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Neuroinflammation is a protective mechanism against insults from exogenous pathogens
and endogenous cellular debris and is essential for reestablishing homeostasis in the brain.
However, excessive prolonged neuroinflammation inevitably leads to lesions and disease.
The use of natural compounds targeting pathways involved in neuroinflammation remains
a promising strategy for treating different neurological and neurodegenerative diseases.
Astaxanthin, a natural xanthophyll carotenoid, is a well known antioxidant. Mounting
evidence has revealed that astaxanthin is neuroprotective and has therapeutic potential by
inhibiting neuroinflammation, however, its functional roles and underlying mechanisms in
modulating neuroinflammation have not been systematically summarized. Hence, this
review summarizes recent progress in this field and provides an update on the medical
value of astaxanthin. Astaxanthin modulates neuroinflammation by alleviating oxidative
stress, reducing the production of neuroinflammatory factors, inhibiting peripheral
inflammation and maintaining the integrity of the blood-brain barrier. Mechanistically,
astaxanthin scavenges radicals, triggers the Nrf2-induced activation of the antioxidant
system, and suppresses the activation of the NF-κB and mitogen-activated protein kinase
pathways. With its good biosafety and high bioavailability, astaxanthin has strong potential
for modulating neuroinflammation, although some outstanding issues still require further
investigation.
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INTRODUCTION

The initiation of neuroinflammation is physiologically responsible for phagocytosis and the clearance of
cellular debris, aberrant proteins, and exogenous pathogens. This process is beneficial because itmaintains
the homeostatic environment and defends against exogenous insults in the brain. However, chronic or
aberrantly prolonged inflammation can also cause devastating injury to resident cells of the central
nervous system (CNS). Regulation of neuroinflammatory processes to maintain balanced innate
immunity is crucial for brain homeostasis and intervening in CNS disorders (Marques-Deak et al.,
2005; DiSabato et al., 2016; Fung et al., 2017).

Natural compounds with anti-inflammatory properties have sparked substantial interest as they
can enhance neuroprotection. Carotenoids, a group of natural tetraterpenes that are the most
abundant lipophilic pigments in nature, show great potential in medical applications (Milani et al.,
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2017; Sauer et al., 2019). They are found in various organisms,
including plants, algae, bacteria, and fungi, and play vital roles in
photosynthesis, photoprotection, anti-oxidation, biosynthesis of
phytohormones, and signal transduction. Carotenoids are also
crucial metabolic components and essential dietary supplements
for animals with a deficiency in de novo carotenoid biosynthesis.

There are two types of carotenoids oxygen-free carotenes and
oxygen-containing xanthophylls. Astaxanthin is one of the most
common xanthophylls with an oxygen-containing group in its
structure. Since its first isolation from a lobster in 1938 (Kuhn,
1938), astaxanthin has been used as a pigment and food additive
for its good coloring properties. The fundamental structural
feature of astaxanthin that resembles other carotenoids is a
polyene chain comprising a battery of conjugated C=C bonds.
Based on its molecular structure, astaxanthin is a 3,3′-dihydroxy-
β,β′-carotene-4,4′-dione, containing two identical asymmetric
carbon atoms at the 3 and 3′ positions of the β-ionone ring
with a hydroxyl group at both ends. The 3,3′ asymmetric carbons
allow astaxanthin to form three possible optical isomers with an
all-trans configuration of the chain: 3R,3′R, 3S,3′S, and 3R,3′S
(Figure 1). The ratios of astaxanthin stereoisomers vary widely in
different organisms (Turujman et al., 1997; Osterlie et al., 1999;
Coral-Hinostroza and Bjerkeng, 2002; Hussein et al., 2006), while
synthetic astaxanthin is universally a racemic mixture composed
of 25% 3R,3′R, 25% 3S,3′S, and 50% 3R,3′S isomers (Ambati
et al., 2014). Astaxanthin can form monoesters and diesters,
which is attributed to the reaction of its hydroxyl groups with
fatty acids, such as palmitic, stearic, oleic, and linoleic acids. The
esterified form generally dominates in different organisms, such
as Antarctic krill, marine copepods and shrimps, and algae, while
Phaffia rhodozyma predominantly contains its free form (Ambati
et al., 2014).

Astaxanthin has been commercially developed for various
applications in food ingredients, cosmetics, nutritional
supplements, and pharmaceuticals due to its varied beneficial
health effects that counter inflammatory, cancerous, diabetic, and
cardiac diseases (Yuan et al., 2011). In recent years, an increasing

number of studies have shown that astaxanthin can modulate
neuroinflammation and be neuroprotective. In this review, we
summarize the functional roles and mechanisms of action of
astaxanthin in neuroinflammation and discuss the prospects and
challenges for its potential therapeutic application in modulating
neuroinflammation and protecting against neuroinflammation-
associated disorders.

ASTAXANTHIN MODULATES
NEUROINFLAMMATION BY ALLEVIATING
OXIDATIVE STRESS
Oxidative Stress and Neuroinflammation
Neuroinflammation is generally recognized as an intriguingly
complex process involving synergistic actions between neurons
and different types of glial cells, including microglia, astrocytes,
oligodendrocytes, and oligodendrocyte precursor cells. The
coordinated interplay of these cells is mediated by
neurotransmitters, ions, neurotrophic factors, and cytokines.
Microglia are the most acute cells and usually the first to sense
abnormalities in the brain microenvironment, even in their
presumed resting state (Kreutzberg, 1996; Davalos et al., 2005;
Nimmerjahn et al., 2005; Prinz et al., 2019). Acting as resident
macrophages in the brain, microglia primarily play pivotal roles
in initiating neuroinflammation. Under stress (e.g., local
ischemia, mechanical injury, epilepsy, or exogenous pathogens)
(Konat et al., 2006; Lehnardt, 2010; Fitzgerald and Kagan, 2020),
injured neurons or oligodendrocytes can release
neurotransmitters (i.e., ATP, glutamate, and nitric oxide) to
activate microglia. In an inflammatory model, microglia were
recruited to the injury site with the activation of intracellular
inflammasomes and the production of pro-inflammatory
cytokines (Liu GJ. et al., 2009; Duan et al., 2009; Dibaj et al.,
2010; Gundersen et al., 2015; Song et al., 2021). Activated
microglia can be broadly categorized into two subtypes, M1
and M2, which have pro- and anti-inflammatory roles,

FIGURE 1 | The chemical structure of astaxanthin. Stereoisomeric units are indicated with yellow boxes.
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respectively. The traditional M1/M2 terminology for microglia
was referenced from a classical macrophage polarization mode,
which helped deduce different phenotypes of activated microglia
in neuroinflammation processes. However, this biphasic partition
appears to be an oversimplification as activated microglia also
display mixed phenotypes and intermediate states (Hu et al.,
2012; Nakagawa and Chiba, 2015; Orihuela et al., 2016;
Ransohoff, 2016).

A dynamic redox equilibrium based on a balance between the
production of reactive oxygen/nitrogen species (RONS) and the
antioxidant defense system is crucial for maintaining normal
cellular processes in the brain. Once excessive RONS overwhelm
the defense system comprised of a series of antioxidant molecules
and enzymes, oxidative stress occurs, with detrimental effects on
various physiological processes. The brain is particularly
susceptible to oxidative stress as elevated RONS can cause
oxidative damage to brain resident cells, especially neurons
and oligodendrocytes. A vast body of evidence shows that
oxidative stress and neuroinflammation are inseparable and
closely interrelated. Oxidative stress-induced neuronal damage
or apoptosis promotes the release of neurotransmitters, such as
ATP and nitrogen monoxide (NO), which trigger the initiation of
neuroinflammation (Yang and Zhou, 2019). Moreover, reactive
oxygen species (ROS) act as secondary messengers to evoke
immune activation, while persistent inflammation can also
facilitate oxidative stress (Simpson and Oliver, 2020). Reactive
nitrogen species (RNS) can activate matrix metalloproteinases
(MMPs) to trigger blood-brain barrier (BBB) disruption and
neuroinflammation (Chen HS. et al., 2018; Hannocks et al.,
2019). Consequently, the interplay of RONS generation and
neuroinflammation leads to a vicious circle, resulting in
persistent damage or degeneration of the brain (Dias et al.,
2013; Agrawal and Jha, 2020; Teixeira-Santos et al., 2020;
Tewari et al., 2021).

