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ABSTRACT

	

Procedures are described for analyzing shot noise and determin-
ing the waveform, w(t), mean amplitude, (h), and mean rate of occurrence, (r),
of the shots under a variety of nonideal conditions that include : (a) slow,
spurious changes in the mean, (b) nonstationary shot rates, (c) nonuniform
distribution of shot amplitudes, and (d) nonlinear summation of the shots . The
procedures are based upon Rice's (1944 . Bell Telephone Systemjournal. 23 : 282-
332) extension of Campbell's theorem to the second (variance), X2, third (skew),
X3, and fourth, X4, semi-invariants (cumulants) of the noise . It is shown that the
spectra of X2 and X3 of nonstationary shot noise contain a set of components
that are proportional to (r) and arise from w(t), and a set of components that
are independent of (r) and arise from the temporal variations in r(t) . Since the
latter components are additive and are limited by the bandwidth of r(t), they
can be removed by appropriate filters ; then (r) and (h) can be determined
from the X2 and X3 of the filtered noise . We also show that a factor related to
the ratio (X3)2/(\2)(X4) monitors the spread in the distribution ofshot amplitudes
and can be used to correct the estimates of (r) and (h) for the effects of that
spread, if the shape of the distribution is known and if r(t) is stationary . The
accuracy of the measurements of X4 is assessed and corrections for the effects
of nonlinear summation of A2, X3, and X4 are derived . The procedures give
valid results when they are used to analyze shot noise produced by the (linear)
summation of simulated miniature endplate potentials, which are generated
either at nonstationary rates or with a distribution of amplitudes .

INTRODUCTION

Quantal secretion at neuromuscularjunctions is traditionally studied by measur-
ing the amplitudes of indirectly evoked endplate-potentials (EPPs) or currents
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and by measuring the spontaneous rate of occurrence of miniature endplate
potentials (MEPPs) or currents . Continuous measurements of the MEPP rate and
amplitude during prolonged periods of intense secretion provide data that can
be used to test the vesicle hypothesis and to characterize the kinetic properties
of processes, such as vesicle recycling, that sustain high rates of quantal release.
Very high MEPP rates cannot be measured by simple counting techniques
because the individual MEPPs cannot be recognized, and other means must
therefore be used . Since the MEPPs recorded at a single junction are similar in
amplitude and time course, their mean rate and amplitude can, in principle, be
estimated by applying the classical procedure of shot noise analysis to the
fluctuations in the membrane potential of the endplate of a vigorously secreting
junction . This procedure has been used to analyze shot noise in a number of
physiological preparations (Katz and Miledi, 1972 ; Anderson and Stevens, 1973 ;
Wong and Knight, 1980 ; Finger and Stettmeier, 1981). Ideal "shot noise" is a
fluctuating signal produced by the linear summation of uniform elementary
events (shots) that occur randomly at a constant mean rate . The standard theory
of the statistics of shot noise states that its power spectrum is shaped like the
spectrum of the shot waveform and that the mean, X,, and variance, X2, of the
noise are related to the mean shot rate, (r), amplitude, h, and waveform, w(t),
by the equations X, = (r)hfw(t)dt and a2 = (r)h 2fw2(t)dt (Campbell, 1909 ; Rice,
1944). However, serious errors occur when these equations are applied to the
neuromuscular junction, where the shots are the MEPPs, because (a) the mean
membrane potential of the endplate is affected by many factors in addition to
the summation of MEPPs, (b) the MEPPs may not occur at a stationary random
rate, (c) MEPPs are not uniform in amplitude, and (d) MEPPs do not sum
linearly (Martin, 1955). We show that these errors can be avoided or corrected
for if the analysis is based upon the higher semi-invariants of appropriately
filtered records of the noise. Courtney (1978) has previously pointed out the
usefulness of the higher momentsof the fluctuations in the amplitude of the EPP
to the statistical analysis of quantal secretion .

Campbell's theorem can be extended to higher semi-invariants (cumulants) of
the noise according to the general relation (Rice, 1944) X" = (r)h"I", where I� =
f [w(t)]"dt, so that, in principle, any pair of semi-invariants can be used to compute
(r) and h . If X3 (skew) and X2 are used, then errors arising from slow, spurious
changes in membrane potential are avoided (because the mean is not used) and
errors arising from nonlinear summation are greatly reduced. Segal et al . (1985)
used X3 and X2 to estimate (r) and h at La3+-stimulated frog neuromuscular
junctions, where this rate is quasi-stationary, changing so slowly that the power
spectrum of the fluctuations has the shape of the spectrum of the MEPP
waveform . However, under many experimental conditions (e.g ., in hypertonic
solutions or in the presence of black widow spider venom [BWSV]), the power
spectra of the endplate noise differ from the spectrum of the MEPP waveform
in that the former are not white (flat) at low frequencies . These extra low-
frequency components in the noise spectrum could arise from a variety of
phenomena that include nonstationary MEPP rates, correlations among MEPP
waveform parameters, or extraneous sources of noise; they must be eliminated
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or corrected for before Xs and a2 can be used to calculate (r) and h . This article
derives the frequency composition of a2 (power spectrum) and ay (skew "bispec-
trum") of nonstationary shot noise and demonstrates that the effects of this
phenomenon on these spectra can be virtually eliminated by appropriately
filtering the data before analysis, as long as the deviations of the noise spectrum
from the expected stationary shape are confined to a limited region of the
spectrum . The semi-invariants of the filtered records can then be used to compute
(r) and h . The power spectrum of nonstationary shot noise has been derived
before by others (Rice, 1944 ; Schick, 1974 ; Sigworth, 1981), but the extension
to the skew bispectrum is new.
We also show that the ratio R = (X3/I8)2/(X2/I2)(X4/I4), which monitors the

spread in the distribution of the shot amplitudes, can be used to correct the
estimates of (r) and (h) for the effects of that spread . The errors in the
measurement of X4 (fourth semi-invariant) are treated theoretically, and the
corrections for the second-order effects of nonlinear summation on the Xn

's are
derived.
The procedures are tested by analyzing nonideal shot noise generated by

computer simulation, and they give valid results. In the companion article (Fesce
et al ., 1986), the procedures are used to measure the MEPP rate and amplitude
at neuromuscular junctions treated with BWSV, and to correct previous results
obtained with Las+ . A synopsis of the derivation of the spectral components of
a2 and as has been published previously (Fesce, 1986).

