three-frame translation
or six-frame translation
of de novo-based
transcript custom
protein database
creation

One default
search engine

Present Not present (20)

Proteome
Generator

RNA-Seq, MS/MS raw
data (K052 leukemia
cells)

Reference genomebased
sequence alignment,
Reference or de novo-
based transcript
assembly and custom
protein database
creation

MaxQuant Present Not present (25)

PubMed literature was searched for the last 5 years using proteogenomics tools and pipelines as the keyword, and some of the major tools/
pipelines were examined for the analytical details. The list given in the table is not exhaustive but represents major tools/pipelines used. The
custom pipeline used in CPTAC analysis is not listed in this table but discussed under the Results section.

Proteogenomics of Breast Cancer and Novel Peptides
ABySS, SOAPdenovo-Trans, and SPAdes (37) are often
employed. Yet they are not free of errors needing further
evaluations. Although, merging the results obtained from
multiple assembly tools followed by further evaluation may
yield better results, we have used Trinity for transcript
4 Mol Cell Proteomics (2022) 21(4) 100220
assembly for the development of custom protein database for
searching MS/MS files. Long-read sequencing technologies
have the potential to circumvent challenges of de novo tran-
scriptome assembly. There are platforms such as PacBio and
Nanopore technologies, with which up to 10 kb long reads are
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achieved; however, these platforms are yet to be under routine
use.
In the studies reported in Table 1, either three-frame or six-

frame translation in silico was used for creating the custom
database. In JumpG, the two databases were used in tan-
dem—first three-frame translated sequences for searching
MS/MS files followed by six-frame database for residual data
not mapping to three-frame data. JumpG has used in-house
built search engine, whereas other pipelines have used pub-
licly available single search engine or a combination of mul-
tiple engines. JumpG has also incorporated semitryptic
peptides in their database creation (not shown in the table).
One of the pipelines, PGA, also uses de novo transcript as-
sembly for the development of custom protein database.
CPTAC has earlier carried out proteogenomic analysis with

RNA-Seq data drawn from TCGA resource for 105 patients
belonging to defined BRCA subtypes, and MS/MS data were
generated by CPTAC for the same samples, through 36, 4-
plex iTRAQ-based MS/MS experiments (see Experimental
Procedures section). A custom pipeline was used for that
study. The pipeline used subtype-specific six-frame translated
custom database created through QUILTS pertaining to so-
matic and germline single nucleotide variants, RNA-Seq pre-
dicted splice junctions and fusion genes. Spectrum Mill was
then used to search the proteomic data against the custom
database to identify splice variants.
We have analyzed the same datasets downloaded from

CPTAC resource, using our pipeline shown in Figure 1A. The
main features of our pipeline are use of de novo transcript
assembly of RNA-Seq data as discussed previously, six-frame
translation of the assembled transcripts, and use of three in-
tegrated search engines. Major advantage of de novo tran-
script assembly is that it provides evidence for the longest
transcript carrying the novel peptide sequences. De novo
transcript assembly of RNA-Seq data was carried out using
Trinity. Subtype-specific transcripts were then obtained to
match with each of the sample groups used for 36 proteomic
(4-plex iTRAQ) experiments. On an average 110,000 tran-
scripts were identified from the combined fastq files for each
group. Furthermore, RNA-Seq samples used were not strand
specific; so we looked at all six frames. We used
createProDB4DenovoRNA-Seq in PGA (version 1.16.0) to
obtain six-frame translated protein sequences for the
assembled transcripts, and only the longest protein se-
quences were used for in silico trypsin digestion for database
generation. This yielded around 180,000 protein sequences
from each set of samples. These sequences were then
merged with the protein sequences from Human RefSeq,
Release 96 to constitute a custom database to search against
the MS/MS files from the respective experiment. MS/MS
search using SearchGUI (see Experimental Procedures sec-
tion) followed by processing with PeptideShaker resulted in
the identification of all peptides mapping to RefSeq and the
Trinity transcript sequences. The peptides that did not map to
RefSeq and Swiss-Prot were considered as novel peptides. A
total of 4,791 novel peptides were identified with 13,063
PSMs, about 30% being with multiple PSMs. We in addition
mapped these peptides to ENSEMBL to examine the pres-
ence of any known sequences and found about 404 of them to
be already reported and so filtered them out to take remaining
4,387 for further analysis (supplemental Table S1). We applied
peptide length in the range 7 to 30 amino-acid residues for the
database search; however, the average length of the novel
peptides identified is about 12. Although identified using a
combination of three search engines and stringent scoring
criteria, these peptide identifications are still likely to have
false positives and need to be subjected to rigorous further
verifications by additional ways to enhance the accuracy of
identifications. In our study, we used additional validation
tools, cross-verification of the presence of novel peptides in
other datasets, or even manual quality check and annotation
of the MS/MS spectra wherever necessary and possible.
For this purpose, we first carried out verification of the 4,387

