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Background: Immune checkpoint inhibitor (ICI) therapy has been proved to be a

promising therapy to many types of solid tumors. However, effective biomarker for

estimating the response to ICI therapy and prognosis of hepatocellular carcinoma (HCC)

patients remains underexplored. The aim of this study is to build a novel immune-related

prognostic index based on transcriptomic profiles.

Methods: Weighted gene co-expression network analysis (WGCNA) was conducted to

identify immune-related hub genes that are differentially expressed in HCC cohorts. Next,

univariate Cox regression analysis and least absolute shrinkage and selection operator

(LASSO) analysis were used to detect hub genes associated to overall survival (OS). To

validate the immune-related prognostic index, univariate and multivariate Cox regression

analysis were performed. CIBERSORT and ESTIMATE were used to explore the tumor

microenvironment and immune infiltration level.

Results: The differential expression analysis detected a total of 148 immune-related

genes, among which 25 genes were identified to be markedly related to overall survival

in HCC patients. LASSO analysis yielded 10 genes used to construct the immune-related

gene prognostic index (IRGPI), by which a risk score is computed to estimate low vs. high

risk indicating the response to ICI therapy and prognosis. Further analysis confirmed that

this immune-related prognostic index is an effective indicator to immune infiltration level,

response to ICI treatment and OS. The IRGPI low-risk patients had better overall survival

(OS) than IRGPI high-risk patients on two independent cohorts. Moreover, we found that

IRGPI high-risk group was correlated with high TP53 mutation rate, immune-suppressing

tumor microenvironment, and these patients acquired less benefit from ICI therapy. In

contrast, IRGPI-low risk group was associated with low TP53 and PIK3CA mutation

rate, high infiltration of naive B cells and T cells, and these patients gained relatively more

benefit from ICI therapy.
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1. INTRODUCTION

Liver cancer remains a global health challenge, with an estimated
incidence of more than 1 million cases by 2025 (Llovet et al.,
2021) around the world. Hepatocellular carcinoma (HCC) is
the most common form of liver cancer and accounts for 90%
cases, and its increasing mortality rate is receiving growing
concern. Conventional treatment, such as surgery, radiotherapy,
and chemotherapy, do not significantly prolong overall survival
(OS) of HCC patients (Ghouri et al., 2017).

Immunotherapy is emerged as an effective therapy in the
field of cancer treatment in recent years, and among them
the most impressive is immune checkpoint blockade (Mellman

et al., 2011). Its clinical advantage including but not limited to
continuous anti-tumor immune response with relatively weak
side effect, low recurrence rate, and even complete remission for
some advanced cancers (Khalil et al., 2016). As a result, immune
checkpoint blockade has been approved for first-line therapy of

some cancers.
For HCC, ICI has shown strong anti-tumor activity in

a portion of patients (Khalil et al., 2016; Hou et al.,
2020). Especially, the combination of the anti-PDL1 antibody
atezolizumab and the VEGF-neutralizing antibody bevacizumab
has become the standard of care as a first-line therapy
for HCC (Sangro et al., 2021). However, the fraction of

HCC patients that benefit from immunotherapy remains
very limited, while other immunotherapy such as adoptive
T-cell transfer, vaccination, or virotherapy have not yet
demonstrated consistent clinical activity. As the factors that
influence ICI efficacy are multifaceted, such as the immune
microenvironment (TME) and PD-L1 level, the establishment
of gold-standard biomarker for immunotherapy benefit is
challenging (Nishino et al., 2017).

In this paper, we resort to transcriptomic data and clinical
outcome to establish an immune-related gene prognostic index
(IRGPI) of HCC, by exploiting weighted gene co-expression
network analysis (WGCNA) (Langfelder and Horvath, 2008).
Among 655 differentially expressed genes related to immunity,
148 hub genes were identified by WGCNA. Next, we identified
25 genes significantly related to overall survival by univariate
Cox regression analysis, and selected 10 genes by LASSO analysis
to construct the immune-related prognostic index (IRGPI), a
quantitative score indicative of low vs. high risk of prognosis.
Further analysis confirmed that the IRGPI is closely associated
to immune microenvironment, response to ICI treatment and
OS. In particular, the low-risk patients had better overall survival
(OS) than high-risk patients, for both TCGA and GEO cohorts.
Moreover, high-risk group was correlated with high TP53
mutation rate, immune-suppressing tumor microenvironment,
and these patients acquired less benefit from ICI therapy. In
contrast, low-risk group was associated with low TP53 and
PIK3CA mutation rate, high infiltration of naive B cells and
T cells, and these patients gained relatively more benefit from
ICI therapy. Finally, we also validated IRGPI outperformed
routine biomarkers used to screen patients who can benefit
from immunotherapy. The results suggested that IRGPI was a
promising prognostic biomarker for patients.