THEORY

Nonstationary Shot Rate

Frequency composition ofvariance andskew ofafuctuating signal. Let a signal,
V(t), be recorded over the period of time [t = 0, T] . The finite Fourier transform
of V(t) is defined as :

v(n) = f
T

V(t) e-2arint/T dt

	

{n integer) .

	

(1)

From the theory of Fourier series, it follows that :

V(t) = 1

	

v(n) e2zint/T = ~00) + 1

	

v(m) e2,rimt/T
T n-_-

	

T

	

T

where v(0)/T = (V) is the mean of V(t) over T, and v(t) is the departure of V(t)
from (V) .
The variance of V(t), (v 2(t)), can also be expressed as a series in v(n) :

(V2(t)) ~ T

fT
v2(t)dt

= (V) + v(t),

	

{m 0 01

	

(2)

1 fT
dt

	

v(n)v(m) e2r=(n+m)t/T
- Ts	n=-oom=-m

In 00,m00}.
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This equation can be evaluated by reversing the order of summation and
integration ; the integrals with m 0 -n equal zero, whereas those with m = -n
equal T. Therefore,

where the last step can be taken because v(-n) is the complex conjugate of ,6(n) .
This result indicates that each value of n (n > 0) contributes a factor 21v(n)12IT2

to the variance . Since 1 /T is the interval between successive Fourier frequencies,
the factor 2Iv(n)I 2/T is interpreted as the power density per unit bandwidth,
G,(n), at the frequencyf= n/T. When expressed in these terms, Eq . 3 becomes:

(v 2(t)) =
T E

i
Iv(n)I2/T = T E~

Gv(n).

	

(3a)

This is the classical expression equating the variance of a fluctuating signal to
the area under its power spectrum (Bendat and Piersol, 1971).
A similar procedure applied to the skew of V(t) gives:

(v3(t))=
T3 n=-oo
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(v2(t)) ~' 12

	

v(n)v(-n) = 12

	

v2(n) = 22

	

Iv(n)I 2,

	

(3)T n=_~

	

T n=_�

	

T n=,

v(n)v(m)v(-n - m)

= 13

	

v3(n, m)

	

{n, m 54 0} .

The right-hand side of Eq . 4 gives the frequency composition of the skew, and
it can be rewritten using only positive values for n and m. Notice that vs(n, m),
unlike v2(n), is a complex quantity and that v3(-n, -m) is the complex conjugate
of v3(n, m) . Therefore, iv 3(n, m) + v3(-n, -m) = 2Real[v3(n, m)], and v3(n, -m) +
v3(-n, m) = 2Re[v3(n, m - n)] = 2Re[v3(m, n - m)]. If now we consider only
positive values [ 1, oo] for n, m, n - m, and m - n, we have :

(u3(t)) = 62

	

Re[v3(n, m)]/T.

	

(4a)T tt=~ m=1

By analogy with the power density, the factor 6Re[v3(n, m)]/T is defined as the
skew "bispectral" density, Bv(n, m), and we have :

(v 3(t)) = 12

	

Bv(n, m) .

	

(4b)
T

The factor 1 /T2 in Eq . 4b is the product of two frequency intervals between
successive Fourier components ; the surface generated when B�(n, m) is plotted
against n and m is called the skew bispectrum and the volume under it equals the
skew (Subba Rao and Gabr, 1984). Examples of bispectra are given in Fig. 7.

Frequency composition of shot noise . Let V(t) be produced by the linear
summation of randomly occurring elementary events, each of amplitude h and
waveform w(t), which is limited in time such that w(t < 0) = w(t > -r) = 0 . If a
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record extends over the interval [t = 0, T], then only those events occurring
between the times [-r] and [T] will contribute to it . If K is the number of such
events, then V(t) is given by :

x
V(t) _ E hw(t - B%

where j is an arbitrary event index (not implying time sequence), and Bj is a
random variable, representing the time of occurrence of the jt' event.

If the process is Poissonian, the individual events occur independently and the
probability density functions of the Bj's are all equal . Let p(t)dt be the probability
for each of theK events to occur in the infinitesimal time interval between t and
t + dt . If an ensemble of records is available, each with the same time course for
p(t), then the expected value of V(t) for the ensemble is :

[ K
E[V(t)]=E E hw(t-B) =hEKEwt-B

	

hEK

	

T t'wt-t'dt' .

Since E[K]p(t') is the expected rate of occurrence of events, r(t'), at time t', we
have :

EVt

	

h

	

T rt wt-t dt

	

h
f

rt-uwudu,

where u = t - t', and the change in the limits of integration is justified because
all the values of t' for which w(t - t') 0 0 are included in the first integral . The
ensemble expected value of the time average of V(t), (V), is computed by
averaging E[V(t)] over time :

1-7[(V)] = T

fT
dt f r(t - u)w(u)du

0o

	

I

	

T v

= h f

	

w(u)du 7, fu

	

r(t')dt'

	

{t' = t - u} .

The integrands in Eq . 7 are zero when u > T, since w(u > T) = 0. Therefore, if
T >> T, and if r(t') does not change rapidly and progressively (see Appendix),
then changing the limits of integration of t' to [0, T] causes negligible errors,
and we can write:

E[(V)] - h
f

w

w(u)du T
fT

r(t')dt' = (r)hl,,

	

(7a)

where (r) is the average value of r(t) over the interval [0, T], and 1, is the integral
of w(t) . Note that the expected value of the mean signal is proportional to the
mean rate and is independent of temporal variations in r(t) .
The expected value ofv(n) is, from Eqs. I and 6:
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F.[v(n)] = f
T

Ch f

	

r(t - u)w(u)du
J

dt e-2
rint/T

T-u
= h

.f
- w(u)du e2ainu/T

f

	

r(t')dt e-taint'/T

	

(8)o

	

u

it' =t- u,n00} .

Neglecting errors at the edges and changing the limits of integration of t' to [0,
T] gives:

Now:

T
E[v(n)] ^' h f

	

w(u)du e-2ainu/T
fo

	

r(t')dt' e-taint'/T = hzvo(n)r"(n),

	

(8a)

where z'a(n) and ~(n) are the finite Fourier transforms of w(t) and r(t), respectively
(Eq . 1) .

Frequency composition ofthe variance ofshot noise . The average power density
in the bandwidth 1/T centered on the frequency n/T is, from Eq. 3a, G�(n) _
2v2(n)/T = 2/T fdt fds V(t)V(s) e2asn(t-s)/T. 1n order to compute its expected value,
we need the expected value of V(t)V(s) :

K

	

lI
E[V(t)V(s)] = E [i i h2w(t - Bj)w(s - Bk)

J
.