Mechanisms byWhich Astaxanthin Defends
Against Oxidative Stress
Astaxanthin is a superior antioxidant for neutralizing RONS.
ROS are defined as highly reactive oxidizing free radical agents,
consisting of superoxide anions (O2•), hydroxyl (OH•), peroxyl
(ROO•), and hydrogen peroxide (H2O2) radicals. RNS mostly
consists of NO, nitrogen dioxide (NO2), and peroxynitrite
(ONOO−). They all exhibit high reactivity to proteins, lipids,
and DNA (Valko et al., 2006; Ryter et al., 2007; Valko et al., 2007).
Therefore, the aberrant accumulation of RONS can lead to the
impairment of cellular components associated with cellular
senescence and various diseases (Gorrini et al., 2013; Sies,
2015; Bisht et al., 2017; van der Pol et al., 2019). Carotenoids
have attracted considerable interest for their potent antioxidant
activity. Several studies published almost 30 years ago revealed
that the anti-oxidative activity of carotenoids is mediated by
quenching singlet oxygen and free radicals (Palozza and Krinsky,
1992b; a; Tsuchiya et al., 1992). Astaxanthin has higher
antioxidant activity by scavenging peroxyl radicals than other
carotenoids, such as lycopene, β-carotene, α-carotene, and lutein
(Naguib, 2000). It is about 550 times more capable of neutralizing

singlet oxygen than α-tocopherol (Shimidzu et al., 2008). The
powerful antioxidant capacity of astaxanthin depends both on the
polyene system found in other carotenoids and on the terminal
rings that are unique to its structure (Britton, 1995; Miller et al.,
1996). Its polar β-ionone ring with a hydroxyl group at either end
gives it a higher capacity to neutralize free radicals. It is postulated
that astaxanthin in a dihydroxy-conjugated polyene form
possesses a hydrogen atom suitable for blocking free radical
reactions like that of α-tocopherol (Higuera-Ciapara et al., 2006).

In addition to direct radical scavenging, astaxanthin can also
regulate the cellular enzymatic system to defend against excessive
ROS production. Nuclear factor erythroid 2-related factor (Nrf2)
is a pivotal transcription factor acting as the guardian of redox
homeostasis and is considered a prospective therapeutic target for
oxidative stress- and inflammation-associated diseases
(Innamorato et al., 2008; Ahmed et al., 2017; Zhang R. et al.,
2017). Nrf2 regulates the transcriptional activation of many
cytoprotective genes, such as those encoding NADPH quinone
dehydrogenase 1 (Nqo1), glutathione-S-transferase-α1 (GST-α1),
and heme oxygenase-1 (H O -1), which protect against oxidative
stress and inflammation (Telakowski-Hopkins et al., 1988;
Rushmore et al., 1991; Friling et al., 1992; Lu et al., 2016). For
instance, HO-1 catalyzes the degradation of heme into carbon
monoxide, free iron, and biliverdin. Monoxide functions as an
inhibitor of the nuclear factor-κB (NF-κB) pathway, contributing
to the decreased expression of pro-inflammatory cytokines. It can
also directly inhibit pro-inflammatory cytokines and activate
anti-inflammatory cytokines, alleviating inflammation (Ahmed
et al., 2017).

Astaxanthin can activate the Nrf2 pathway by promoting the
activity of phosphoinositol-3 kinase/protein kinase B (PI3K/Akt)
and extracellular signal-regulated protein kinase (ERK) pathways
(Wang et al., 2010; Li et al., 2013). PI3K/Akt and ERK can
promote the nuclear translocation of Nrf2, although the
underlying mechanism has not been completely elucidated.
Several E3 ligase adaptor proteins, such as Kelch-like ECH-
associated protein 1 (Keap1) (Nguyen et al., 2003; Stewart
et al., 2003), β-transducing repeat-containing protein (β-TrCP)
(Rada et al., 2011; Cuadrado, 2015), and synoviolin 1 (Hrd1),
tightly regulate Nrf2 levels (Wu et al., 2014). Some studies and
reviews have suggested that astaxanthin may inhibit Nrf2
degradation via the Keap1 pathway (Wu et al., 2015; Fakhri
et al., 2019). However, whether astaxanthin regulates Keap1
expression remains unclear as different studies presented
controversial conclusions (Li L. et al., 2020; Ma et al., 2020).
Although astaxanthin can promote ERK activity (Wang et al.,
2010), disruption of the Keap1 from Nrf2 is not dependent on
ERK activation, suggesting that astaxanthin activates Nrf2 via
another pathway (Zipper and Mulcahy, 2003). The
phosphorylation of Nrf2 mediated by glycogen synthase kinase
3β (GSK3β) can facilitate its ubiquitination and proteasomal
degradation via β-TrCP (Cuadrado, 2015; Mathur et al., 2018).
Moreover, GSK3β can activate the Fyn tyrosine kinase to induce
the nuclear export of Nrf2 for its ubiquitination and degradation
(Jain and Jaiswal, 2007; Niture et al., 2014). Considering that
PI3K/Akt and ERK inhibit the activity of GSK3β (Ding et al.,
2005; Kaidanovich-Beilin and Woodgett, 2011; Manning and
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Toker, 2017), we speculate that astaxanthin enhances the stability
of Nrf2 by inactivating the GSK3β/β-TrCP or GSK3β/Fyn
pathway (Figure 2).

Astaxanthin can also regulate mitochondrial function in
response to oxidation stress (Kim and Kim, 2018).
Astaxanthin pretreatment can restored mitochondrial
membrane potential (MMP) and significantly inhibit hydrogen
peroxide-induced apoptosis of primary cortical neurons (Lu et al.,
2010). Similarly, astaxanthin can improve mitochondrial
function in a reduced state under oxidative stress (Wolf et al.,
2010). Some evidence indicates that astaxanthin contributes to
mitochondrial quality control and promotes mitochondrial
biogenesis through the AMP-activated protein kinase (AMPK)
pathway, however, the underlying mechanism remains unclear
(Nishida et al., 2020; Nishida et al., 2021).

Neuroprotective Effect of Astaxanthin is
Mediated by Inhibiting Oxidative Stress
Astaxanthin inhibits neuroinflammation by alleviating oxidative
stress, thereby exerting a beneficial neuroprotective effect.
Oxidative stress is a major cause of neuronal damage-induced
neuroinflammation. Astaxanthin protects against neuronal loss in
the rat hippocampus caused by epilepsy by attenuating oxidative
damage (Lu et al., 2015). Moreover, the treatment of rats with
astaxanthin attenuated epilepticus-induced cognitive dysfunction by
inhibiting oxidative stress and neuroinflammation and mitigating a
decrease in Nrf2 levels (Deng et al., 2019). Similarly, astaxanthin can
prevent lanthanum oxide nanoparticle-induced hippocampal injury
by reducing oxidative stress and neuroinflammation via the PI3K/
AKT/Nrf-2 pathway (Yuan et al., 2020). Furthermore, astaxanthin
ameliorates lipopolysaccharide (LPS)-induced oxidative stress,

neuroinflammation, and memory dysfunction (Han et al., 2019).
Astaxanthin also significantly protects against doxorubicin-induced
memory impairment by blocking oxidative, inflammatory, and pro-
apoptotic insults (El-Agamy et al., 2018). The ROS accumulating
during oxidative stress are crucial triggers of microglial polarization
(Simpson andOliver, 2020). Astaxanthin treatment can halt M1 and
promote M2microglial polarization in response to LPS, suppressing
neuroinflammation in BV2 microglial cells (Wen et al., 2017; Zhou
et al., 2021). Consistent with its inhibitory role against microglial
activation, astaxanthin can suppress the release of ATP from
microglia by reducing the P2X7 receptor levels, although the
mechanism underlying this remains elusive (Wang M. et al., 2020).