2. MATERIALS AND METHODS

2.1. Data Resource and Preprocessing
The cohort for IRGPI establishment was obtained from TCGA
(TCGA cohort), which includes 424 samples (374 cancer samples
and 50 para-cancer samples). We utilized the UCSC Xena
browser (Goldman et al., 2020) to download the RNA-seq data
(FPKM normalized). The matched somatic mutation data and
clinical outcome of the HCC patients were also obtained.

An independent cohort was obtained from the GSE14520 to
verify the effectiveness of the IRGPI risk score. The validation
cohort includes 221 HCC patients, and the transcriptomic data
and clinical outcome were obtained from GEO database (Edgar
et al., 2002). To further verify the predictive performance of the
IRGPI on ICI therapy, we employed GSE140901 dataset, which
has the gene expression profiles and clinical outcome of HCC
patients who received anti-PD-L1 therapy.

The immune-related genes were downloaded from ImmPort
database (Bhattacharya et al., 2014) and InnateDB database
(Breuer et al., 2013). After removal of duplicate genes, the
ImmPort database contained 1,811 immune genes and the
InnateDB database contained 1,226 immune genes.

Associations between protein-coding genes (mRNA) and
transcriptional factors (TFs), miRNA and lncRNA were
downloaded from TRRUST v2 (Han et al., 2018), TargetScan
(Lewis et al., 2005), miRDB (Wong andWang, 2015), miRTarBase
(Chou et al., 2018), and miRcode databases (Jeggari et al.,
2012), respectively.

2.2. Differential Expression and Enrichment
Analysis
The limma package (version 3.44.3) (Ritchie et al., 2015) was
used to identify the differentially expressed mRNA. The log2 fold
change>1 and FDR<0.05 were used as the criteria to screen
differentially expressed genes (DEGs). Enrichment analysis on
Gene Ontology (GO) and KEGG pathways were conducted
using the clusterProflier R package (Yu et al., 2012). Treemap R
package (Baehrecke et al., 2004) were chosen for visualization of
significant functional annotations and pathways.

2.3. Identification of Hub Genes by WGCNA
Weighted gene co-expression network analysis (WGCNA) was
performed to identify hub genes. First, the similarity matrix
was constructed by using the expression data by calculating the
Pearson correlation coefficient between gene pairs. Next, the
similarity matrix was transformed into an adjacency matrix with
a network type of signed and then transformed into a topological
matrix with the topological overlap measure (TOM) describing
the degree of association between genes. 1-TOM was used as
the distance to cluster the genes, and then the dynamic pruning
tree was built to identify the modules. Finally, we identified the
modules by setting the merging threshold function at 0.25.

The modules with significantly different expression patterns
between tumor and normal tissues were chosen for downstream
analysis. We took the intersection between the modules
and differentially expressed immune-related genes. To assess
the potential biologic functions and involved pathways of

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 November 2021 | Volume 9 | Article 760079

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Li et al. Immune-Related Gene Prognostic Index in HCC

the differentially expressed immune-related genes, gene set
enrichment analysis (GSEA) was conducted using clusterProfiler
R package.

2.4. Construction of Immune-Related Gene
Prognostic Index
To develop a prognostic index, univariate Cox regression analysis
and least absolute shrinkage and selection operator (LASSO)
were conducted to assess the associations between immune-
related genes expressions and overall survival (OS). Cox and
LASSO regression were carried out using survival R package
(Therneau and Lumley, 2014) and glmnet R package (Hastie and
Qian, 2014).

The IRGPI risk score was computed using each gene
expression level multiplied by its linear regression coefficient
obtained from the univariate Cox regression. According to the
median risk score, patients were assigned to high-risk and low-
risk groups. The Kaplan-Meier survival analysis was performed
to compare overall survival between high-risk and low-risk
groups. The receiver operating characteristic (ROC) curves were
plotted by survival R package. To validate the independent
prognostic value of IRGPI, univariate and multivariate Cox
regression analysis was performed on IRGPI risk score and other
clinicopathologic feature.