novel peptide identifications with PepQuery validation tool
developed by CPTAC (37) and based on a large number of
peptide fragmentation spectra reported in cancer proteomics
datasets. The novel peptide sequences were re-searched
against the MS/MS spectral data of the respective experi-
ments from which they were originally identified, using Pep-
Query workflow (see the Experimental Procedures section).
Carbamidomethylation of C, iTRAQ 4-plex of K, iTRAQ mod-
ifications (4-plex) at N-terminal region were used as fixed
modifications, whereas oxidation of M, acetylation of protein
N-terminal region, and deamidation of N were used as variable
modifications. Fragment ion tolerance was set as 0.05 Da.
Hyperscore was used for PSM scoring, and unrestricted
modification searching–based filtering was enabled. The
resulting identified PSMs with a p value ≤0.01 and n_ptm zero
were considered as novel peptides for further analysis. This
analysis revealed 1,558 of the 4,387 novel peptides passing
the screen. The novel peptides were distributed across all
chromosomes and not restricted to any particular chromo-
somes or chromosomal locations, although some chromo-
somes such as chromosomes 1, 3, 12, and 17 carried a larger
number (Fig. 1B).
We further attempted to verify the novel peptide sequences

identified with PepQuery analysis through an additional vali-
dation tool—DeepMass:Prism, which is neural network–based
deep learning prediction tool. Given a peptide sequence,
DeepMass:Prism predicts fragment ion intensities, which can
be used to compare experimental MS/MS spectral intensities
of the novel peptides. However, as DeepMass:Prism is
modeled on the MS/MS spectra of unmodified tryptic pep-
tides, the m/z values do not carry iTRAQ and other modifi-
cations. To overcome this limitation, we first checked the
model by externally adding the mass correction to the
Mol Cell Proteomics (2022) 21(4) 100220 5
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FIG. 1. Proteogenomic analysis and identification of novel peptides. A, a schematic view of the proteogenomic pipeline. Breast cancer
transcriptomic and proteomic data from CPTAC resource was used for the analysis. The pipeline includes de novo assembly of RNA-Seq reads
followed by six-frame translation for custom database creation to search against the MS/MS files from the proteomics analysis. The custom
database generated for each of the samples was searched against the respective mgf files using the search engines, X!Tandem, MSGF+, and
Tide. PeptideShaker was used for integrated identification of the candidate peptides and their corresponding proteins. The known peptides
(RefSeq) were then filtered out from the total identifications to get the list of novel peptides, which were then subjected to ACTG analysis
followed by categorization into different kinds of peptide categories using custom scripts as described under Experimental Procedures section.
The novel peptides obtained were then validated using PepQuery. The novel peptides validated by PepQuery were categorized into those that
map to protein-coding genes, noncoding genes, and uncharacterized ORFs. Numbers shown in brackets represent number of novel peptides in
the respective groups. The different types of novel peptides obtained after ACTG categorization are also shown. The novel peptides mapping to
known protein-coding genes were mapped to cancer hallmark genes and further assessed for clinical relevance in breast cancer by carrying out
survival analysis. Validation with DeepMass:Prism is briefly discussed in the Results section. B, chromosome-wise distribution of the PepQuery-
validated peptides as revealed by ACTG and their respective categories, indicated by the color code, is shown. The details of the categories are
explained under Experimental Procedures section.

Proteogenomics of Breast Cancer and Novel Peptides
predicted m/z values (in pilot analysis) and then carried out
only intensity correlation between the PepQuery-validated
novel peptide identifications and experimental dataset of
novel peptides and the corresponding predicted dataset (from
DeepMass:Prism). Although we could retrieve the predicted
spectral intensities for the entire novel peptide sequence
input, the fragment-wise significant intensity correlation
6 Mol Cell Proteomics (2022) 21(4) 100220
(Pearson correlation coefficient = 0.5–1.0) could be observed
only with about 20% of the novel peptide sequences tested
(supplemental Fig. S1). While we investigate further the
applicability of DeepMass:Prism for novel peptide identifica-
tions from proteogenomic analysis, we have used only
PepQuery-verified novel sequences to understand the bio-
logical significance of the novel peptides.