ASTAXANTHIN MODULATES
NEUROINFLAMMATION BY INHIBITING
PRO-INFLAMMATORY CYTOKINE
PRODUCTION

The aberrant production of pro-inflammatory cytokines in the CNS
is a representative feature of neuroinflammation. Astaxanthin can
inhibit the production of several pro-inflammatory cytokines, such
as interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis
factor-α (TNF-α), via repressing the NF-κB and mitogen-activated
protein kinase (MAPK) pathways.

NF-κB Pathway
The NF-κB transcription factor family, a prototypical mediator of
inflammation, is crucial for innate and adaptive immune responses.
NF-κB family members, namely RelA (p65), RelB, c-Rel, NF-κB1
(p50), and NF-κB2 (p52), form homo- or heterodimers that activate

FIGURE 2 | Mechanisms by which astaxanthin defends against oxidative stress. Astaxanthin mitigates oxidative stress by directly scavenging radicals and
regulating the cellular antioxidative enzymatic system via the Nrf2 pathway. The black arrows represent positive regulation, while the lines with T-shaped ends represent
inhibition. A dotted line indicates an inconclusive pathway. The gray lines indicate phosphorylation, ubiquitination, or nuclear translocation. P and Ub represent the
phosphorylation and ubiquitination of target proteins, respectively.

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 9166534

Wang and Qi Astaxanthin in Neuroinflammation Modulation

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


the transcription of target genes by binding to a specific DNA element
(Wan and Lenardo, 2009). NF-κB pathways can be classified into
canonical and non-canonical (alternative) signaling pathways, which
are induced by different pro-inflammatory cytokines through the
participation of different family members. In the canonical NF-κB
pathway, diverse stimuli, (e.g., LPS, TNFα, and IL-1) can trigger the
activation of the multi-subunit IκB kinase (IKK) complex that further
phosphorylates IκBα at twoN-terminal serines and induces ubiquitin-
mediated IκBα degradation. In most quiescent conditions, NF-κB
signaling is inactivated because the dimers, (e.g., p50/RelA and p50/
c-Rel) are bound to the inhibitory protein, IκBα (Senftleben et al.,
2001; Hayden and Ghosh, 2008; Liu et al., 2017). The induced
degradation of IκBα alleviates this inhibition, resulting in the
transient nuclear translocation of the NF-κB dimers and
subsequent expression of various pro-inflammatory factors,
including cytokines, chemokines, and adhesion molecules (Hoesel
and Schmid, 2013). In contrast, the non-canonical NF-κB pathway
involves the processing of the NF-κB2 precursor protein (p100) by
TNF receptor (TNFR) superfamily receptors (Sun, 2012; 2017). NF-
κB-inducing kinase and IKKα mediate p100 phosphorylation and
processing into p52, which then induces the transcriptional activation
of target genes by forming a heterodimer with RelB (Senftleben et al.,
2001; Xiao et al., 2001). Functionally, both NF-κB pathways are
important in regulating different aspects of the innate and adaptive
immune responses (Sun, 2011; Liu et al., 2017; Sun, 2017).

Mounting evidence indicates that astaxanthin inhibits
neuroinflammation by halting NF-κB activation through

the canonical NF-κB pathway. For example, administration
of astaxanthin after the onset of status epilepticus in a rat
model abrogated the induced expression of several
inflammatory factors (e.g., cytochrome c oxidase subunit II
[Cox-2], IL-1β, and TNFα) and p65 phosphorylation in the
hippocampus and parahippocampal cortex (Deng et al.,
2019). In addition, trans-astaxanthin could effectively
antagonized LPS-induced TNF-α, IL-1β, and IL-6
expression in the hippocampus and the prefrontal cortex
by regulating the NF-κB pathway (Jiang et al., 2016).
Moreover, Zhang et al. (2014a) reported administration of
a high dose of astaxanthin after subarachnoid hemorrhage
significantly downregulated NF-κB DNA binding activity and
the expression of inflammatory cytokines and intercellular
adhesion molecule. Mechanistically, astaxanthin can
effectively reduce NF-κB-related inflammation by
suppressing IKKβ phosphorylation and the nuclear
translocation of the p65 subunit (Bhuvaneswari et al.,
2014). Moreover, astaxanthin can decrease p65
phosphorylation, which may impair the nuclear
translocation and DNA binding activity of p50/p65 dimers
(Figure 3) (Terazawa et al., 2012; Zhang et al., 2014a).

MAPK Pathway
The MAPK family of serine/threonine kinases is involved in the
immune response (Arthur and Ley, 2013). There are 14 known
MAPK proteins in mammalian cells, that function in seven

FIGURE 3 |Molecular mechanisms by which astaxanthin inhibits pro-inflammatory cytokine production. The black arrows represent positive regulation, while the
lines with T-shaped ends represent inhibition. Gray lines indicate the processes of phosphorylation, ubiquitination, or nuclear translocation. P and Ub represent the
phosphorylation and ubiquitination of target proteins, respectively.
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distinct signaling pathways (Mathien et al., 2021). Based on
structural and functional features, MAPK family members can
be divided into classic MAPKs, consisting of the ERK1/2, c-Jun
N-terminal kinases (JNK1/2/3), p38 (p38a/b/c/d), and ERK5
subfamilies, and atypical MAPKs, which include the ERK3/4,
ERK7, and Nemo-like kinase subfamilies (Coulombe and
Meloche, 2007; Mathien et al., 2021). The MAPK signaling
pathway involves a cascade of three kinases that lead to the
successive phosphorylation of different kinase targets. Briefly,
MAPK kinase (MAP3K) is first activated in response to
pathogen infection or tissue damage through the Toll-like or
interleukin-1 receptors. Accordingly, MAP3K activates a MAPK
kinase (MAP2K), which activates MAPK subfamily members by
dual phosphorylation of the Thr–X–Tyr activation motif.
Finally, MAPK proteins promote inflammatory reactions by
producing different pro-inflammatory cytokines (Dumitru
et al., 2000) and modulating macrophage polarization
(Rincon and Davis, 2009).

The mechanism by which astaxanthin affects MAPK signaling
pathways is intrinsically linked to its regulation of MAPK
proteins, which act as inflammatory signaling mediators.
Consistent with this mechanism, a molecular docking study
identified an interaction between astaxanthin and human p38.
Astaxanthin inhibits p38 by occupying its active site and
interacting with surrounding amino acid residues (Yang et al.,

2019). Moreover, astaxanthin can promote M2 polarization of
BV2 cells and suppress neuroinflammation by inhibiting NF-κB
and JNK signaling (Figure 3). Specifically, astaxanthin can reduce
phosphorylated c-Jun levels which is indicative of the inactivation
of JNK signaling, although the mechanism underlying this
remains unclear (Wen et al., 2017).