2.5. Construction of Regulatory Networks
First, we identified the differentially expressed long non-coding
RNAs (DElnRNAs) and miRNAs (DEmiRNAs) by setting the
standards that log2 fold change>1 and FDR<0.05. Next, multiple
miRNA target databases, including TargetScan, miRTarBase,
and miRDB, were used to seek DEmiRNAs targeting the hub
immune-related DEGs. The miRcode database was used to find
lncRNA-miRNA associations. The TRRUST database version 2
was used to search the TFs regulating the hub immune-related
DEGs. Finally, Cytoscape was used to visualize the regulatory
network containing the miRNA-mRNA, lncRNA-miRNA, and
TFs-mRNA associations.

2.6. TME and ICI Efficacy Compared
Between IRGPI Groups
To explore the immune microenvironment of HCC, the
transcriptomic data were imported into CIBERSORT (Newman
et al., 2015)to compute the proportion of 22 types of immune
cells. We compared the relative proportions of these immune cell
types between two IRGPI groups. The immune infiltrating cells
and tumor purity were assessed by ESTIMATE tool (Yoshihara
et al., 2013). Besides, we explored the correlation between
canonical immune subtypes and IRGPI groups.

Somatic mutation landscape was built in two IRGPI
groups by using the Maftools R package (Mayakonda et al.,
2018). Correlation analysis was performed between IRGPI risk
score and conventional immunotherapy biomarkers, including
programmed death receptor ligand-1/2 (PD-L1/2), programmed
cell death protein-1 (PD-1), cytotoxic T lymphocyte associated
antigen-4 (CTLA-4), cytolytic activity (CYT), and tumor
mutation burden (TMB).

For estimation of the potential clinical efficacy of ICI
treatment in different IRGPI groups, we calculated tumor
immune dysfunction and exclusion (TIDE) scores (Jiang et al.,
2018) in different IRGPI groups. Tumor inflammation signature
(TIS) is an 18-gene signature that reflects an ongoing adaptive
Th1 and cytotoxic CD8+ T cell response and shows promising
results in predicting response to anti-PD-1/PD-L1 agents (Ayers
et al., 2017). IRGPI risk score was also used to predict the overall
survival of patients received anti-PD-L1 agents. ROC curves and
AUC value were used to estimate the performance of IRGPI
risk score. Performance comparison was also performed between
IRGPI risk score and TIDE and TIS scores.

2.7. Statistical Analysis
Independent t-test was performed to compare continuous
variables between two groups. Categorical data were tested using
the chi-square test. TIDE score between groups was compared by
the WilCoxon test. Univariate survival analysis was performed
by Kaplan-Meier survival analysis with the log-rank test. A two-
sided p-value < 0.05 was considered significant.

3. RESULTS

3.1. WGCNA Analysis Identified
Immune-Related Hub DEGs
The differential expression analysis on 374 tumors and 50 normal
TCGA samples yielded a total of 6,209 differentially expressed
genes (DEGs), in which 5,391 genes were up-regulated and
818 genes were down-regulated. By intersecting DEGs with the
immune-related genes collected from ImmPort and InnateDB
databases, 655 differentially expressed immune-related genes
were obtained, in which 460 genes were up-regulated and
195 were down-regulated in tumor samples compared with
normal samples.

To obtain the immune-related hub genes, WGCNA analysis
was carried out. As shown in Figures 1A,B, the logarithm log(k)
of the node with connectivity k was negatively correlated with
the logarithm log[P(k)] of the probability of the node, and the
correlation coefficient was >0.85. The optimal soft-thresholding
power was set to 10. Eight modules were identified based on
the average linkage hierarchical clustering and the optimal soft-
thresholding power (Figures 1C,D). According to the Pearson
correlation coefficient between a module and sample feature,
we found green, yellow, and magenta modules were closely
correlated with HCC tumors, the genes in these two modules
were selected for further analysis.

Taking the intersection between the genes included in the two
WGCNA-derivedmodules and the lists of differentially expressed
immune-related genes, 148 immune-related hub genes (IRGs)
were obtained, of which 122 genes were up-regulated and 26
were down-regulated.