Proteogenomics of Breast Cancer and Novel Peptides
We then compared our findings with that of the CPTAC
study published earlier (10). In their study, Philipp et al. (10)
generated custom database using QUILTS proteogenomic
database tool. The custom database included somatic and
germline single nucleotide variants, and RNA-Seq predicted
junctions and fusion genes obtained based on human
reference genome assembly. Spectrum Mill was used to
search the proteomics data against the custom database to
identify splice variants. The CPTAC study revealed 672
peptides, out of which 250 were found to be peptides iden-
tified from the known protein sequences as per RefSeq
Release 96, and 422 being novel. When we compared the list
of novel peptides obtained in our analysis through PepQuery
validation (1,558) with 422 CPTAC novel peptides, we found
38 novel peptides to be overlapping between the two data-
sets, others being new identifications in our analysis. The
difference in total number of novel peptides between this
study and CPTAC is likely because of CPTAC dataset that
included only sequences of predicted splice junctions. We
then ran PepQuery with 422 novel peptides of CPTAC
against corresponding raw files and obtained p values for the
respective peptides. We examined the p value distribution of
the PepQuery-validated dataset of novel peptides from our
analysis and CPTAC analysis (overlapping and nonoverlap-
ping) and observed the distribution to be highly correlating.
Figure 2 shows p value density distribution of CPTAC novel
peptides passing PepQuery validation (n = 151 of 422),
peptides from our analysis passing PepQuery validation (n =
1,558), and peptides overlapping between our study and
CPTAC (n = 38).
Thus, we report that the dataset of 1,558 novel peptides

revealed through PepQuery, suitable to get biological and
clinical insights. We believe extended validation analysis with
D
en

si
ty

p value

CPTAC analysis
Our analysis
Overlap

FIG. 2. Density distribution plot (p value) of novel peptides
identified in proteogenomic analysis by CPTAC and those from
our analysis. Details about the number of peptides identified in our
analysis as compared with CPTAC analysis are as follows: CPTAC—
422, our analysis—1,558, and overlap—38. The basis and details of
these numbers are given in the Results section.
the remaining peptides may provide additional information on
the same line. The total list of PepQuery-validated peptides is
provided in supplemental Table S2A, and their detailed clas-
sification is provided in supplemental Table S2, B–D) along
with relevant details such as peptide sequence, the parent
genes, and number of PSMs. The table includes their grouping
under protein-coding and noncoding genes (e.g., pseudo-
genes) as well as sequences yet uncharacterized for expres-
sion into proteins (potential nORFs). Various categories of
novel peptides from events such as 5′ or 3′ UTR, exon ex-
tensions, exon skipping, frame shifts, intronic, and others are
shown in the table. Their chromosome-wise distribution and
sequence coordinates on the chromosomes are also included.
The RNA-level expression values corresponding to the
PepQuery-validated novel peptides are given in supplemental
Table S3.

Novel Peptides From Yet Uncharacterized (Potential ORFs)
Regions

Our analysis indicated that of the total 1558 novel peptides,
831 peptides with 2269 PSMs were found to be part of se-
quences from outside any canonical protein-coding or known
noncoding genes of the human genome. A majority of these
sequences were found to be located in the intronic regions of
the known protein-coding and noncoding genes. Some of
them were located in the 5′ and 3′ UTR regions of known
genes, whereas a few were found to be in a completely
different frame within the annotated protein sequences. The
biological validity of these novel peptides, their relationship
with the novel short and long ORFs reported in the literature
(38), or their functional implication is not clear and stands to be
investigated.

Novel Peptides From Known Genes—Protein-Coding and
Noncoding Genes

After filtering the peptides belonging to the undefined and
uncharacterized noncoding sequences (potential nORFs)
from 1,558 novel peptides, we obtained 727 peptides
considered to be belonging to the annotated gene se-
quences. We used the tool ACTG to map these novel pep-
tides back to the annotated sequences of the human
genome on ENSEMBL and found 580 being protein-coding
genes and the rest 147 mapping to noncoding genes such
as pseudogenes and other noncoding transcripts such as
lncRNAs. As shown in Figure 3, 580 novel peptides mapping
to protein-coding sequences provided evidence for alternate
translation start sites, changes in the annotation of exon
boundaries, and novel splice events within the genes.
Importantly, they included peptides because of alternative
splicing events, such as exon skipping (peptides spanning
two nonconsecutive exons providing evidence for a skipped
exon), exon extensions (peptides that either partly extend to
the intron or are only intronic peptides), 5′UTR and 3′ UTR
peptides, and junctional variations. A total of 147 peptides
Mol Cell Proteomics (2022) 21(4) 100220 7
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FIG. 3. Schematic representation of novel peptide categories to understand their functional and clinical significance. Of the 1,558
peptides validated by PepQuery (Fig. 1), 580 were found to map to known protein-coding genes,147 mapped to noncoding genes, and 801
mapped to uncharacterized ORFs. The different types of peptides seen in each of the categories along with the respective numbers are depicted
using the pie chart. The peptides (n = 580) corresponding to 501 protein-coding genes were further mapped to cancer hallmarks to identify their
tumor relevance. Seventy-six of them mapped to cancer hallmarks, and the corresponding novel peptide sequences were further subjected to
survival analysis as described under Experimental Procedures and Results sections. The survival association plots for significant peptide se-
quences are given in Figure 4.