	

(9)
k

The K2 terms of this product of two series can be grouped into two sets : one
containing K terms with j = k and the other containing K(K - 1) terms with
j54k:

E[V(t)V(s)] = h 2E[K]E[w(t - Oj)w(s - Bj)] + h 2E[K(K - 1)]
(9a)

T
E[w(t - Oj)w(s - B;] = f p(t')w(t - t')w(s - t')dt' ;

	

(96)
T

and, since j and k are independent,

E[w(t - Oj)w(s - Bk)] = E[w(t - Bj)]E[w(s - Bk)]

= fT
p(t')w(t - t')dt' fT p(s')w(s - s')ds' .

T

	

T

Therefore :

TE[V(t)V(s)] = E[K]h2
fT

p(t')w(t - t')w(s - t')dt'

+ F,[K(K - 1)]h2

.E[w(t - Oj)w(s - Bk)]

	

lk 0j) .

(9c)

p(t')w(t - t')dt'
f,

T
p(s')w(s - s')ds' .



FESCE ET AL .

	

Fluctuation Analysis of Nonideal Shot Noise

	

31

If the events occur independently, then the distribution of the K's is Poissonian
so that E[K(K - 1)] = (E[K]) 2. Since E[K]p(t') = r(t'), then E[K(K - 1)]p(t') .

p(s') = r(t')r(s'), and we have :

EVtVs

	

h`

	

Tf, rt wt-t ws-t dt

+ h2 f,

T

r(t')w(t - t')dt' ft

T

r(s')w(s - s')ds'

	

(10)

= h2 f r(t')w(t - t')w(s - t')dt' + E[V(t)] E[V(s)],

where the limits of the first integral have been extended to ±00, since the
integrands are zero for t' <-T or t' > T.

If Eq . 10 is substituted into Eq. 9, we get:
T T

E[v2(n)] = f dt f ds E[V(t)V(s)] e2*in(t-s)/T

T T

=
f

	

dt
fo

	

ds E[V(t)]E[V(s)] e2sin(t-s)/T + h2 f.' r(t')dt'

	

(11)

T T

"
f

	

dt f

	

ds h2w(t - t')w(S - t') e2xin(t-s)/T .
0 0

When edge errors are neglected, the first term of Eq . 11 gives:
E[v(n)] E[v(-n)] = h2zo(n)zvu(-n)r"(n)i(-n) = h2za 2(n)r2(n).

	

(11a)

The second term can be evaluated over three different regions of t' : (a) t' < -T

or t'>T,(b)0<t'<T-T,and(c)-T<t'<0orT-r<t'<T . Region a

contributes nothing to the signal because w(t - t') = w(s - t') = 0 everywhere
within it ; in region b, both w(t - t') and w(s - t') are integrated over the whole
range where they differ from 0, and the subsequent integration over t and s
gives zn(n)z'o(-n) = iVu2(n) ; region c comprises the edges of the record where only
part of the waveforms of the events contribute to the signal . If T >> T and r(t)
obey certain restrictions (see Appendix), regions b and c can be combined, the
errors at the edges can be neglected, and the second term of Eq . 11 gives:

T

h2 f r(t')dt'zu 2(n) = h2 (r)Tz`n2(n). (11b)

Adding Eqs. 11 a and 11 b, we get:

E[v2(n)] = h2w2(n)[r2(n) + (r)T] . (12)
The expected value of the variance of V(t) is (from Eq. 3) :

E[(v2)] = 1T E h2ZV2(n)[r2(n)/T + (r)] .
�-_�

(13)



32

	

THE JOURNAL OF GENERAL PHYSIOLOGY " VOLUME 88 " 1986

If we define the power densities of v(t), r(t), and w(t), respectively, as :

G�(n) = 2v2(n)/T,

G,(n) = 2r"2(n)/T,

and

then we have :

Gw(n) = 2za2(n),

Frequency composition of the skew of shot noise. The expected value of the
skew can be computed in a similar way from the expected value Of v3(n, m):

and

E[(v2)] = 1 Z E[Gv(n)] = 1 Z h2G,,(n)[G,(n)/2 + (r)] .

	

(13a)
T n=1

	

Tn=1

E[v3(n, m)] = fdtfdsfdz E[V(t)V(s)V(z)] e2xs(nt+ms-nz-mz)/T

E[V(t)V(s)V(z)] = E [E Z E h3w(t - 9,)w(s - ek)w(z - B,n)] .

	

(14)
k m

The Ks terms of this product of three series can be grouped into five sets of
terms: one set containing the K terms with j = k = m; three sets containing
K(K - 1) terms each, with either j = k 0 m or j = m 0 k or j 0 k = m; and a last
set containing the K(K - 1)(K - 2) terms with j 0 k 0- m. The expected values of
each of these sets can be expressed in terms of the expected rate, as was done in
deriving Eqs. 6 and 10 . Since E[K(K - 1)(K - 2)] = (E[K]) 3, we get:

E[V(t)V(s)V(z)] = h3 f r(t')dt'w(t - t')w(s - t')w(z - t')

+ h3 f
m

r(t')dt'w(t - t') f
m

r(s')ds'w(s - s') f
m

r(z')dz'w(z - z').

The expected value of v3(n, m) is computed by multiplying each of these five
terms by e2ai(nt+,ns-nz-,nZ)/r and integrating over t, s, and z. If we define w3(n, m)
and r"3(n, m) as v3(n, m) is defined in Eq . 4, and neglect edge errors, the five terms

+ h3 f r(z')dz'w(z - z') f r(t')dt'w(t - t')w(s - t')

+ h3 f r(s')ds'w(s - s') f r(t')dt'w(t - -t')w(z t')

+ h3 f r(t')dt'w(t - t') f r(s')ds'w(s - s')w(z - s')
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give, respectively : h3 (r)TiVo3(n, m), h3r2(n +m)zas(n, m), h3r2(m) 3(n, m), h' 2(n)An,
m), and hsr" s(n, m)uws(n, m) . Thus, we obtain :

where

E[v3(n, m)] ^- h3zo3(n, m) [(r)T + r2(n) + r"2(m) + r"2(n + m) + r" s(n, m)].