ASTAXANTHIN MODULATES
NEUROINFLAMMATION BY MAINTAINING
BLOOD–BRAIN BARRIER INTEGRITY AND
INHIBITING PERIPHERAL INFLAMMATION

BBB, Peripheral inflammation, and
Neuroinflammation in the CNS
Disruption of the BBB and peripheral inflammation are two
factors contributing to neuroinflammation. The mammalian
brain has an intricate system of blood vessels; cerebral blood
vessels measure ~640 km with an endothelial surface area of
~12 m2 (Abbott et al., 2010) ensuring efficient molecular
exchange. The BBB is formed by vascular endothelial cells,
mural cells (e.g., pericytes and smooth muscle cells), and
perivascular astrocytic end-feet around capillaries (or glial
limitans ensheathing the penetrating arterioles (Yao et al.,

FIGURE 4 | Overview of the functional implications of astaxanthin in modulating neuroinflammation. Astaxanthin counteracts oxidative stress-induced damage to
neurons and glial cells. Astaxanthin can also reduce the production of pro-inflammatory cytokines in the brain and retard the M1 polarization of microglia. Additionally,
astaxanthin protects BBB integrity and inhibits the production and infiltration of inflammatory cytokines derived from peripheral inflammation. OL, oligodendrocytes. The
red arrows represent processes of neuroinflammation; the black arrows represent promotion, protection or transportation; the lines with T-shaped ends represent
inhibition.
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2014)). Its permeability is also regulated by surrounding
microglia and neurons (Zhao et al., 2015; Sweeney et al.,
2019). The BBB can prevent blood cells, neurotoxic
components, and pathogens from entering the brain, while its
breakdown and dysfunction can lead to various neurological
deficits (Obermeier et al., 2013; Liebner et al., 2018).
Peripheral inflammation involves the activation of the immune
system outside of the CNS and the release of pro-inflammatory
cytokines against various pathological stimuli in the peripheral
blood. Peripheral inflammation is a crucial trigger of BBB
disruption because increasing the levels of pro-inflammatory
cytokines and cytotoxic pathogens or molecules in the plasma
during infections damages its integrity (Huang et al., 2021).
Impaired BBB permeability allows peripheral inflammatory
molecules and signals to access the brain, leading to
neuroinflammation. Moreover, neuroinflammation can further
contribute to BBB disruption by damaging endothelial tight
junction proteins (Schreibelt et al., 2007). Leukocytes
(e.g.,monocytes, neutrophils, and T- and B-lymphocytes) and
secreted inflammatory cytokines in the peripheral blood can
infiltrate the brain due to BBB dysfunction, triggering or
exacerbating the progression of neuroinflammation (Kim et al.,
2016; Gimenez-Arnau et al., 2021; Pluta et al., 2021). Therefore,
improving BBB integrity and mitigating peripheral inflammation
can be neuroprotective by inhibiting neuroinflammation.

Astaxanthin Protects BBB integrity
Astaxanthin has enormous potential for protecting the BBB from
disruption or dysfunction. Astaxanthin treatment after
subarachnoid hemorrhage significantly reduces brain edema, BBB
dysfunction, and concomitant neuroinflammation in rat and rabbit
models (Zhang et al., 2014a; Zhang et al., 2014c; Zhang et al., 2015).
Similarly, pretreatment with astaxanthin prevents the BBB
disruption and neuroinflammation caused by kaliotoxin (Sifi
et al., 2016). Mechanistically, astaxanthin can restore the survival
rate, increase oxidative stress resistance, and maintain the tight
junction stability of rodent brain microvascular endothelial cells
in response to oxygen-glucose deprivation/reperfusion treatment or
subarachnoid hemorrhage, indicating its effectiveness in protecting
the BBB (Zhang et al., 2015; Kuo et al., 2019) (Figure 4).

Astaxanthin inhibits Peripheral
inflammation
The anti-inflammatory properties of astaxanthin have been
demonstrated in various in vivo and in vitro studies. For example,
astaxanthin decreased mRNA and protein expression levels of pro-
inflammatory genes in macrophages, including TNF-α, transforming
growth factor (TGF-β), IL-1β, IL-6, COX-2, and inducible nitric
oxide synthase (iNOS) (Kishimoto et al., 2010; Farruggia et al., 2018;
Cai et al., 2019; Kang et al., 2020; Binatti et al., 2021). It could also
inhibit the expression of pro-inflammatory cytokines in human
corneal epithelial cells (Li H. et al., 2020) and keratinocytes
(Terazawa et al., 2012). Similarly, astaxanthin could suppress the
activation of the NOD-, LRR-, and pyrin domain-containing protein
3 (NLRP3) inflammasome in macrophages (Peng et al., 2020).
Moreover, multiple in vivo studies have revealed the anti-

inflammatory effects of astaxanthin in different disease models,
including non-alcoholic fatty liver (Bhuvaneswari et al., 2014; Ni
et al., 2015; Chiu et al., 2016; Jia et al., 2016), hepatic injury or fibrosis
(Zhang J. et al., 2017; Han et al., 2018; Liu et al., 2018; Zhang Z. et al.,
2020), kidney injury (Guo et al., 2021), myocardial injury (Xie et al.,
2020), diabetesmellitus (Feng et al., 2020; Liu et al., 2020; Zhuge et al.,
2021), arthritis (Park MH. et al., 2020; Kumar et al., 2020),
gastroenteritis inflammation (Han et al., 2020; Chen Y. et al.,
2021), acute pancreatitis (Yasui et al., 2011), asthma (Hwang
et al., 2017), atopic dermatitis (Park et al., 2018; Park et al., 2019),
and hyperosmoticity-induced dry eye (LiH. et al., 2020). As described
earlier, astaxanthin counters inflammation primarily by blocking the
NF-κB-dependent signaling pathways. However, astaxanthin can also
promote cyclooxygenase inhibition and downregulation of
prostaglandin and TNF-α by decreasing nitric oxide (NO)
production and iNOS activity in an NF-κB pathway-independent
manner (Ohgami et al., 2003). Additionally, dietary astaxanthin
supplementation in females decreases DNA oxidative damage and
lipid-peroxidation, reduces C-reactive protein concentrations,
enhances natural killer cell cytotoxic activity, and increases total
T- and B-cell subpopulations, indicating the beneficial effects of
astaxanthin in ameliorating oxidative stress and inflammation and
in improving the immune response, although the mechanisms
involved require further elucidation (Park et al., 2010).

THERAPEUTIC BENEFITS OF
ASTAXANTHIN IN
NEUROINFLAMMATION-ASSOCIATED
DISORDERS

Neuroinflammation is prevalent in neurodegenerative and
neurodevelopmental diseases and metabolic neuropathy.
Notably, astaxanthin has shown efficacy in modulating
neuroinflammation in different disease models. Because
astaxanthin has good biosafety and high bioavailability, its
medical use, especially in modulating neuroinflammation, has
always been a hot topic that warrants further investigation. In
this section, the therapeutic benefits of astaxanthin against
neurological disorders are summarized concerning
neuroinflammation modulation. Its effects and potential
mechanisms of action in inhibiting neuroinflammation in
different diseases are shown in Figure 5 and Table 1.

Alzheimer’s Disease
Chronic, aberrant neuroinflammation is a hallmark of different
neurodegenerative diseases. Alzheimer’s disease (AD), a
progressive neurodegenerative disorder characterized by memory
loss and dementia, is always combined with neuroinflammation in
the brain. Considering the beneficial effects of astaxanthin in
modulating neuroinflammation, this carotenoid could be
developed as a therapeutic agent for preventing or alleviating
neurodegeneration. A randomized, double-blind clinical trial
showed that daily supplementation with a combination of 3mg
astaxanthin and 5mg sesamin for 6 weeks improved cognitive
function in those with mild cognitive impairment (Ito et al., 2018).
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AD is characterized by the aggregation of neurotoxic proteins,
such as β-amyloid (Aβ) and hyperphosphorylated Tau (p-Tau),
in the central nervous system, leading to chronic
neuroinflammation by triggering microglial activation (Leng
and Edison, 2021). Some studies have shown that astaxanthin
(or astaxanthin-derived diesters) could reduce Aβ42 deposition
and Tau phosphorylation, resulting in the suppression of
neuroinflammation and enhancement of learning and memory
in APP/SP1 transgenic mice, APPNL−G-F mice, or Aβ-infused AD
rat (Che et al., 2018; Rahman et al., 2019; Taksima et al., 2019;
Hongo et al., 2020). Astaxanthin likely reduces Aβ generation and
Tau phosphorylation by inhibiting GSK3β activity (Figure 2)
(Rahman et al., 2019). GSK3 can phosphorylate Tau at more than
42 sites (Toral-Rios et al., 2020) and its activity strongly correlates
with the number of neurofibrillary tangles in AD brains (Leroy
et al., 2002). GSK3β can also enhance Aβ production by
promoting BACE1 transcription (Ly et al., 2013), which can
partially explain the inhibitory effects of astaxanthin on
BACE1 expression in AlCl3-induced AD-like rats (Hafez et al.,
2021).