Proteogenomics of Breast Cancer and Novel Peptides
with 1,173 PSMs were identified mapping to 124 annotated
noncoding transcripts. These included 59 peptides corre-
sponding to 39 pseudogenes, 87 peptides corresponding to
84 lncRNAs, and a single peptide corresponding to 1 “To be
experimentally confirmed transcript” (TEC).
Among the proteins covering 580 novel peptide sequences

identified, we wanted to identify those that had any associa-
tion with cancer-related biological processes. So, we mapped
the proteins corresponding to the novel peptides to cancer
hallmark gene sets (http://bio-bigdata.hrbmu.edu.cn/CHG/
nav_download.html) and found 76 of them mapped to can-
cer hallmarks. These proteins included several key onco-
genes, [Erb-B2 receptor tyrosine kinase 2, fibroblast growth
factor receptor (FGFR), and DEAD box helicase 5 (DDX5)],
transcription factors[cyclic adenosine monophosphate
response element-binding protein (CREBBP), mediator com-
plex subunit 1(MED1), and mediator complex subunit 16
(MED16)], protein kinases [mitogen-activated protein kinase
kinase 1(MAP2K1), mitogen-activated protein kinase
13(MAPK13) and casein kinase 1 epsilon (CSNK1E)], cell
adhesion/differentiation or cell surface molecules, as well as a
cytokine, C-X-C motif chemokine ligand 16 (CXCL16).
Aldolase A (ALDOA), phospholipase C beta 3 (PLCB3), and
protein phosphatase 2 regulatory subunit B alpha (PPP2R2A)
8 Mol Cell Proteomics (2022) 21(4) 100220
are some of the enzymes with regulatory significance. The
details of these annotations are given in supplemental
Table S4).
In our analysis, we could also identify expression of many

noncoding sequences particularly pseudogene peptides. We
observed 59 novel peptides mapping to 39 pseudogenes. We
cross-verified some of these peptide sequences—CYP2B7P,
IGHGP, and RHOXF1P3, for their presence in the MS/MS data
of an additional BRCA proteome study of Johansson et al.
(39). The dataset consisted of tandem mass tag–based
quantitative proteomics data obtained using 45 breast tumor
specimens of various subtypes. These genes were also
confidently identified in this additional dataset, thus support-
ing the validity of their expression.

Survival Analysis of Novel Peptides

BRCA is one of the most common cancer of the females
with heterogenous pathology and broadly comprises of four
subtypes, namely, luminal, basal or triple negative, HER2-
enriched and normal like, which differ in the expression of
hormone receptors and are prognostically different. The novel
peptide sequences mapping to cancer hallmark genes were
quantified at transcript level using total TCGA BRCA RNA-Seq
data, as detailed under the Experimental Procedures section,