The expected value of the skew is (from Eq. 4, with n, m, n + m 96 0) :

E[(v3)] = T2

	

h3lb3(n, m)

Similarly, Eqs. 15 and 15a reduce to :

where

C(r) + r2(n) + r2(m) + r2(n + m) + r3(n, m)
T

	

l .
J

If the bispectral density of w(t) is defined as B,(n, m) = 6Re[za3(n, m)], then
expected value of the skew of shot noise is :

_h 3 -

	

°° I

	

G,(n) + G,(m) + G,(n + m)
E[(v3)] - T2 E, i1 lB,(n, m) I(r) +

	

2

Removing the contributions ofnonstationarity to the semi-invariants . When r(t)
is stationary, ~(n) = 0 for n 0 0 . Therefore, Eqs. 13 and 13a reduce to :

12 = fw2(t)dt .
0

13 = fw3(t)dt.
0

+
T

Re[w3(n, m)Nn, m)] .

(15)

(15a)

E[(V2)] = (r)h2

	

E

	

Gw(n)/T = (r)h212,

	

(16)
n=-1

E[ (V3)]
= (r)h3 Z

	

Z B,(n, m)/T2 = (r)h313,

	

(17)
n=1 m=1

These are the standard expressions relating the semi-invariants to (r) and h
(Rice, 1944).
When (r) is stationary, it can be computed from the ratio [variance] 3/[skew]2

(Segal et al ., 1985). When (r) is not stationary, this ratio cannot be used because
the semi-invariants are not proportional to (r) ; they contain frequency compo-
nents that arise from the temporal variations in r(t) . However, Eqs. 13 and 15
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show that these extra components are additive and appear only within the
frequency bandwidth of r(t) . They can, in principle, be filtered out whenever the
bandwidth of r(t) is narrower than that of w(t), and (r) can then be computed
from the semi-invariants of the filtered signal . The filtering is practical only
when a portion of the spectrum of w(t) can be unambiguously identified in the
noise spectrum . The parameters of w(t) are then deduced by fitting the analytical
function for its power spectrum to this region of the noise spectrum, and the
integrals Of W(t), 12 and 13, are computed from these parameters . The data are
then analyzed using filters with different time constants, and the results are
accepted when the calculated rates become independent of the time constants.

Although the frequency components of r(t) must be removed before (r) can
be calculated from the moments of the noise, these components contain useful
information about the time course of r(t) and they should not be totally disre-
garded . The power spectrum of r(t) can be readily extracted from the power
spectrum of the noise once the power spectrum of w(t) is known (Sigworth,
1981) . Rearranging Eq . 13a gives:

Gr(n)/2(r) = G �(n)/[(r)h2Gw(n)) - 1,

where (r)h2G,,(n) is the analytical curve fit to the region of the noise spectrum
that is uncontaminated by Gr(n) . The time course of r(t) can be inferred from
the values of Gr(n), and knowledge of r(t) could provide clues to the mechanism
of its origin .

Averaging single records over time and approximating Fourier integrals with
discrete Fourier transforms . The previous derivations assumed that averages were
performed over ensembles of records. When only one record is available, as is
often the case in physiological experiments, its values must be determined by
averaging over its duration, and the reliability ofsuch estimates and their random
errors must be considered . This question is addressed in the Appendix, where it
is shown that in the absence of fast progressive trends in r(t), the contribution of
nonstationarity to the random errors is reduced by filtering, and the random
errors are reduced by increasing the period of time over which the averaging is
performed.

All these derivatives are based upon Fourier integrals and infinite Fourier
series, whereas the computations from digitized experimental records yield
discrete Fourier transforms and finite Fourier series . The finite functions will
closely approximate the infinite ones when the data sampling rate is at least twice
the highest significant frequency components of the raw data and when the
duration of the sampling period is long compared with the period of the slowest
data components (Bendat and Piersol, 1971). The spectrum of a prototypical
MEPP is a double Lorentzian with corner frequencies near 32 and 320 Hz (time
constants of 5 .0 and 0 .5 ms, respectively) (Segal et al ., 1985), and the power at
frequencies above 250 and below 2 Hz is nil (Fig . 2) . Therefore, the highest
sampling rate (2,500 Hz) and the longest sampling period (4 s) that we routinely
used in our experiments encompass all the significant spectral components in the
data, and our estimates of spectral densities and moments are reliable .
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Effects of a Nonuniform Distribution of Shot Amplitudes

When the shot events are not uniform in amplitude, then the equation for the
semi-invariants of the fluctuations is (Rice, 1944):

X� = (r)(h")I. = (r) (h)"D�I�,

	

(18)

where D� = (h")/(h)" is a factor that depends upon only the distribution of h. If
we use (h) and (r) to denote the apparent mean amplitude and mean rate of
the events as determined from the skew and variance, and use (h), and (r)t to
denote "true" average values, we get:

(h) = (X3/I3)/(1\2/I2) = (h 3)/(h2 ) = (h),D3/D2.

(r) = (1\2/I2) 3/(X3/I3)2 = (r)(h2)3/(h3)2 =
(r),D23/D32 .

Thus, (r) and (h) will be in error whenever h is not uniform . If the distribution
of the h's is known, from a histogram, for example, then D� can be calculated
from its moments and these errors can be estimated .

If the shape of the distribution remains constant throughout an experiment,
then the fractional errors in (r) and (h) will be constant, and values measured
at different times can be usefully compared . When the shape of the distribution
function changes during an experiment, however, the values determined at
different times will be subject to different errors and cannot be compared
meaningfully . Therefore, it is important to have an index that monitors the
distribution of h and can be continually evaluated during an experiment . The
ratio

R = (X3/I3)'/(X4/I4)(X2/I2) =
(h3

)2/(h4)(h2) = D32/D4D2

is such an index since it is independent of (h) and (r), depends only upon the
distribution of h, and can be evaluated from the fluctuations . [If (r) and (h) are
calculated from X, and X2, the appropriate ratio is (X2/I2)2/(A,/h03/13).] R
changes when the shape of a distribution changes, but, in general, the moments
of a distribution cannot be determined from it . However, many experimental
distributions can be closely approximated by analytic functions whose parameters
are directly related to R, and then the errors in (r) and (h) can be calculated
directly from it .

If an individual shot is described by the equation h[e-'10 1 - e-das], then its peak
amplitude is proportional to h, and these two parameters are distributed identi-
cally . We have found that under many conditions the histograms of MEPP
amplitudes are well fitted by y distributions (Fesce et al ., 1986):

pti(h) = 01"hYe-1nfYl,

where h is the distributed variable, p,(h) is the probability density function of a
y distribution, a is a scale factor of the distribution, and 'r defines its shape . This
flexible distribution function approximates a Gaussian when 'r > 10 and ap-
proaches an exponential as y --* 0. The value of y can be determined from the
mean, X,, and variance, X2, of an amplitude histogram:

'y = (X12/1\2) - 1 .
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Once y is known, then the D � 's, R, and the correction factors for (r) and (h)
can be calculated :

R = (h3)2/(h4)(h2) = D32/D4D2 = ('Y + 3)/('Y + 4) ;
(r),/(r) = (y + 3)2/(y + 2)(y + 1) = R2/(3R - 2)(2R - 1);

E

0
c2
0a
c
0
a
E
d

(h),/(h) = (y + 1)/(y + 3) = (3R - 2)/R.