Moreover, impaired proteostasis caused by Aβ and p-Tau
accumulation in the AD brain further contributes to oxidative
stress, producing excessive reactive oxygen and nitrogen species.
Oxidative stress has been detected in the early stages of AD,
shown by a reduction in the levels of detoxifying enzymes,
including superoxide dismutase (SOD), catalase (CAT), and
glutathione peroxidase enzymes (GPx) (Cioanca et al., 2013;
Hritcu et al., 2014). Astaxanthin can suppress oxidative stress
by improving GPx activity, inhibiting lipid peroxidation, and
reducing products of protein oxidation and superoxide anion in
the cortex and the hippocampus of AD rats (Taksima et al., 2019).

Therefore, astaxanthin can potentially suppress
neuroinflammation by alleviating oxidative stress in the
context of AD. Astaxanthin significantly elevated Nrf2 in an
AD-like rat model (Hafez et al., 2021), consistent with its
augmentative effect on Ho-1 enzyme expression (Wang et al.,
2010;Wen et al., 2015). These data suggest that astaxanthin might
also attenuate oxidation stress and subsequent
neuroinflammation by regulating the Nrf2 pathway in the
context of AD. Astaxanthin was also reported to decrease
neuroinflammation, restore choline acetyltransferase positive
fibers, increase the spine numbers of pyramidal neurons in the
hippocampal CA1 region, and ameliorate the behavioral deficits
in a ferrous amyloid buthionine (FAB)-infused sporadic AD rat
model (Chen MH. et al., 2021). Astaxanthin likely modulates
cholinergic decline by increasing the expression of nerve growth
factor (NGF), which could prevent the degeneration of
cholinergic neurons (Counts and Mufson, 2005; Nai et al.,
2018). Thus, astaxanthin represents a potential therapeutic
agent for slowing AD progression by inhibiting
neuroinflammation.

In the AD brain, increased levels of pro-inflammatory cytokines
(e.g., TNF-α, IL-1, and IL-12) may contribute to aberrant
neuroinflammation and neurological impairment by triggering
sustained microglial activation (Ahmad et al., 2022). Impaired
BBB integrity in AD facilitates the infiltration of immune cells and
cytokines from the peripheral blood that function as adverse factors
or accomplices with resident immune cells to trigger
neuroinflammation (Zenaro et al., 2017). Astaxanthin can
reduce the release of pro-inflammatory factors in the BV2 cell
line by regulating the NF-κB and MAPK pathways and can also
protect BBB integrity and inhibit peripheral inflammation.

FIGURE 5 | Implications and potential mechanisms of astaxanthin in neuroinflammation-associated disorders. Potential pathways involved in neuroinflammation
modulation in different disease models are depicted in different colors. Arrows indicate acceleration or promotion, while lines with T-shaped ends represent inhibition or
blocking. Dashed boxes indicate that the function of astaxanthin in modulating neuroinflammation has not been confirmed in these diseases.
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TABLE 1 | Effects and potential mechanisms of astaxanthin in modulating neuroinflammation.

Disease Model Animal or
Cell Line

Formulation, Dosage,
and Treatment

Time

Effects Potential
Target

References

Alzheimer’s disease APP/PS1 double-transgenic
mouse model

0.2% docosahexaenoic-acid-acylated
astaxanthin diesters (DHA-AST)
administered (p.o.) in AIN-93G diet for
60 days

Suppressed activation of microglia and
astrocytes, inhibited inflammasome
activation and attenuated
proinflammation cytokine production

Unclear Che et al.
(2018)

AD rat model induced by
cerebral ventricle injection of
Aβ (1–42)

0.5 mg/kg/day or 1 mg/kg/day
astaxanthin was administered (p.o.) for
28 days beginning from the 8th day of
cerebral ventricle Aβ(1–42) injection

Attenuated proinflammation cytokine
production and oxidative stress in the
hippocampus

Unclear Rahman et al.
(2019)

AppNL-G-F transgenic
mouse model

0.02% astaxanthin as free form (w/w)
was administered in the diet for about
5 months

Attenuated oxidative stress and
microglia accumulation in the
hippocampus

Unclear Hongo et al.
(2020)

Rat model induced by
intraventricular infusion of
ferrous amyloid
buthionine (FAB)

1 ml/kg (body weight)/day astaxanthin
administered in 0.5% DMSO in saline
(i.p.) for 7 days

Suppressed activation of microglia and
astrocytes

Nrf2 Chen et al.
(2021a)

Depression LPS-induced depressive-
like mouse model

Pretreatment with 20,40, or 80 mg/kg
trans-astaxanthin (p.o.) for 7 days

Attenuated proinflammation cytokine
production in the hippocampus and
prefrontal cortex

NF-κB Jiang et al.
(2016)

Diabetes-related
depressive-like mouse
model

25 mg/kg/day astaxanthin in olive oil
(p.o.) administered for 10 weeks

Suppressed astrocytes activation and
attenuated proinflammation cytokine
production

Unclear Zhou et al.
(2017)

Epilepsy Status epilepticus rat mode 30 mg/kg/day astaxanthin in DMSO
administered for 2 weeks

Suppressed microglia activation and
attenuated proinflammation cytokine
production

Unclear Wang et al.
(2020b)

Status epilepticus rat mode 30 mg/kg astaxanthin in polyethylene
glycol and tri-distilled water (1:1) was
administered seven times (i.p.) in
14 days after establishing the model

Attenuated proinflammation cytokine
production

Nrf2 and
NF-κB

Deng et al.
(2019)

Subarachnoid
hemorrhage

Rat 25 or 75 mg/kg astaxanthin in olive oil
(p.o.) administered 30 min after
subarachnoid hemorrhage

Attenuated BBB disruption and
proinflammation cytokine production

NF-κB Zhang et al.
(2014a)

Spinal cord injury Rat 10 μl astaxanthin in 5% DMSO at a
concentration of 0.2 mM injected (i.t.)
30 min after injury

Attenuated proinflammation cytokine
production

MAPK Fakhri et al.
(2018)

Diabetes-induced
neuropathy

Diabetic mouse model 25 mg/kg/day astaxanthin (p.o.) in olive
oil for 7 days

Suppressed microglia activation and
attenuated proinflammation cytokine
production

NF-κB Zhou et al.
(2015)

General
neuroinflammation

LPS-induced mouse model 20, 40, or 80 mg/kg astaxanthin in
0.5% sodium carboxy methyl cellulose
administered (p.o.) for seven
consecutive days before LPS injection

Attenuated proinflammation cytokine
production

NF-κB Jiang et al.
(2016)

LPS-induced mouse model 30 or 50 mg/kg/day astaxanthin in olive
oil administered (p.o.) for 4 weeks

Attenuated proinflammation cytokine
production

STAT3 Han et al.
(2019)

LPS-induced BV2 cell line
model

5, 10, or 20 μM astaxanthin for 3 h
before LPS addition

Attenuated LPS-induced
neuroinflammation

LPS-induced mouse model 25 mg/kg/day astaxanthin emulsion
administered intragastrically for
37 days