http://bio-bigdata.hrbmu.edu.cn/CHG/nav_download.html
http://bio-bigdata.hrbmu.edu.cn/CHG/nav_download.html
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and survival analysis was carried out in subtype-specific
manner. On the basis of p value cutoff (≤0.01) for the
expression of these 76 genes, 57 peptides were selected, and
the patients were stratified into high- and low-expression
groups based on the mean gene expression value, and sur-
vival analysis was performed. A total of 26 peptides were
found to be associated with survival on the basis of significant
(≤0.05) p values. Furthermore, manual quality evaluation of the
respective MS/MS spectra of these candidates revealed 10 of
them to be of acceptable quality. An independent survival
analysis of the respective parent genes of these 10 candidates
were also performed (supplemental Fig. S2), and we observed
the parent genes of two novel peptides—HSPB1 (heat shock
protein family b [small] member 1) and RAB14 (RAB14,
member RAS oncogene family)—showing near-significant
survival association (p = 0.1). Therefore, a peptide was
considered to be significantly associated with survival if its p
value cutoff was ≤0.05, it passed through a manual check for
spectral quality, and if its parent gene did not show any sur-
vival association. Thus, we found eight novel peptides corre-
sponding to eight genes to be significantly associated with
survival as shown in Figure 4 and are listed in Table 2, with the
details in supplemental Table S5. Of these sequences, Fms-
related receptor tyrosine kinase 1 (FLT1) is associated with
survival of basal subtype and Fas-associated death domain
(FADD) protein with luminal type. On the other hand, we
observed high expression of six novel peptide sequences
(ALDOA, CXCL16, FGFR1, PLCB3, PPP2R2A, and replication
protein A1 (RPA1) to be distinctly associated with poor sur-
vival of HER2-enriched subtype. This subtype is estrogen re-
ceptor and progesterone receptor negative but HER2 positive
and is one of the aggressive subtypes. Interestingly, all these
novel peptide sequences map to 5′UTR except PPP2R2A, and
the parent genes of many of them are associated with multiple
(more than four) hallmarks of cancer implicating their deter-
minant role in tumor pathogenesis.
The sequence and the MS/MS spectra of eight survival-

associated novel peptides are shown in Figure 5.
DISCUSSION

The CPTAC has recently carried out proteogenomic anal-
ysis of BRCA multiomics data (10). They have drawn geno-
mics and transcriptomics data from TCGA resource for 105
specimens of BRCA of different subtypes and generated
proteomics data for the same samples using high-resolution
MS. The transcriptomics and proteomics data were inte-
grated to identify novel peptides originating from transcript
sequences spanning junctional sequences representing novel
splice events. We have used the same transcriptomics and
proteomics data, available at the CPTAC resource and
implemented a proteogenomic pipeline developed by us, for
genome-wide identification of novel peptides that represented
alternative splice events as well as translation of other se-
quences in the genome. While we present the landscape of
these novel peptides from coding and noncoding sequences,
their types, chromosome-wise distribution, we have also
analyzed a selected subset to get insights on their potential
functional and clinical relevance.
Several of the novel peptide sequences belong to the

known protein-coding genes, which included several onco-
genes, transcription factors, kinases, cell invasion molecules,
and others, as well as have roles in hallmarks of cancer,
(supplemental Tables S2B and S5). Many novel peptides
identified from the noncoding genes belong to sequences that
corresponded to the pseudogenes and lncRNAs
(supplemental Table S2C). The functional significance of the
expression of these pseudogenes is not clear, but the
observation permits some discussion. Expression from
pseudogenes is known to occur under certain normal or
pathological conditions including cancer. An integrative meta-
analysis of the transcription data for many cancer types
revealed expression for about 2,000 or more distinct pseu-
dogenes (7). Any functional relevance of the expression of
pseudogenes is a matter of debate. Increasing evidence from
the recent literature suggests the potential roles of pseudo-
genes in regulating cognate wildtype gene expression/func-
tion by multiple ways—generation of endogenous siRNAs,
antisense RNAs, or sequestering miRNA, competitive inhibi-
tion of translation of wildtype transcripts, and there may be
other ways. Thus, pseudogene expression merits deeper
exploration of their possible roles in biology and in human
disease.
An even larger number of novel peptides mapped to the

novel and yet uncharacterized sequences of the human
genome (supplemental Table S2D). During past decade, the
noncoding part of the human genome has been shown to
harbor information for novel genes such as lncRNAs, and
even protein expression from these yet uncharacterized se-
quences has been reported in the literature (38). Their
annotation is challenging because of the present conventions
for defining an ORF in terms of their expected length. Many of
these sequences are now shown to have start and stop co-
dons, and the expression products are also known to form
protein-like structures and even undergo post-translational
modifications. Much of the experimental support for the ex-
istence of such expressions comes from Ribo-Seq data or
MS and thus qualifying these sequences to be regarded as
potential nORFs. sORFs are short up to 100 amino acids in
length, and alternate ORFs roll out proteins in alternate
frames to known proteins. The number of these expressions
is growing such as to revisit the question of the coding po-
tential of the noncoding DNA so believed until now and the
conventional definitions of an ORF. The biological signifi-
cance of these nORFs is not fully understood. Studies of the
TCGA and Genotype-Tissue Expression consortiums have
Mol Cell Proteomics (2022) 21(4) 100220 9
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FIG. 4. Survival analysis of novel peptide sequences mapping to protein-coding genes. Survival plots for the novel peptide sequences
belonging to eight genes, namely FADD, FLT1, ALDOA, CXCL16, FGFR1, PLCB3, PPP2R2A, and RPA1, found to exhibit significant survival
association are provided along with the respective peptide sequences. The novel peptides were quantified at transcript level using the breast
cancer RNA-Seq data from TCGA. Red line represents high-expression group of patients, whereas blue line indicates low-expression group
of patients. Number of patients at risk in the high- and low-expression groups are also shown. A, peptides showing survival association in
luminal (FADD) and basal subtypes (FLT1). B, peptides showing survival association in HER2-enriched subtype (ALDOA, CXCL16, FGFR1,
PLCB3, PPP2R2A, and RPA1). ALDOA, aldolase A; CXCL16, C-X-C motif chemokine ligand 16; FADD, Fas-associated death domain;
FGFR1, fibroblast growth factor receptor 1; FLT1, Fms-related receptor tyrosine kinase 1; HER2, human epidermal growth factor receptor 2;
PLCB3, phospholipase C beta 3; PPP2R2A, protein phosphatase 2 regulatory subunit B alpha; RPA1, replication protein A1.