3.2. Treemaps of Enriched Functional
Annotations and Pathways
To uncover the role of the immune-related hub genes in the
pathogenesis of HCC, GO, and KEGG enrichment analysis
was carried out. The top 10 significantly enriched GO terms
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FIGURE 1 | Results of weighted gene co-expression network analysis (WGCNA). (A) The scale-free fit index of various soft-thresholding powers. (B) Mean

connectivity of various soft-thresholding powers. (C) A dendrogram of the differentially expressed genes clustered based on different metrics. (D) Heatmap of

associations between module eigengenes of normal and tumor tissues.

and KEGG pathways for IRGs are shown in Figure 2. As for
cellular component, the set of IRGs are significantly enriched
in the regulation of response to biotic stimulus, regulation of
innate immune response, fc receptor signaling pathway, and
regulation of morphogenesis of an epithelium. As for cellular
component, they are significantly enriched in cytoplasmic
vesicle lumen, secretory granule lumen, and peptidase complex.
For molecular function, they are significantly enriched in
receptor ligand activity signaling receptor activator activity and

ubiquitin-like protein ligase binding. As for KEGG pathway
analysis, they are significantly enriched in Epstein-Barr virus
infection, pathways of neurodegeneration-multiple diseases and
amyotrophic lateral sclerosis.

3.3. IRGPI Risk Score Is Predictive of
Overall Survival
The screened 148 immune-related hub genes were further
evaluated by univariate Cox regression. As a result, 25 genes
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FIGURE 2 | Treemaps of GO and KEGG enrichment analysis, in which rectangle size is proportional to the statistical significance of functional annotations and

pathways. (A–C) Treemaps of the enrichment analysis on GO biological process, cellular component, and molecular function, respectively. (D) Treemaps of

enrichment analysis on KEGG pathways.

TABLE 1 | The 10 immune-related hub genes used to compute IRGPI risk score.

Gene Coef HR HR.95L HR.95H p-value

CARS1 0.143645 1.68498 1.24329 2.283584 0.000768

CBS −0.10811 0.656049 0.477454 0.901449 0.009325

CISD1 0.088366 1.631699 1.196967 2.224324 0.001953

GCLM 0.132237 1.445134 1.193399 1.749971 0.000163

SAT1 −0.06677 0.746933 0.576198 0.968259 0.027555

SLC7A11 0.086376 1.466116 1.232625 1.743836 1.54E-05

ACACA 0.116986 1.61311 1.228934 2.117383 0.00057

KEAP1 0.08436 1.54419 1.04808 2.275135 0.027987

SLC1A5 0.096401 1.363949 1.215323 1.530752 1.34E-07

G6PD 0.112358 1.415541 1.264641 1.584447 1.52E-09

showed statistical significance to overall survival on TCGA
cohort. Next, LASSO regression was performed to further narrow
the scope of OS-related hub genes, and finally 10 genes were
selected for the establishment of prognostic index. Specifically,
the IRGPI risk score was computed using gene expression level
multiplied by the weights of the 10 genes. The weights are shown
in Table 1.

The univariate Cox regression analysis was performed on
IRGPI risk score and other clinicopathologic feature (Figure 3A),
and verified that the IRGPI risk score and clinical stage

were statistically significant factors with the prognosis of HCC
(Figure 3B). Moreover, multivariate Cox regression analysis
confirmed that IRGPI was an independent prognostic factor after
adjusted for other clinicopathologic factors (Figure 3B).

Taking the median IRGPI score as the cutoff value to partition
the TCGA cohort into low- and high- risk groups, the IRGPI low-
risk patients showed obviously better OS than IRGPI high-risk
patients (p = 0.001, log-rank test) (Figure 3C). The ROCAUC of
the IRGPI prognosis model reach 0.790 for 1-year OS, 0.667 for
3-year OS, and 0.640 for 5-year OS (Figure 3D).

Furthermore, to evaluate the generalization of IRGPI in
prognosis, we conducted survival analysis on validation cohort (n
= 221). As showed in Figure 3E, the two IRGPI groups differed
significantly in OS, and the IRGPI low-risk group had better
prognosis than the IRGPI high-risk group (p = 0.0001, log-
rank test). The ROCAUC of the prognostic model on validation
cohort reach 0.806 for 1-year OS, 0.786 for 3-year OS, and 0.778
for 5-year OS (Figure 3F). Of note, the result on the validation
cohort is consistent with that on the TCGA cohort, suggesting
that the IRGPI could be a promising indicator for prognosis of
HCC patients.

3.4. Regulatory Network of
Immune-Related Hub Genes
The regulatory network acts as an important role in
tumorigenesis and development of HCC, we attempted to
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FIGURE 3 | Screening of immune-related prognostic genes via Cox and LASSO regression and survival analysis of IRGPI low- and high-risk groups. (A) Univariate

Cox regression of 25 immune-related hub genes. (B) Univariate and multivariate Cox regression analysis on IRGPI and other clinicopathologic variables.