Conversely, y and the correction factors can be determined from the values of
R computed from the semi-invariants of the fluctuations, if the values of h are
assumed to follow a y distribution .

VE

VB
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Dn = (y + n)!/(y + 1)n1'I;
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Increase in conductance (normalized)

FIGURE 1 .

	

Steady state voltage-conductance curve of the equivalent circuit shown
in the inset . Ordinate : membrane potential . Abscissa : increase in membrane con-
ductance, g, normalized to conductance in the absence of MEPPs, Go . Vo = mem-
brane potential in absence of MEPPs; Ve = equilibrium potential of endplate
channels ; C = membrane capacitance ; iACh = current through acetylcholine channels ;
i�, = current through ionic channels in muscle fiber; is = current through capaci-
tance . The cable properties of the junction are ignored . See text for further
explanation .

Second-Order Correction for Nonlinear Summation ofMEPPs
The classical theory of shot noise assumes that the shot events add linearly .
MEPPs do not sum linearly because the changes in membrane potential at an
endplate are not linearly related to the underlying changes in conductance
(Martin, 1955). Fig . 1 shows the theoretical nonlinear steady state relation
between membrane potential and conductance at an endplate, with the equivalent
circuit shown in the inset (Martin, 1955) . This curve is not appropriate for
correcting the amplitudes of large EPPS (Martin, 1976 ; Adams, 1976 ; Stevens,
1976; McLachlan and Martin, 1981) because the large increases in conductance
that produce EPPS also significantly reduce the time constant of the membrane
during the brief period of transmitter action . However, this curve is appropriate
for correcting small fluctuations in potential when the underlying fluctuations in
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conductance are too small to change the time constant significantly (see below) .
We assume that conductances sum linearly and that the added endplate con-
ductance is proportional to the MEPP rate . Suppose that quanta are secreted at
an average rate, (r), such that the mean conductance of the endplate is increased
50% above its resting value. If MEPPs summed linearly, the average membrane
potential, (V), would move along the initial slope, So, of the G-V curve to the
point A, and the fluctuations in the MEPP rate would cause V to fluctuate along
this line . Because MEPPs sum nonlinearly, however, (V) moves along the G-V
curve to point B and the fluctuations in the MEPP rate cause V to fluctuate (to a
first approximation) along the slope, SB, at point B, where (V) = VB . When (r)
land the MEPP amplitude factor, h, are computed from the mean and variance
of V, errors arise because the chord, CB, and the slope, SB, are not equal. These
errors are avoided if CB and SB are corrected to the initial slope, So (Wong and
Knight, 1980) . When the skew and variance are used, however, only the fluctua-
tions in V about VB are considered, and the differences among So, CB, and SB

need not be corrected for. The value of h computed from these fluctuations is
that appropriate to SB. However, a second-order error arises because the G-V
curve deviates slightly from the straight line, SB. When the fluctuations in g are
small, the size of this error can be estimated directly from the semi-invariants of
the fluctuations . The capacitance of the membrane does not affect the error
because the membrane time constant remains near the value set by the average
MEPP rate .
Let g be the average conductance of the acetylcholine (ACh) channels at the

mean MEPP rate, (r), and let bg be the deviation of g from its mean (bg = g - g)
caused by a fluctuation in r from its mean . This situation can be represented by
an equivalent circuit similar to that shown in Fig. 1 . The Go arm of this figure
can be replaced by an equivalent arm with conductance GB = Go + g, and emf=
VB = (RVF + GoVo)/(g + Go); this arm represents the average state of the
membrane. The g arm of Fig. 1 can be replaced by an arm with conductance bg
and emf VF, and it represents the time-dependent fluctuations about the mean .
In the steady state, the currents through bg and GB are equal, so that :

GB(V - VB) = bg(VF - V)-

	

(19)
When the circuit is not in a steady state, the currents through GB and bg differ
by a factor a, so that at any instant:

GB(V - VB) = abg(VF - V),

	

(20)

where ais a function oftime that depends upon the time constant of the endplate
at the potential, V, and conductance, GB + bg, and upon the recent history of V
and g (i .e ., upon the state of charge on the capacitor at the time the fluctuation
in g occurred) . Since we are concerned only with small fluctuations in V and g
about their mean values, the time constant and therefore a are not sensibly
affected by the fluctuations and remain at the values determined by VB and GB.
Then the slope of the G-Vcurve at point B (V = VB, bg = 0, a = aB) is :

dV/dg = aB(VF - VB)IGB = aBVdIGB, (21)
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where Vd = V,;, - VB is the mean driving potential. If MEPPs summed linearly
around point B, the displacement, vi , of the potential from VB caused by a small
change in conductance, bg, would be :

The actual displacement, vm, is obtained by solving Eq . 20 when V= VB + vm and
a = aB :

which becomes, according to Eq . 22 :

This is the original Martin correction . It can be used because the time-dependent
properties of the equivalent circuit remain at their average values and are not
significantly affected by the small fluctuations in potential and conductance.
Within the range where this assumption is valid, these corrections are small
(Martin, 1976 ; Adams, 1976 ; McLachlan and Martin, 1981) and have trivial
effects upon the mean or variance . Nevertheless, we found that they were
important for the thirdand fourth semi-invariants, which are strongly influenced
by the fluctuations of largest amplitude. The correction should be applied to the
original digitized data, but we derive here an approximation based upon the
measured moments of the fluctuations about VB that is valid when vm << Vd . From
Eq. 24, we have :

(vl) " = (vm)" (I + vmlVd)" - (vm) " (I + nvmlVd) .

Averaging, we get :

The first five semi-invariants, X", ofanydistribution are related to its moments,
m" = (x"), by the following relations (Kendall and Stuart, 1958) :

mi = XI ;

m2 = 1\2 + XI
2 ;

m3 =X3+3X,X2 +X,3;

vl = aBVdbglGB,

v./(I - vm/Vd) = aBVdbglGB,

	

(23)

((vl) ") - ((vm)" ) + n((vm)"+l)/Vd .