Attenuated proinflammation cytokine
production

Unclear Zhao et al.
(2021)

LPS-induced mouse model 40 mg/kg/day astaxanthin
administered (p.o.) for 2 weeks

Suppressed microglia activation and
attenuated proinflammation cytokine
production

miR-31-5p
and Notch

Zhou et al.
(2021)

LPS-induced BV2 cell line
model

25 μM astaxanthin for 6 h Attenuated proinflammation cytokine
production

Kaliotoxin-induced mouse
model

80 mg/kg astaxanthin administered
(p.o.) twice at 1 and 5 h prior to
kaliotoxin injection

Attenuated proinflammation cytokine
production and BBB disruption

NF-κB Sifi et al.
(2016)

Tobacco-induced mouse
model

40 or 80 mg/kg astaxanthin in olive oil
administered (p.o.) once per day for
10 days

Attenuated proinflammation cytokine
production

MAPK Yang et al.
(2019)

(Continued on following page)

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 9166539

Wang and Qi Astaxanthin in Neuroinflammation Modulation

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


However, whether astaxanthin can ameliorate AD neuropathy by
modulating neuroinflammation through these mechanisms
remains unknown.

Parkinson’s Disease
Neuroinflammatory processes are also involved in the
pathogenesis of Parkinson’s disease (PD). Increased pro-
inflammatory cytokines levels in the brain, cerebrospinal
fluid (CSF), and blood have been found postmortem in PD
patients (Nagatsu et al., 2000). Abnormal neuroinflammation
has also been observed in PD models induced by 6-
hydroxydopamine, MPTP (1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine), and α-synuclein (Hirsch and Hunot,
2009). Chronic, prolonged inflammation in microglia, which
induces the death and dysfunction of neighboring dopaminergic
neurons, is a crucial mechanism underlying the pathogenesis of
PD. Hence, immune-based neuroprotection is widely
considered an effective approach in PD therapy (Hirsch and
Standaert, 2021). Astaxanthin has shown promising therapeutic
effects in PD, which have been discussed in other reviews
(Galasso et al., 2018; Park HA. et al., 2020; Bahbah et al.,
2021). Whether astaxanthin can modulate neuroinflammation
in the context of PD remains elusive. Focusing specifically on
modulating neuroinflammation, astaxanthin deserves more in-
depth investigation for PD treatment. Aggregated α-synuclein
can stimulate the expression of pro-inflammatory cytokines
(e.g., IL-1β, TNF-α, and IFN-γ) through activation of the
NF-κB pathway in microglia (Reynolds et al., 2008).
Astaxanthin significantly reduces α-synuclein expression and
apoptosis in SH-SY5Y cells treated with 1-methyl-4-
phenylpyridinium (MPP+), which resembles PD by initiating
neuron death via a miR-7-dependent pathway (Shen et al.,
2021). Because astaxanthin can attenuate NF-κB activation
(Figure 3), it may act by suppressing neuroinflammation
induced by α-synuclein in PD. Similarly, astaxanthin can
attenuate PD progression by reducing apoptosis in dopamine
neurons through the P38 MAPK pathway (Wang CC. et al.,
2020) while also triggering the production of pro-inflammatory
cytokines (Figure 3).

Oxidative stress in the PD brain has been observed in
postmortem human samples and animals and is another risk
factor leading to the dysfunction of dopaminergic neurons

(Gilgun-Sherki et al., 2001; Gaki and Papavassiliou, 2014).
Mitochondrial dysfunction-induced oxidative stress can trigger
neuroinflammation-associated dopaminergic neuronal cell death
and parkinsonism (Shulman et al., 2011). Considering
astaxanthin can regulate mitochondrial function that prevents
the excessive production of ROS, it could be used as a protective
agent to suppress neuroinflammation-associated parkinsonism.
Astaxanthin has exhibited an anti-oxidative effect in MPP-
induced PC12 cells through the HO-1/NOX2 and Sp1/NR1
pathways (Ye et al., 2012; Ye et al., 2013) and an anti-
apoptosis effect in 6-hydroxydopamine-induced SH-SY5Y cells
via a mitochondria-targeted protective mechanism (Ikeda et al.,
2008; Liu X. et al., 2009).

Depression
Dysfunctional immune and endocrine systems are two
contributors to depression. Neuroinflammation in the brain is
associated with the pathophysiology of depression, although the
mechanism remains unsolved (Kim et al., 2016). The P2x7-Nlrp3
inflammasome cascade acts as a key mechanism underlying
depression. The NF-κB and MAPK pathways, through their
control of pro-inflammatory cytokine production and NLRP3
inflammasome activation, are recognized as two significant
mechanisms in the pathogenesis of depression (Troubat et al.,
2021). Trans-astaxanthin can rescue LPS-induced depressive-like
behavior by antagonizing neuroinflammation in an NF-κB-
dependent manner (Jiang et al., 2016). Moreover, astaxanthin
has anti-depressant effects on diabetic mice by inhibiting
inflammation. Astaxanthin can significantly reduce the
number of GFAP-positive cells (mostly astrocytes) in the
hippocampus and hypothalamus and downregulate the
expression of IL-6, IL-1β and COX-2 in the hippocampus of
depressive mice (Zhou et al., 2017). Taken together, these data
suggest that astaxanthin could be an effective therapeutic agent
for depression by targeting the associated inflammation.

Depression is also accompanied by aberrant oxidative stress in
the brain, manifested as increased lipid peroxidation and free
radicals, an abnormal antioxidant system, oxidative damage,e and
pro-inflammatory cytokine overproduction (Liu et al., 2015;
Vavakova et al., 2015). Impaired activation of the Nrf2-
dependent antioxidant system can lead to stress-induced
vulnerability to depression. Several drugs targeting the Nrf2
pathway (e.g., melatonin and edaravone) have beneficial effects

TABLE 1 | (Continued) Effects and potential mechanisms of astaxanthin in modulating neuroinflammation.

Disease Model Animal or
Cell Line

Formulation, Dosage,
and Treatment

Time

Effects Potential
Target

References

LPS-induced Rat microglia 10–500 μM astaxanthin dissolved in
DMSO for 48 h

Attenuated proinflammation cytokine
production

ATP-
P2X7RSignal

Wang et al.
(2020b)

Lanthanum oxide
nanoparticle-induced
mouse model

60 mg/kg/day astaxanthin in olive oil
administered intragastrically for
30 days

Attenuated proinflammation cytokine
production

Nrf2 Yuan et al.
(2020)

LPS-induced BV2 cell line
model

2–10 μM astaxanthin for 4 h Attenuated proinflammation cytokine
production

NF-κB Wen et al.
(2017)
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against neuroinflammation and depressive-like behaviors (Maes
et al., 2012; Arioz et al., 2019; Dang et al., 2022). Considering
astaxanthin as a potential neuroinflammation modulator
counteracting oxidative stress via the Nrf2 pathway, it may
also be effective in treating depression.

Cardiac-Cerebral Vascular Diseases
Subarachnoid hemorrhage (SAH) caused by traumatic or non-
traumatic cerebral angiorrhexis is associated with profound
systemic complications, leading to high mortality rates and
long-term neurological disabilities (Macdonald, 2014;
Macdonald and Schweizer, 2017). Systemic immune responses
always occur after SAH, which is commonly manifested by high
levels of pro-inflammatory cytokines (IL-1, IL-6, and TNF-α) in
peripheral blood and brain (Jung et al., 2013). Moreover, resident
immune responses mediated by microglia activation in the brain
can cause secondary brain damage after SAH (Heinz et al., 2021).
Therefore immunosuppressive treatment is effective and
fundamental to improving SAH prognosis. Astaxanthin
antagonizes neuronal apoptosis by counteracting the
neuroinflammatory responses after subarachnoid hemorrhage
(SAH). The neuroprotective effect of astaxanthin in SAH is
mediated by regulating mitochondrial function through the
phosphorylation-dependent inactivation of BCL2, a crucial
agonist of cell death. Astaxanthin may regulate BCL2
phosphorylation through the PI3K/Akt pathway (Zhang et al.,
2014b). Moreover, astaxanthin could attenuate
neuroinflammation by rescuing BBB disruption and inhibiting
NF-κB-dependent expression of inflammatory cytokines in a
SAH rat model (Zhang et al., 2014a).