(Continued)
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FIGURE 3 | (C) Kaplan-Meier curve of the survival analysis between IRGPI groups on TCGA cohort. (D) ROC curve and AUC values of IRGPI risk score in predicting

1-, 3-, and 5-year OS on TCGA cohort. (E) Kaplan-Meier curve of the survival analysis between IRGPI groups on GSE14520 cohort. (F) ROC curve and AUC values of

IRGPI risk score in predicting 1-, 3-, and 5-year OS on GSE14520 cohort.

elucidate the endogenous regulatory mechanism of the immune-
related hub genes. We built a regulatory network composed of
mRNAs, miRNAs, lncRNAs, and transcription factors (TFs).
To be specific, the regulatory network included 5 miRNAs, 6
lncRNAs, and 4 TFs associated to eight out of the immune-related
hub genes, as shown in Figure 4.

We have conducted extensive literature study to verify these
regulatory relationships. For example, the lncRNA FAM99A
has been found to be up-regulated in HCC and closely related
to clinical prognosis (Sun et al., 2020). There is increasing
evidence that lncRNA GAS5 acts as a tumor suppressor,
which is downregulated in certain tumor tissues and combined
with miRNA to regulate related signaling pathways (Cheng
et al., 2018). The lncRNA MALAT1 has been reported to
be associated with diabetes-induced microvascular dysfunction,
activate p38/MAPK signaling and regulate retinal endothelial cell
function under diabetic condition (Liu et al., 2014). Another
study indicated that MALAT1 regulated hyperglycemia induced
inflammatory process in endothelial cells (Puthanveetil et al.,
2015). The NFYA TF has been reported to be up-regulated in
HCC and associated to tumors with mutant p53 (Bezzecchi et al.,
2020). The CREB1 is a key transcription factor that mediates
transcriptional responses to a variety of growth factors. CREB1
has been reported to be related with metastasis, tumor stage and
poor outcome in gastric cancer (Wang et al., 2015), and the
knockdown of CREB1 could inhibit liver cancer cell migration
(Yang et al., 2013). PPARD has been reported to accelerate
colorectal tumorigenesis, progression, and invasion (Liu et al.,
2019), it could effectively predict the prognosis of HCC patients
as an independent prognostic signature (Sun et al., 2021). It has
been reported that hsa-miR-122-5p levels are connected with
cholesterol levels in a viral hepatitis-free human population and
associate with fatty liver and lipoprotein metabolism (Raitoharju
et al., 2016).

3.5. TME and Somatic Mutations Differ in
Two IRGPI Groups
We explored the tumor microenvironment difference by
dissecting the composition of immune cells in different IRGPI
groups. As shown in Figure 5A, T cells follicular helper,
neutrophils, activated memory CD4 T cells, T cells gamma delta,
dendritic cells resting, andM0macrophages were more abundant
in the IRGPI high-risk group, while naive B cells, resting memory
CD4 T cells, and mast cells resting were more abundant in the
IRGPI low-score group. The tumor microenvironment revealed
that the IRGPI low-risk group reflects stronger immune response,
thereby this group has better prognosis (Figures 3C,E).

The GSEA analysis was also performed to investigate the
gene sets enriched in different IRGPI groups. The gene set in
the IRGPI low-risk group was enriched in glycine serine and
threonine metabolism, primary bile acid biosynthesis, and PPAR

signaling pathway, while the gene set in the IRGPI high-risk
group was enriched in cytosolic DNA pathway and immune
related pathways (Figure 5B).

Somatic mutations can help to gain further insight into the
tumorigenesis of HCC, thereby we plot the somatic mutation
landscapes of the IRGPI low- and high-risk groups. It can be
found significantly higher mutation counts in the IRGPI high-
risk group than in the IRGPI low-risk group. Missense variations
were the most common mutation type, followed by nonsense
and frameshift deletions. We selected the top 20 genes with the
highest mutation rates in two IRGPI groups (Figures 5C,D), and
found themutation rates of TP53, CTNNB1, TTN,MUC16, ALB,
and PCLO were higher than 10% in both groups. The mutation
of the MUC4 and LRP1B genes was more common in the IRGPI
high-risk group, while the mutation of AXIN1 genes was more
common in the IRGPI low-risk group.