Proteogenomics of Breast Cancer and Novel Peptides
helped identification of large number of transcripts containing
nORFs from several cancer types and are also reported to be
dysregulated in cancer tissue. Many of them functionally
associated with the hallmarks of cancer can act as oncogenic
10 Mol Cell Proteomics (2022) 21(4) 100220
factor promoting cell proliferation or as tumor suppressors,
and their differential expression may be associated with
disease prognosis. While the identification of the novel pep-
tides mapping to intronic regions or 5′ or 3′ untranslated



TABLE 2
List of novel peptides corresponding to protein-coding genes significantly associated with survival

Serial
number

Novel peptide
sequence

Gene symbol; gene
description

Molecular function CHG class Survival association
Survival
outcome

p (survival)

Novel
peptide

Parent
gene

1 ISSEAPELATTSTMP
YQYPALTPEQK

ALDOA; aldolase,
fructose-
bisphosphate A

Lyase activity Reprogramming energy
metabolism

HER2-enriched High expression
of poor
survival

0.05 0.31

2 TGQAGGLLNR CXCL16; C-X-C
motif chemokine
ligand 16

Chemokine activity Inducing angiogenesis; evading
immune destruction; resisting
cell death; and tumor-
promoting inflammation

HER2-enriched High expression
of poor
survival

0.05 0.44

3 RAGAGDAGTRPL FGFR1; fibroblast
growth factor
receptor 1

Transmembrane
receptor protein
tyrosine kinase
activity

Inducing angiogenesis; sustaining
proliferative signaling; resisting
cell death; activating invasion
and metastasis; enabling
replicative immortality; evading
growth suppressors; and
reprogramming energy
metabolism

HER2-enriched High expression
of poor
survival

0.05 0.88

4 AESASMTERa HSPB1; heat shock
protein family b
(small) member 1

Chaperone activity Resisting cell death; activating
invasion and metastasis;
inducing angiogenesis;
sustaining proliferative
signaling

HER2-enriched High expression
of poor
survival

0.03 0.12

5 QGSVGPRPAPGR PLCB3;
phospholipase C
beta 3

Phospholipase
activity

Enabling replicative immortality;
activating invasion and
metastasis; resisting cell death;
sustaining proliferative
signaling; tumor-promoting
inflammation; reprogramming
energy metabolism; and
evading immune destruction

HER2-enriched High expression
of poor
survival

0.04 0.35

6 GAVDDDVAEDIISTVE
FNHSGELLATGDK

PPP2R2A; protein
phosphatase 2
regulatory subunit
B alpha

Protein serine/
threonine
phosphatase
activity

Activating invasion and
metastasis; evading growth
suppressors; reprogramming
energy metabolism; sustaining
proliferative signaling; and
resisting cell death

HER2-enriched High expression
of poor
survival

0.02 0.40

7 PSHQQPPSATMATA
PYNYSYIFKa

RAB14; Ras-related
protein Rab-14

GTPase-binding
activity

Reprogramming energy
metabolism

HER2-enriched High expression
of poor
survival

0.01 0.08
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regions of such sequence regions need rigorous analytical
verification, they deserve detailed characterization in terms of
the sequence composition, the chromosomal and gene
context, their dysregulation, and impact on BRCA and its
subtypes.
We analyzed the novel peptides mapping to protein-coding

genes and cancer hallmarks for survival analysis based on
their patient-wise RNA expression profile. After carefully
evaluating the initial results as detailed under the Results
section, we have shortlisted eight novel peptide sequences
to be significantly associated with patient survival. The novel
peptides identified, the corresponding parent genes/proteins,
their key molecular functions, and observed survival associ-
ation have been listed in Table 2.
High expression of FLT1 is associated with poor prognosis