Ischemic stroke caused by cerebral infarction is a common
cerebrovascular disease and a striking cause of death and severe
disability worldwide (Feske, 2021). Pro-inflammatory signals can
rapidly activate resident immune cells in the brain in response to
ischemic stroke and promote the infiltration of a wide range of
peripheral inflammatory cells into the ischemic region, exacerbating
brain damage (Jayaraj et al., 2019). Neuroinflammation, which can
be both beneficial and detrimental, has become a widely studied
target for therapeutic intervention for ischemic stroke. Notably,
astaxanthin has shown a neuroprotective effect after ischemic
stroke by attenuating oxidative stress. For example, astaxanthin
could reduce brain injury in a rat ischemic stroke model by
decreasing oxidative stress and inhibiting glutamate overflow
(Shen et al., 2009). In other studies, astaxanthin attenuated
oxidative stress and promoted axon regeneration and
reconnection after ischemic stroke (Lee et al., 2010; Wang et al.,
2019). In an oxygen and glucose deprivation (OGD) model,
astaxanthin treatment protected cultured SH-SY5Y cells against
OGD-induced cytotoxicity by modulating oxidative stress (Zhang
J. et al., 2020). Impaired BBB permeability after ischemic stroke is an
underlying cause of the invasion of peripheral inflammatory cells
into the brain (Jayaraj et al., 2019). RNS are reactive molecules that
trigger BBB disruption following cerebral ischemia-reperfusion
injury (Chen et al., 2013). They are recognized as important
therapeutic targets for identifying drug candidates for attenuating
brain injury (Chen H. et al., 2018; Chen HS. et al., 2018; Feng et al.,
2018; Chen et al., 2020). Astaxanthin can quench RNS, such as

peroxynitrite (Rodrigues et al., 2012) and nitrogen monoxide (Khan
et al., 2010), which might reduce RNS-induced BBB impairment
under some pathological conditions. The protective effect of
astaxanthin on BBB integrity provides another mechanism for
anti-inflammation in ischemic stroke; however, the mechanism
requires further elucidation. The available evidence indicates that
astaxanthin could be used as a potential neuroinflammation
modulator in response to ischemic stroke-induced brain damage.

The interaction between neuroinflammation and
cardiovascular disease has recently become a research focus.
Neuroinflammation is both a cause and a consequence of
cardiovascular disease (Richards et al., 2022).
Neuroinflammation has been implicated in hypertension (in
animal models and humans) through multiple mechanisms
(Mowry and Biancardi, 2019; Sharma et al., 2019). It is
particularly apparent in the hypothalamic paraventricular
nucleus (PVN) of hypertensive rodents (Sklerov et al., 2019).
Moreover, increased expression of pro-inflammatory cytokines
has been reported in cardio-regulatory brain regions in
hypertensive animals (Shi et al., 2010b; Qi et al., 2016) and
angiotensin II-induced hypertension was found to trigger
microglial activation predominantly in the PVN (Li Y. et al.,
2020). In contrast, the administration of anti-inflammatory
cytokines (e.g., IL-10) and minocycline induced an
antihypertensive response by alleviating microglial activation
(Shi et al., 2010a).

Astaxanthin is recognized as a potential therapeutic agent
against cardiovascular disease. Disodium disuccinate astaxanthin
protected the myocardium in a myocardial ischemia-reperfusion
model by reducing inflammation and myocardial apoptosis
(Gross and Lockwood, 2005; Lauver et al., 2005; Gross et al.,
2006). In addition, astaxanthin improved arterial hypertension by
decreasing the production of superoxide anions in rodents
(Monroy-Ruiz et al., 2011). Moreover, astaxanthin may be
protective against atherosclerotic cardiovascular disease by
reducing oxidative stress and inflammation and improving
glucose metabolism (Fassett and Coombes, 2011; Kishimoto
et al., 2016). Astaxanthin is a likely candidate for treating
cardiovascular disease, considering its cardiovascular protective
effects and its therapeutic effects against neuroinflammation.

Spinal Cord injury
Spinal cord injury (SCI) is a devastating condition associated with
impaired motor ability and long-term comorbidity. Neural
restoration in the spinal cord remains the most effective
treatment for SCI, while aberrant neuroinflammation
contributes to a poor prognosis (Brockie et al., 2021).
Astaxanthin can decrease the production of TNF-α by
modulating the phosphorylation of MAPK p38 (threonine 180
and tyrosine 182) and improve sensory and motor function
following rat spinal cord injury (Fakhri et al., 2018), indicating
that this agent can inhibit inflammatory reactions in the
secondary phase of SCI. Thus, it represents a promising
candidate for enhancing functional recovery after SCI.
Inhibiting oxidative stress and Nrf2 activation may also
promote functional recovery after SCI (Jin et al., 2021).
Therefore, astaxanthin treatment might improve neural
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restoration by counteracting oxidative stress-induced
neuroinflammation.

Epilepsy
Alleviating neuroinflammation can also reduce cellular damage
caused by epilepsy (Jayaraj et al., 2019; Parsons et al., 2022).
Neuroinflammation also acts as a trigger for epilepsy. Pro-
inflammatory cytokines (e.g., IL-1β, IL-6, and TNF-α) can
induce this disorder (Vezzani et al., 2016). Indeed, increased
levels of these cytokines have been found in the cerebrospinal
fluid (CSF) and blood serum of patients with epilepsy (Dupuis
and Auvin, 2015). Thus, astaxanthin is a potential agent for
improving the prognosis of epilepsy patients by inhibiting the
neuroinflammation-associated injury following a seizure (Lu
et al., 2015; Deng et al., 2019).

Diabetes-Induced Neuropathy
Diabetes-induced neurological complications, such as vascular
pathogenesis in the brain, impaired neuronal regeneration,
neurodegeneration, and peripheral neuropathy, are major
obstacles to improving the quality of life of diabetes
patients (Asslih et al., 2021). Aberrant neuroinflammation is
an important mechanism triggering these complications.
Therefore, inhibitors of neuroinflammation (e.g.,
astaxanthin) could serve as auxiliary supplements or drugs
for alleviating diabetic neuropathy (Asslih et al., 2021).
Astaxanthin can prevent diabetic nephropathy and renal
cell damage by reducing oxidative stress and inflammation
(Naito et al., 2004; Manabe et al., 2008; Kim et al., 2009). In
addition, insulin sensitivity is enhanced after feeding mice
astaxanthin (Bhuvaneswari et al., 2010). Moreover, it has
provided a significant beneficial effect in the treatment of
diabetes. For example, astaxanthin can reduce oxidative
stress-induced hyperglycemia in pancreatic β-cells,
improving serum insulin and glucose levels (Uchiyama
et al., 2002; Nakano et al., 2008). However, whether the
improved blood glucose levels generated by astaxanthin can
inhibit neuroinflammation remains unclear.