Also, we assessed the immune infiltrating and tumor purity
using ESTIMATE tool. The stromal score was considered to be
correlated with the fraction of stromal cells, and the immune
score reflected the infiltration of immune cells in solid tumor.
As in previous studies, immune score has been confirmed to
be correlated with prognosis in patients with several tumors
(Yoshihara et al., 2013). In particular, Liu et al. has reported that
patients with high immune scores had poor prognosis than those
with low scores in HCC (Liu et al., 2020). Accordingly, we found
that the immune score in IRGPI high-risk group was higher than
those in IRGPI low-risk group (Figure 5E, p <0.05), which is
consistent with previous study.

In addition, as tumor cell proliferation leads to the overgrowth
of population of clonally derived tumor cells, we explored the
relationship between two IRGPI groups and tumor proliferation.
As shown in Figure 5F, the cell proliferation was more active in
the IRGPI high-risk group (p = 3.28e-19), and thereby leads to
worse prognosis.

3.6. IRGPI Risk Score Closely Correlated to
Immunotherapy Biomarkers
A few biomarkers have been used in clinical immunotherapy,
including PD-L1/2, PD-1, CTLA-4, CYT, and TMB. Among these
biomarkers, the immune checkpoint genes PD-L1/2, and CTLA4
are co-expressed in HCC (Shrestha et al., 2018). Beyond PD-
L1/2 and CTLA4 level, the CYT value reflects the activity of
cytotoxic T cells (CTLs) and NK cells due to their powerful ability
to lyse tumor cells. A recent study found that CYT-high HCC
has stronger immunogenicity and a more favorable TME than
CYT-low HCC, which would result in better clinical outcomes
(Takahashi et al., 2020). Also, TMB refers to the number of
somatic mutations (non-synonymous mutations) that occur on
an average of 1Mb base in the exon region. For immunotherapy,
the higher TMB in cancer cells, the more antigens may be
produced and thus stronger anti-tumor response in ICI therapy.
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FIGURE 4 | Regulatory network of the IRGPI-related genes. The network summarizes regulation relationships between transcription factors (purple rectangles),

mRNAs (green diamonds), miRNAs (blue triangles), and lncRNAs (pink eclipse).

In fact, high TMB is associated with improved response to
immune checkpoint blockade in HCC (Yang et al., 2020).

We explored the relationship between the IRGPI scores and
these biomarkers. As shown in Figures 6A–F, the IRGPI scores
were positively related to the immune biomarkers. The Pearson
correlation coefficients between IRGPI risk scores and PD-L1 is
0.24 with p-value = 4.6e-06 (PD-1: r = 0.43, p = 2.2e-16; PD-
L2: r = 0.2; p = 8.1e-05; CTLA-4: r = 0.32, p = 6e-10; CYT: r =
0.11, p = 0.038; TMB: r = 0.16, p = 0.0019). The p-values of all
the correlations were smaller than 0.05, suggesting that the IRGPI
score is significantly correlated with immune biomarkers.

3.7. IRGPI Grouping Correlated to Immune
Subtypes
The immune subtypes describe the immune landscape of
tumors according to the tumor and stromal compartments. A
consensus immune subtyping summarized four subtypes: wound
healing (C1), IFN-gamma dominant(C2), inflammatory(C3),
lymphocyte depleted(C4) (Thorsson et al., 2018). Thorsson et al.

have showed that C3 had the best prognosis, C2 and C1 had
less favorable outcomes, while C4 conferred the least favorable
outcome. Correspondingly, it can be found from Figure 7A

that C3 subtype had more IRGPI low-risk patients, while other
three subtypes had more IRGPI high-risk patients (p = 0.001,
chi-square test).

Another molecular subtyping has consistently reported three
immune subtypes, namely, iCluster1, iCluster2, and iCluster3
(Colaprico et al., 2016). We then focused on the distribution
of the molecular subtypes in the IRGPI groups. In our study,
the IRGPI low-risk group comprised 30% iCluster1 samples,
41% iCluster2 samples, 29% iCluster3 samples, while the
IRGPI high-risk group comprised 38% iCluster1 samples, 23%
iCluster2 samples, 39% iCluster3 samples (Figure 7B, p<0.05,
chi-square test). There were more samples in iCluster2 and
fewer samples in iCluster1 and iCluster3 of the IRGPI low-risk
group than in the IRGPI high-risk group, which is consistent
with the prognosis of the molecular subtypes (Colaprico et al.,
2016).
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FIGURE 5 | Tumor immune environment, somatic mutation landscape, and immune scores between IRGPI low- and high-risk groups. (A) Comparison of tumor

immune environment in two IRGPI groups. (B) Gene set enrichment analysis (GSEA) between two IRGPI groups. (C,D) Somatic mutation landscape between IRGPI

low-risk and high-risk groups, respectively. (E) Difference of ESTIMATE immune score between two IGRPI groups. (F) Difference of proliferation score between two

IGRPI groups.
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FIGURE 6 | Scatter plots coordinated by IRGPI risk score and other immune biomarkers, and (A–F) represents PD-L1, PD-1, PD-L2, CTLA-4, CYT, and TMB,

respectively.