	

(25)

m4 = X4 + 4XI X3 + 6X I 22a2 + 3X22 + X,4 ;

vm/(I - vm/Vd) = vl-

	

(24)

m5 = X5 + 5X I A4 + 15X,X22 + 10X1 2 X 3 + 10,\,31\ 2 + 101\2 1\ 3 +'\, 5 .

X](1) = X2(m)/Vd ;

X2(l) = A2(m) + 2A3(m)/Vd ;

X3(l) = X3(m) + 6a22(m)/Vd + 3X4(m)/Vd ;

A4(l) = X4(m) + 24X2(m)X3(m)/Vd + 4X5(m)/Vd .

(22)

Using these relations, we can deduce from Eq. 25 the relations among the semi-
invariants, X,(l), of vi , and those, X"(m), of vm . If terms containing Vd at powers
more negative than -1 are neglected, we get:
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Since the semi-invariants are linearly related to (r) (Rice, 1944), the second
terms in the last two equations are of the order of (r)2. These terms are
responsible for most of the error, becoming significant only when (r) is large
(>200/s; Fesce et al ., 1986, Fig. 4) . The term involving a4 in the third equation
is small, but is retained for completeness' sake ; the last term in the last equation
is also small and is ignored.

This set of equations applies to the unfiltered records of the fluctuations . The
filtered records can be treated as though they were generated by MEPPs that
have altered waveforms but occur in the same sequence as those in the unfiltered
records. If In represents the integral of the n`h power of the waveform of
unfiltered MEPPs and In is the corresponding integral for the waveform of
filtered MEPPs, then the n`h semi-invariants of the unfiltered (X�) and filtered
(Xn) fluctuations are related by :

or

Xn
= (r)h

"In,

	

an
=

(r)h"In,

X"An = I"/In = P"-

	

(26)

Although changes in the mean potential and conductance of an endplate affect
the amplitudes and time courses of the MEPPs, the fluctuations about the mean
have little effect on these parameters or, consequently, on In, In, or p" . Further-
more, these integrals are calculated from the power spectra, which in turn are
related to the variance of the fluctuations, and we found that the measured
variances were hardly changed(<2%) by the correction for nonlinear summation.
If Eq . 26 is substituted into the relations among the X(1)'s and X(m)'s, we get, for
filtered records:

X ;(1) = 0 (because I ; = 0) ;

X2(1) = X2(m) + 2[X3(m)/vd]P3/P2 ;

X3y) - X3(m) + 6{[X2(m)]2/Vd)P22/P3 + 3[X4(m)/VdIP4/P3 ;

X4(1) = X4(m) + 24[X2(m)X3(m)/Vd]P2P3/P4 "

In experiments with neuromuscular junctions, we found that when secretion
was at its peak, these corrections increased X2(m) by only a few percent, X3(m) by
^-33% (the term involving X4 contributed little to this increase), and X4(m) by
several hundred percent. The peak rates calculated from the variance and skew
were reduced ^-50% . All corrections were small when the MEPP rate was below
200/s (Fesce et al ., 1986).

Precision of the Estimates ofX4

The corrections for nonlinear summation and the distribution of MEPP ampli-
tudes require the fourth semi-invariant of the fluctuations, X4, which is calculated
from X2 and the fourth central moment, P4, using the equation (Kendall and
Stuart, 1958):

1A,4 - X4 + 3X22 . (27)
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Eq . 27 shows that a4 of an arbitrary distribution measures the departure of 114
from that ofa Gaussian . Since the distribution of shot noise approaches a Gaussian
as (r) --+ oo (Rice, 1944), a4 becomes progressively more difficult to measure as
r rises . If we assume for the moment that (r) is stationary and the shots are
uniform, then we expect : A4 = (r)h414 + 3((r)h 212)2 . As (r) rises, X4 becomes a
smaller and smaller fraction of the directly measurable quantities A4 and X2, and
the variability in its estimates progressively increases . As (r) --~, 00, this fraction
approaches I4/3(r)I 2 2 . If we assume for simplicity's sake that the shot event rises
abruptly and decays exponentially with a time constant 0,, then 14 = 0,/4, 12 =
02/2, and this fraction decreases as ((r)0,)- ' . The related fraction that determines
the variability in the estimates Of X3 decreases as ((r)0,)-'/2 (Segal et al ., 1985).
Thus, as r increases, the random errors in the measurements Of 71 4 increase faster
than those in X3 . These errors decrease as 0, decreases and therefore they should
decrease when the records are high-pass filtered . These expectations are con-
firmed by the results of simulations and are observed in experiments on neuro-
muscularjunctions .
When r is not stationary, the spectrum Of A4 will contain contaminating

components that arise from r(t) . These contaminating components should be
filterable (Appendix) so that, in principle, reliable values Of 1A4 can be obtained .
However, even when filtering has completely removed all contaminating com-
ponents from both ,u4 and a2, the estimates Of X4 obtained by time-averaging over
single samples of data will be in error because the computation Of X4 uses X22 .
When a2 changes in a nonrandom deterministic way during a data-collection
interval, its mean square value can be determined correctly only by averaging
over ensembles of records (Bendat and Piersol, 1971 ; Segal et al ., 1985).

METHODS
Computer Simulation

Nonstationary rates. All the computations were performed on a PDP 11/23 plus
computer (Digital Equipment Corp., Maynard, MA). The theory was tested under ideal
conditions by analyzing records produced by the linear summation of random sequences
of computer-simulated MEPPs with waveform w(t) = (e-`ie' - e-t/ 6

2), 0, = 5 ms, and 0 2 =
0.5 ms. This waveform closely approximates normal MEPPs (Segal et al ., 1985) . The
value of h was chosen so that the full range of the computer's 12-bit A/D converter would
be used but not exceeded . A function r(t) was chosen for the expected rate of occurrence
of MEPPs, and for each 0.4-ms time interval, a Poisson number generator used this
function to determine the number of events beginning during that interval . For every
such event, the computer generated 300 points of the waveform of the simulated MEPP,
and a digital record -11 s in duration was produced by the linear temporal summation
of the MEPPs . This record was converted to an analog voltage that was passed through
an electric network and returned to the computer for analysis . When the network
contained a high-pass filter, the results were referred to as "filtered ." Only the last 10 s
of each record was used to compute the moments and power spectra in order to avoid
transients . 10 records were analyzed for each r(t) .