CHALLENGES AND PROSPECTS FOR THE
MEDICAL APPLICATION OF ASTAXANTHIN

Source, Safety, and Bioavailability
Astaxanthin is commercially used as both a food additive and
supplement. Synthetic astaxanthin is mostly consumed as a
food additive for animals, while only natural astaxanthin can
be used as a food ingredient for humans. In 1987, the
United States Food and Drug Administration (FDA)
approved synthetic astaxanthin produced by Roche as a
food additive in the aquaculture industry, while natural
astaxanthin was approved as a nutraceutical for humans in
1999. The chemical process by which astaxanthin is
synthesized can inevitably generate detrimental by-products,
which reduce its biosafety and bioactivity. Natural astaxanthin
can be sourced from microalgae, yeast, shrimp, krill, and
plankton; however, it is primarily commercially produced

from Phaffia rhodozyma and H. pluvialis due to their
advantages of astaxanthin content, growth rate, and cost of
cultivation. H. pluvialis, a green freshwater microalga, is
widely recognized as the optimal natural microbial factory
for astaxanthin production due to its high carotenoid content
and easy extraction method. H. pluvialis can synthesize and
accumulate astaxanthin up to 4% of total cellular dry weight.
The high protein content of microalgae is another reason for
the development of H. pluvialis as a source of astaxanthin
production (Hu, 2019). There are currently commercial
producers of astaxanthin-rich H. pluvialis worldwide, with a
large output capacity. Optimizing the cultivation strategy and
developing an effective extraction method has reduced the cost
of industrial production, promoting natural astaxanthin,
which is more accepted for public consumption in various
countries. Moreover, the increasing awareness of the
multifunctional benefits of astaxanthin should induce rapid
growth in this market. According to Grand View Research, a
market research and consulting company in the US, the
compound annual growth rate of the astaxanthin market is
expected to increase by 19.3% from 2021 to 2028.

The safety of astaxanthin for use in humans is well
documented. The FDA has approved astaxanthin sourced
from H. pluvialis as a food ingredient since 2010 (GRAS
[Generally Recognized as Safe] No. 294 and No. 580). In
Europe, astaxanthin from H. pluvialis is authorized by the
European Food Safety Authority Commission as a food
supplement at levels up to 8 mg/day for adults (EFSA Panel
on Nutrition Novel Foods and Food Allergens et al., 2020). In
2010, astaxanthin-rich H. pluvialis was also listed as an edible
strain by the Ministry of Public Health of China. Taking these
developments together, astaxanthin is generally accepted as safe
for food and is in growing demand. Thus, astaxanthin products
have great potential to be integrated into everyday life, bringing
benefits to public health.

Astaxanthin is a fat-soluble compound incorporated into
micelles with lipids for absorption by mucosal cells in the
intestinum tenue. In the form of chylomicrons, it is
transported into the liver via the lymphatic system and
subsequently transported by lipoproteins to different organs
and tissues via the circulation (Parker, 1996; Coral-Hinostroza
et al., 2004). The form of astaxanthin can affect its absorption
efficiency. According to clinical research, the maximum
plasma level of astaxanthin can reach up to 1.3 ± 0.1 mg/L
with a plasma elimination half-life of 21 ± 11 h after a single
dose of 100 mg of free astaxanthin (Osterlie et al., 2000). In
contrast, ingestion of 100 mg of astaxanthin diesters results in
a maximum plasma astaxanthin level of 0.28 ± 0.12 mg/L with
a plasma elimination half-life of 52 ± 40 h, indicating the
complicated absorption of astaxanthin due to the additional
hydrolysis of astaxanthin esters (Coral-Hinostroza et al.,
2004). The bioavailability of astaxanthin is also influenced
by concomitant diet and lifestyle. Its consumption in
combination with oil or an oil-based formulation can
enhance the absorption of astaxanthin (Mercke Odeberg
et al., 2003), while smoking can reduce its bioavailability by
decreasing its half-life (Okada et al., 2009).

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 91665312

Wang and Qi Astaxanthin in Neuroinflammation Modulation

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Unresolved Issues in the Medical
Application of Astaxanthin
The development of astaxanthin as an effective modulator to relieve
dysregulated neuroinflammation may be an effective
neuroprotective strategy; however, challenges remain. First,
neuroinflammation functions as a double-edged sword for
maintaining the homeostasis of the nervous system. Acute
neuroinflammation is beneficial in rebuilding balanced
metabolism by clearing cellular debris and pathogens, but
aberrantly prolonged or chronic neuroinflammation may be
harmful. Hence, it may be an oversimplification to use
astaxanthin as an inhibitor of neuroinflammation in all
situations. Furthermore, animal experiments and clinical research
have indicated that the long-term consumption of high-dose
astaxanthin is associated with its medical efficacy. Therefore, the
likelihood of incidental adverse effects, such as pigmentation and
allergies (Nutrition and Allergies EFSA Panel on Dietetic Products,
2014), need to be studied. Moreover, the role of astaxanthin in
abrogating neuroinflammation is complex, and side effects due to
the targeting of the NF-κB, Nrf2, and MAPK pathways remain a
concern for any potential clinical applications (Sporn and Liby, 2012;
Ramadass et al., 2020; Zang et al., 2020; Moreira et al., 2021).
Therefore, the molecular mechanisms of astaxanthin in these
pathways require further investigation. Thus far, astaxanthin has
only been shown to directly interact with p38 MAPK (Yang et al.,
2019), while other direct targets for astaxanthin in different pathways
remain elusive.

In summary, astaxanthin is currently only used as a food
ingredient. The potential efficacy of astaxanthin as a drug that
modulates neuroinflammation requires further elucidation,
although its neuroprotective effects are well-documented. First,
there is a need to explore the specific target(s) of astaxanthin in
different pathways to further understand the underlying
mechanisms of its modulation of neuroinflammation. In
addition, the combination of astaxanthin with other existing
chemicals may more effectively counteract neuroinflammation
(Polotow et al., 2015; Qiao et al., 2017; Ito et al., 2018). Moreover,
improved formulations (e.g., microencapsulation) or modified
forms (e.g., docosahexaenoic-acid-acylated astaxanthin) may
enhance the bioavailability and bioactivity of this agent (Yang
et al., 2021; Zhao et al., 2021).

Some issues with the potential adverse effects of astaxanthin
may provide more misgivings during its medical application,
although they have not been reported in animal studies or clinical
research using a reasonable dose range according to FDA GRAS
notices. Some ingredients (e.g., sunflower or krill oil) may be used
in astaxanthin production. Thus, allergenicity may remain
uncertain, especially for immunocompromised individuals. In
addition, astaxanthin can also induce cytochrome P450 enzymes
in rats (Ohno et al., 2011) and primary human hepatocytes
(Kistler et al., 2002). However, an FDA GRAS panel has

concluded that astaxanthin at human exposure levels is
unlikely to affect cytochrome P450 enzymes. Pigmentation in
human tissues has also been raised as a concern (Petri and
Lundebye, 2007); however, the FDA GRAS panel has also
clarified this issue by concluding that the proposed
astaxanthin dose levels do not raise safety concerns for
pigmentation in humans.

CONCLUSION

Neuroinflammation functions as a defense mechanism to
protect the central nervous system from different insults;
however, it is also a pathological hallmark of numerous
neurological and neurodegenerative diseases. Astaxanthin, a
natural carotenoid with marked antioxidant capacity,
suppresses neuroinflammation and is thus neuroprotective.
First and foremost, astaxanthin can effectively counteract the
oxidative stress-induced cell injury and death known to trigger
neuroinflammation, in part, by inhibiting the production of
pro-inflammatory cytokines via the NF-κB and MAPK
pathways. It can also potentially modulate
neuroinflammation in the brain by maintaining the integrity
of the BBB and alleviating peripheral inflammation. To date,
astaxanthin has been developed as a commercial food
ingredient with well-documented biosafety, numerous
bioactivities, and a reasonable price. At the same time, it
also exhibits abundant therapeutic benefits for modulating
neuroinflammation. Although several issues concerning its
medical efficacy and mechanisms for treating
neuroinflammation-associated diseases require further
elucidation, astaxanthin remains a prospective medicinal
component for the modulation of neuroinflammation.
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