FIGURE 7 | (A) Patient proportions between IRGPI groups among TCGA immune subtypes, and (B) molecular subtypes.

3.8. IRGPI Is Highly Predictive of Benefit
From ICI Therapy
It has been reported that some other indicators, such as TIDE and
TIS, could predict patient response to ICI therapy. TIDE (Jiang
et al., 2018) is a computational method to identify factors that
underlie two mechanisms of tumor immune escape. Higher
TIDE score means higher potential for immune evasion, which
suggested that the patients were less likely to benefit from ICI
therapy and associated with worse outcome.

TIDE score was used to estimate the potential clinical
efficacy of ICI therapy in different IRGPI groups. The

IRGPI high-risk group had higher TIDE scores than the
IRGPI low-risk group (p = 0.004) (Figure 8A). Accordingly,
we found that the IRGPI low-risk group had a higher
microsatellite instability (MSI-H) score (Figure 8B), while the
IRGPI high-risk group had a higher T cell exclusion score
and lower T cell exclusion score in T cell dysfunction
(Figures 8C,D). All these results verified that IRGPI high-
risk patients would gain less benefit from ICI therapy than
IRGPI-low patients.

We also tested the predictive performance of the IRGPI
score on the efficacy of ICB treatment on another HCC cohort
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FIGURE 8 | Correlation of IRGPI risk score and other immune-related prognostic scores. (A–D) TIDE, MSI, T cell exclusion, and T cell dysfunction score in different

IRGPI groups. (E) ROC curve and AUC values of IRGPI risk score in predicting the 1- and 2-year OS on GSE140901 cohort who received anti-PD-L1 therapy. (F)

Performance comparison between of IRGPI risk, TIDE and TIS in predicting 1-year OS on GSE140901 cohort.

(GSE140901 dataset, n = 24). As showed in Figure 8E, the AUC
of the ROC curve of the prognostic model reached 0.818 for
1-year OS and 0.859 for 2-year OS. Furthermore, we compare
the predictive power of IRGPI with TIDE and TIS scores, and

verified that the accuracy of IRGPI score was obviously higher
than TIDE and TIS (Figure 8F). The results indicated that the
IRGPI score might be a potential biomarker for predicting the
immunotherapy response.
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4. DISCUSSION AND CONCLUSION

Immune checkpoint inhibitor has been proven to be
an effective treatment for HCC. Given that the overall
response rate to ICI therapy remains limited, identifying
patients who can benefit from ICI treatment is crucial.
Since current widely used biomarkers, such as PD-L1 level,
TMB, and MSI-H, have been proven to be not consistently
reliable, we actually have no gold-standard biomarker
for clinical ICI therapy yet. This highlights the need for
an accurate prognostic biomarker for immunotherapy
in HCC.

Based on the immune-related differentially expressed genes
in HCC, we used WGCNA and regression analysis to identify
10 immune-related hub genes to establish a prognostic index.
We computed the IRGPI score using weighted gene expression
levels (see Table 1), and verified that it was an independent and
effective prognostic factor. Specifically, the HCC patients with
low IRGPI risk scores have improved prognosis, while those
with high IRGPI risk scores have poor prognosis on TCGA
cohort and two GEO cohorts. We attempted to summary the
function of these genes so as to yield a mechanism explanation
of the prognostic index. CARS1 is located in chromosome 11
p15.5, an important tumor-suppressor gene region. Cho et al.
(2020) found that the special region of antigen-presenting cells
was associated with CARS secreted by cancer cells to activate
the immune response, thus stimulating a strong humoral and
cellular immune response. SLC7A11 encodes a highly specific
all-source of cysteine and glutamate. A few studies have shown
that blocking SLC7A11 can inhibit HCC cells growth through
the ROS autophagy pathway. Zhang et al. (2018) found that
SLC7A11 expression profile was associated with the prognosis
of liver cancer. CISD1 is an iron-containing outer mitochondrial
membrane protein, and has been revealed that impaired CISD1
expression leads to tumor growth (e.g., breast and liver cancer)
and has been considered a potential chemotherapeutic target
(Salem et al., 2012). G6PD, a rate-limiting enzyme of the PPP, is
upregulated in many cancers and contributes to tumor growth.
It has been found that G6PD overexpression is significantly
associated with HCC metastasis and poor prognosis of HCC
(Lu et al., 2018). SLC1A5, also known as ASCT2, is one of
the most studied proteins of plasma membrane transporter.
Its high expression in hepatocellular carcinoma is associated
with poor prognosis (Zhang et al., 2019). Consistent to these
previous studies, we found these cancerogenic genes have
positive weights (see Table 1) and thus contribute to high IRGPI
risk score.