Four general situations were simulated : (a) stationary rates, i .e ., r(t), the input to the
Poisson number generator, is constant, (b) bandwidth-limited noise added to the MEPP
signal, (c) r(t) changing from moment to moment in a random manner, and (d) r(t)
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changing in a random stepwise manner to stimulate random volleys of MEPPs. The first
situation was simulated as described previously (Segal et al ., 1985); in case b, the signal
was summed with the output of a pseudo-white-noise generator (model 132, Wavetek,
San Diego, CA). Case c was stimulated by sampling the output of the noise generator at
0 .4-ms intervals and using each voltage reading as the expected rate for the Poisson
number generator. Volleys of MEPPs (case d) were created by synthesizing random square
waves as follows: the amplitude and mean number of square waves occurring per second
were chosen, and minimum and maximum durations for the square waves were set. A
uniform random number generator determined the beginning and end (within the
imposed limits) of each square wave, which were summed, and in some cases a constant
baseline value was added. A scaling factor was then chosen to convert the resulting
stepwise-changing function of time to stepwise changes in the expected MEPP rate (see
Fig. 4, A-C) . This procedure resulted in a record of r(t) 15 s long : the first 4 s was
discarded to avoid transients, and the remainder was fed to the Poisson number generator.

Distributed MEPP amplitudes. The utility ofratio R was tested with simulated MEPPs
whose individual values of h were not fixed but varied randomly according to the y
distribution . Theshot was the analytic function describing the MEPP after passage through
a high-pass RC filter (Segal et al ., 1985), i.e ., an external analog circuit was not used . The
MEPP time constants were as above; the filter was "set" to 1 .0 ms . For a mean frequency
cf 1,000/s, a Poisson number generator determined the number of MEPPs starting within
each 0.4-ms interval . The amplitude of each of these was set randomly such that the
population of all h's followed a y distribution . A particular h was the value that satisfied
the expression :

x = f
n
p,,(h)dh,

where x is a uniformly distributed random number between 0 and 1 (Carnahan et al .,
1969). The remainder of the stimulation procedure and the ensuing calculations of the
semi-invariants were identical to those described above and previously (Segal et al ., 1985).

Estimates of rate and amplitude ofsimulated MEPPs. The MEPP rate and amplitude
were estimated from the mean and variance, or from the variance and skew, of the
stimulated record using the following relations: mean = (r)hI,, variance = (r)h%, and
skew = (r)h'I3 (Theory) . The mean was computed from the original simulated record,
whereas the variance and skew were computed after converting this signal to an analog
voltage and passing it through the chosen electric network. The first element in the
network was an active low-pass Butterworth filter (Frequency Devices, Haverhill, MA) set
at f, = 1,250 Hz to reduce aliasing. The high-pass filter, when present, was a simple RC
filter that increased the ratio 13/(12)

1/2
(i .e ., the asymmetry of the MEPP is increased) so

that higher MEPP rates could be analyzed before the signal, according to the central limit
theorem, approached a Gaussian distribution (see Segal et al ., 1985). Butterworth filters
were tried and abandoned because, although their sharper cut-offs appeared advanta-
geous, they made the filtered signal much more symmetric; I2/(13)1/2 was reduced and the
resulting estimates of (r) and h were subject to greater errors . Bessel filters were not
tested, although they might have been suitable . The integrals of the square and the cube
of w(t), as modified by the network, were determined by simulating an MEPP, passing it
through the network, sampling the output, and integrating it .

Power spectra . Spectra of simulated records were computed according to standard
procedures (Segal et al ., 1985). A "fast" spectrum (1 .25-1,250 Hz) was obtained by
averaging 12 spectra computed from 2,048 data points each . This spectrum was combined
with a "slow" one (0.25-250 Hz), which was computed in a similar way from 12
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independently simulated records where successive points were 2 ms apart (instead of the
usual 0.4 ms). The ends of the records were cosine tapered to reduce the spectral
"leakage," which stems from the finite duration of the sampling period (Bendat and
Piersol, 1971). The resulting composite spectrum, which spanned a little less than four
frequency decades, was smoothed over neighboring frequencies (further reducing "leak-
age") (Bendat and Piersol, 1971) and displayed together with the analytical spectrum of
w(t) . The latter is the product of two Lorentzians : G(f) = 2(9, - 92)2/[1 +(2 of9,)2][1 +
(2 of 92)2 ] (Verveen and De Felice, 1974). If MEPP rate is stationary, then the variance of
the fluctuations is given by :

Var = (r)h2fG(f)df = (r)h2(9, - 92) 2/2(9, + 92) = Go/4(9, + 92),

where Go = (r)h2(9, - 92)2 is the asymptote of the power spectrum of the fluctuations .

RESULTS

Effects ofExtraneous Noise
Fig. 2A (top trace) shows a record obtained when a stationary state ((r) = 500/
s) was simulated, and the middle trace shows the high-pass-filtered record
(RC = 1 ms). The lowest panel in Fig. 2A shows the power spectrum of the
unfiltered record, its integral (dotted line), and the theoretical double Lorentzian
expected for randomly occurring events with the time constants of the simulated
MEPP (solid line). The fit is excellent over the whole spectral range. Note that
the frequency components between 2 and 250 Hz account for >90% of the
variance (total integral).
The effects of adding an independent source of bandwidth-limited pseudo-

white noise are shown in Fig. 2B . The power spectrum deviates at the low-
frequency end from that expected for the simulated MEPPs (solid line), and
-50% of the variance originates from spectral components below 10 Hz. These
components prevent the computation of (r) and h. The large contribution of
the spurious noise to the total signal is apparent in the unfiltered record (upper
trace), but not in the filtered one (middle trace) .
Two sets of estimates were obtained for (r) and h: one from the mean and

variance, the other from variance and skew. The fractional errors in the esti-
mates, obtained either without or with high-pass filters of various time constants,
are plotted in Fig. 3 . The average values of the fractional errors measure the
systematic (bias) errors in the estimates, and their standard deviations indicate
the size of the random errors . Both the bias and the random errors were smaller
when the mean and variance were used (solid symbols), and all the errors fell as
RC was reduced. When noise was absent, all errors were <10% ; when noise was
present, the errors obtained from unfiltered records exceeded 50% (not shown),
but decreased to <10% as the time constant of the RC filter decreased. Thus,
the deleterious effects of bandwidth-limited noise can be greatly reduced by
filtering . (Notice that the mean of the unfiltered signal can be used to estimate
(r) and h only if the noise has no DC components.)
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Effects of Nonstationary MEPP Rate
Five nonstationary conditions, all with approximately the same mean rate
(-1,000/s), were simulated using superimposed volleys of artificial MEPPs. The
following parameters were used : (a) 5 volleys/s ; a mean volley duration of 0 .6 s ;

FIGURE 2.