of basal subtype of BRCA, whereas that of FAAD with luminal
subtype. FLT1 belongs to the vascular endothelial growth
factor receptor family of tyrosine kinase receptors and is
involved in the regulation of angiogenesis (40). Over-
expression of FLT1 and its two ligands, placenta growth factor
and vascular endothelial growth factor receptor B, has been
reported in different tumors including BRCA and shown to be
associated with poor prognosis (40, 41). FADD is an ubiqui-
tous protein encoded on chromosome 11. With its death
effector protein interaction domains, it facilitates interactions
between Fas receptor and members of the caspase cascade
inducing apoptotic signaling. During the last decade, FADD
has been shown to have a role in many signaling complexes
and thus is implicated in other processes, such as prolifera-
tion, cell cycle regulation, and development as well as in gene
expression changes and regulation of metabolic processes.
Changes in the expression of FADD and its post-translational
modifications seem to occur in many cancers (42), but how it
functions in cancer is complex as both overexpression and
downregulation of FADD in cancers has reported BRCA to
being one of the high-expressing cancer. Chromosomal
amplification is associated with BRCA and is the most likely
factor for higher expression. Anticancer drugs, tamoxifen and
paclitaxel, in BRCA have been reported to activate FADD
phosphorylation resulting in cell cycle arrest and suppression
of cancer growth through p53 stabilization. Overall, it is clear
that considering the multifunctional roles of FADD and its
dynamics in cancer, it qualifies as a strong candidate marker
for diagnosis, prognosis, or therapeutic strategies.
Distinct among these novel peptides is a panel of six pep-

tide sequences showing survival association with HER2-
enriched subtype of BRCA, one of the more aggressive
types. The parent genes corresponding to these novel peptide
sequences include several regulatory enzymes (ALDOA,
PLCB3, and PPP2R2A), a growth factor receptor kinase
(FGFR1), a DNA-binding factor (RPA1), as well as a cytokine
(CXCL16) involved in immune modulation. Aldolase is one of
the glycolytic enzymes with three isoenzymes (A, B, and C)
that are developmentally regulated (43). ALDOA being the
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FIG. 5. MS/MS spectra of novel peptides of eight protein-coding genes with survival association as shown in Figure 4. The details of
the peptides and their corresponding genes are given in supplemental Table S5.
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adult form. Recently, a new role of ALDOA in cancers has
been proposed through its association with genes relevant to
cell cycle independent of glycolysis and thus with the devel-
opment and prognosis of several cancers. Other than its
function in glycolysis and energy generation, ALDOA also
contributes to other functions, such as regulation of cell shape
and motility, actin cytoskeleton organization, and regulation of
cell proliferation. Overexpression of ALDOA is believed to
enhance glycolysis in tumor cells, promoting their growth. In
laryngeal squamous cell carcinomo, its upregulation corre-
lates with metastasis and poor prognosis, whereas its down-
regulation reduces tumor cell motility and tumorigenesis.
PPP2R2A (protein phosphatase 2A) belongs to the family of
serine/threonine phosphatases. It is a heterotrimeric protein
consisting of a highly conserved catalytic domain that binds to
different regulatory subunits to exert its functions. PPP2R2A
codes for an alpha isoform of the regulatory subunit B55
subfamily and is known to be involved in regulation of cell
cycle (44). Deregulation of PPP2R2A has been implicated in
many cancers (45). PLCB3 is a member of highly conserved
phospholipase family. This enzyme catalyzes the hydrolysis of
phosphatidylinositol-4,5-bisphosphate (PIP2) to produce the
second messengers, inositol-1,4,5-triphosphate and diac-
ylglycerol in G protein–coupled receptor–mediated signal
transduction (46). High expression of PLCB3 mRNA has been
shown to be associated with poor survival in non–small cell
lung cancer patients (47). Fibroblast growth factors (FGFs) are
broad-spectrum mitogens and regulate a wide range of
cellular functions, including migration, proliferation, differenti-
ation, and survival. FGFs and FGFRs have been identified in
the cancer vasculature and supporting stromal cells as well as
cancer cells (48) The FGFR family consists of tyrosine kinase
receptors involved in several biological functions, such as
differentiation, proliferation, and apoptosis of various types of
cells. Alterations of FGFR have been reported to be important
for progression and development of several cancers and as
attractive targets. In addition to post-translational modifica-
tions, alternative splicing and translational initiation generate
multiple isoforms of FGFs/FGFRs and regulate their expres-
sion levels and binding specificity to individual FGFs. RPA1 is
a highly conserved heterotrimeric single-stranded DNA-bind-
ing protein complex that plays a significant role in maintaining
the genome integrity by facilitating DNA replication, recom-
bination, and repair (49). Chen et al. (50) modulates the func-
tion of DNA helicases, fork remodeling, checkpoint activation,
and telomere maintenance (51). The RPA1 complex is
composed of three subunits—RPA1, RPA2, and RPA3 with six
DNA-binding domains, involved in DNA protein and protein–
protein interactions during DNA damage and repair pro-
cesses. The crosstalk between immune system and cancer
cells in the tumor microenvironment is mediated by cytokines
and chemokines during cancer initiation and progression (52).
CXCL16 is a small cytokine belonging to the CXC chemokine
family and has been identified to bind with the C-X-C
14 Mol Cell Proteomics (2022) 21(4) 100220
chemokine receptor type 6. CXCL16 is produced by macro-
phages and dendritic cells expressed as not
only a membrane-bound molecule but also a soluble che-
mokine. The membrane-bound CXCL16 is released after
proteolytic cleavage, and stimulation of C-X-C chemokine
receptor type 6 with soluble CXCL16 facilitates cytoskeletal
rearrangement during BRCA cell migration and invasion and
regulates immune cell chemotaxis into CXCL16-enriched
environments.
Unlike in the case of the novel peptides mapping to heat