For in-depth understanding in terms of genetic alterations, we
inspect the somatic mutation difference between IRGPI groups,
and found that there was a great deal of difference in TP53
mutation. TP53 has more mutations in IRGPI-high samples
than IRGPI-low samples (38 vs. 18%). TP53 is one of the
most mutated genes in human cancers than any other gene,
and linked with more aggressive disease and poorer patient
outcomes in many cancers (Olivier et al., 2006), particularly
in HCC (Hussain et al., 2007). Besides, there was a higher

mutation rate occurred in MUC16 gene in the IRGPI high-
risk group than IRGPI low-risk group (18 vs. 11%). It has been
reported that high baseline MUC16 level is associated with poor
prognosis in patients with HBV-related HCC (Qin et al., 2021).
The two exemplar genes indicated that IRGPI high-risk patients
bearing high TP53 and MUC16 mutations often have worse
outcomes than IRGPI low-risk patients bearing low TP53 and
MUC16 mutations, which is in agreement with the results of
survival analysis.

TME also contributes to the difference of efficacy in
immunotherapy. The composition of immune cells in tumor
tissues was markedly different between two IRGPI groups.
We observed that follicular helper T cells, neutrophils, resting
dendritic cells, and M0 macrophages were more enriched in the
IRGPI high-risk group, while the naive B cells, gamma delta T
cells, resting memory CD4+ T cells were more enriched in the
IRGPI low-risk group. Follicular helper T cells are perceived
as a distinct CD4+ helper T-cell subset, which activates B-cell
and products specific antibody responses, and acts as a basilic
role in the progression of autoimmune disease. A substantial
body of studies have revealed that follicular helper T cells
suppress regulatory B cell development, meaning poor outcome
in lung squamous cell carcinoma and gastric cancer (Zhang et al.,
2017; Xu et al., 2020). In most tumors, M0 macrophages, a
predominant subtype of macrophages, have been proven to be
related to chronic inflammation and favor tumor growth and
development of an invasive phenotype, and these cells have been
associated with a negative association with prognosis (Le et al.,
2021). Also, resting dendritic cell enriched in IRGPI high-risk
group often leads to poor prognosis (Le et al., 2021). In contrast,
gamma delta T cells are a distinct subset of T cells whose T cell
receptors consist of γ chains and δ chains, regarded as a bridge
between innate immunity and acquired immunity. Gamma delta
T cells can not only directly kill a variety of tumor cells, but
also exert indirect anti-tumor immune responses by facilitating
the function of other immune cells, which suggests that gamma
delta T cells may be a favorable prognostic factor (Ma et al.,
2012).

For current biomarkers, such as PD-L1, TMB, and MSI-
H, IRGPI risk score is significantly correlated to all of them.
Other diagnostic indicator for ICI therapy, such as TIDE and
TIS scores, have showed predictive performance in many solid
tumors. TIDE is developed to identify factors underlying two
mechanisms of tumor immune escape: the induction of T cell
dysfunction in tumors with high infiltration of cytotoxic T
lymphocytes (CTLs) and the prevention of T cell infiltration in
tumors with low CTL levels (Jiang et al., 2018). Accordingly,
IRGPI high-risk patients showed higher CTL infiltration and
less T cell exclusion score (but not T cell dysfunction score),
so their lower ICI response might be due to immune evasion
via T cell exclusion. In contrast, the IRGPI low-risk patients
had higher MSI scores, lower T cell exclusion score, which
suggested these patients had lower levels of immune escape of
HCC tumor cells.

In conclusion, our IRGPI risk score can characterize the
tumor immune microenvironment, we believe it is a promising
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immune-related prognostic index that can predict response to
ICI treatment and overall survival of HCC patients.
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