shock protein family b (small) member 11 and RAB14 (see
Results section), the parent genes of the novel peptides
mapping to the above proteins did not show survival associ-
ation (supplemental Fig. S2), permitting the conclusion that
the survival association of the novel peptides observed and
discussed previously is likely because of the novel peptide
sequence itself. What is the effect of the novel peptide
sequence on the expression or function of the gene/protein
and how they contribute to the isoform spectrum of the rele-
vant protein are not clear. However, it is interesting to note
that the novel peptides of the genes, ALDOA, CXCL16,
FGFR1, PLCB3, and RPA1, associated with HER2-enriched
subtype, mapped to the 5′UTR region indicating 5’ (N-termi-
nal region) extension of these proteins resulting from an in-
frame upstream translation initiation site. (The novel peptide
corresponding to PPP2R2A provided evidence for deletion of
an alanine at the junction of exon 2 and exon 3.). The 5′ and
3′UTRs of eukaryotic genes have regulatory role in the pro-
cess of translation. Sequences at the 5′ UTR particularly are
involved in binding and selection of the start site for translation
and formation of the initiation complex through interaction
with the initiation factors and 3′UTR (which is also involved in
regulating the stability of the mRNA). Interestingly, in all these
cases, the extended N-terminal sequence lacked an upstream
methionine, which is generally a degradation signal in cells.
Thus, a question that could be asked is whether 5′ extensions
observed in the five of these survival-associated sequences
influence the molecular interactions to bring about the change
in the translational efficiency of the mRNA or contribute to its
stability and therefore their altered levels. Similarly, the loss of
alanine at the junction of exon 2 and 3 in PPP2R2A may have
some structural consequence on the protein associated with
malignant status. We do not have answers to these questions,
but the possibilities cannot be ruled out. Nevertheless, the
respective novel peptide sequences show statistically signifi-
cant association with patient survival as against sequences of
the parent genes, which are associated with multiple cancer
hallmarks, strongly suggests their implication in breast cancer
pathogenesis. Identification and characterization of the full-
length proteoforms of these gene products harboring the
novel peptide sequences, their expression levels using MS or
antibody-based approaches, the structural and functional
consequences of these novel sequences on the protein would
therefore be important to investigate in a targeted manner.
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CONCLUSIONS

We developed a proteogenomics pipeline that uses custom
database based on de novo–assembled transcripts from RNA-
Seq data and their in silico translation in six frames. We
applied our pipeline using the TCGA-BRCA RNA-Seq and the
CPTAC proteome data for the same cohort of BRCA patients.
Our analysis identified novel peptides representing alternative
splicing of many known protein-coding genes as well as ex-
pressions of pseudogenes, lncRNAs, N-terminal extensions,
and short potentially nORFs from intronic regions. These
changes regarding novel expressions at the translational level
may influence the function of the cognate proteins either by
changes in their levels or structure-driven functional change.
The translation of sequences into novel peptides may be
driven by the tumorigenic condition as revealed by their sur-
vival analysis and association with favorable or unfavorable
prognosis. Further targeted analysis of these novel peptides
would give useful insights for their clinical application.
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