	

(A) Simulated fluctuations in potential at an endplate . The MEPP rate
is stationary (500/s) and the MEPP time constants are 5.0 and 0.5 ms. Top trace :
unfiltered record, 10 s duration ; middle trace : the same record filtered through a
I -ms high-pass RC filter . The vertical calibration is arbitrary, and the filtered record
is displayed at a higher gain . Lower panel : power spectrum of the fluctuations
plotted on log-log scale . The vertical position is arbitrary, one decade per mark .
The solid line is the product of two Lorentzians determined by the MEPP time
constants, and the dotted line is the integral of the spectrum (on a linear scale with
arbitrary units) . The total power (last point to the right) equals the variance . Its
value is 45 X G� (see Methods) and its theoretical value is 45.5 X Go for this pair of
time constants . (B) Same record as in A, with pseudo-white noise (^-10 Hz band-
width) superimposed . The unfiltered record (top) is clearly altered by the large
contribution of noise, whereas the filtered one is almost unaffected . The power
spectrum ofthe unfiltered noise (plotted over three frequency decades only) deviates
from the theoretical spectrum below 25 Hz. The measured variance is 86.9 X Go ,
almost twice the theoretical value of the uncontaminated record . The large contri-
bution of the noise to the variance is evident in the total power plot (dotted line,
linear scale) at frequencies below 10 Hz .

a step in the mean MEPP rate of 200/s for each volley ; baseline rate, 100/s ;
(b) 5 volleys/s ; a mean volley duration of 0.5 s ; a step of 500/'s per volley ;
baseline rate, 0 ; (c) 2 volleys/s ; mean duration, I s ; a step of 500/s per volley ;
baseline rate, 20/s ; (d) 2 volleys/s ; mean volley duration, 2 .5 s ; a step of 250/s
per volley ; baseline rate, 20/s ; (e) 5 volleys/s; mean volley duration, 1 s ; a step
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of 500/s per volley ; steps smoothed by low-pass filtering (RC = 4 ms); baseline
rate, 50/s .
The top traces of Fig. 4, A-C, show examples of the time courses of r(t)

obtained using the parameters listed above (a-c). These stepwise-changing rates
were used to generate the records shown in the middle trace of the panels ; the
lowest set of traces shows the records after filtering (RC = 1 ms). Since the mean
of the filtered record is zero, the width and asymmetry of the filtered fluctuations
at any time are closely related to their instantaneous contributions to the variance
and skew. This is obviously not the case for the unfiltered records.
The top of Fig. 5 shows the power spectrum of the record illustrated in Fig.

4B, and the center shows the spectrum of the filtered record (RC = 1 ms). The
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Effects of filtering on the errors in the estimates of MEPP rate (trian-
gles) and amplitude (squares) . Ordinates : fractional errors of estimates . Abscissa :
time constant of high-pass RC filter . Sets of 10 independently simulated endplate
records (10 s) : (A) stationary MEPP rate ; (B) the same records plus white noise (10
Hz bandwidth, variance of the noise about equal to the variance of the uncontami-
nated record). Open symbols are the mean fractional errors in the estimates of the
parameters from the variance and skew of the records . Solid symbols are from the
mean unfiltered signal and filtered variance . The bars indicate the standard devia-
tions of the fractional errors .

effects of nonstationarity appear as deviations of the spectra from the shapes
expected for the MEPP waveform (solid lines) . The contribution of these contam-
inating spectral components to the variance is revealed in the integrals of the
spectra (dotted lines, linear scale) . The contribution is large for the unfiltered
records, but it is not detectable in the filtered record . The two spectra in Fig. 5
(bottom) are the measured spectrum of the "rate-generating function" (Fig . 4B,
top trace) and the spectrum determined from the simulated unfiltered noise
record (Fig . 5A, top), using the following equation : rate spectrum = [(data
spectrum/MEPP spectrum) - 1] . The reconstructed rate spectrum parallels the
measured spectrum over about two frequency decades.
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Fig. 6 shows the bias and random errors obtained when the (r) and h of the
artificial MEPPs were estimated from records like those in Fig . 4 . The bias errors
were 50-100% for estimates made from unfiltered records and the random

40

FIGURE 4 .

	

Simulation of nonstationary MEPP records (10 s duration) composed
ofoverlapping volleys of MEPPs. The top traces are typical rate-generating functions
showing the random step changes in rate ; parameters of the volleys are reported in
the text (a, b, and c) ; the middle traces are the resulting unfiltered MEPP records ;
the bottom traces are the same records filtered through a high-pass RC filter of 1
ms. The vertical calibrations are arbitrary ; filtered records are displayed at higher
gain .
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errors were large . Using the mean and variance, (r) was underestimated, while
h was overestimated . The values of (r) and h computed from the variance and
skew of filtered records had a greater bias and random errors than those

FIGURE 5 .

	

Power spectra obtained from the simulation shown in Fig . 4B. Power
densities (ordinates) in decades . Top panel : unfiltered data (X), analytical curve
(solid line), and total power (dotted line, linear scale) ; measured variance, 204 X Go ;
expected variance under stationary conditions, 45.5 X Go . Middle panel : filtered
data (RC = 1 ms), theoretical spectra for unfiltered and filtered data (solid lines)
and total power (dotted line): the contribution of nonstationarity to the variance is
almost completely obliterated, as is clearly shown by the total power plot, which
does not increase significantly for frequencies below 20 Hz . For higher frequencies,
the spectrum is very well fitted by the theoretical curve . Bottom panel : X, spectrum
of the top record in Fig . 4B, i .e ., of r(t); theoretical spectrum (solid line) for volleys
occurring randomly and with random duration (mean 0.5 s) ; O, spectrum of r(t) as
deduced from the spectrum of unfiltered data and the spectrum of the artificial
MEPP through the equation G,(n)/2(r) = G�(n)/[(r)h2Gu,(n)] - 1 (Theory) . Negative
values were set to zero . Notice that this reconstruction parallels the actual spectrum
of r(t) over about two frequency decades . The ordinate spans the range 10-"-104 ,
so that at 1 decade below half-scale, G r(n)/2(r) = 0.1 . This shows that contributions
from nonstationarity are negligible for frequencies of >20 Hz .
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computed from the mean and variance, but all errors decreased as the filter RC
decreased ; when RC = 1 ms, the random errors were reduced to -10% (compare
with stationary conditions in Fig . 3A) .

Similar results were obtained when r(t) was varied in a continuous random
manner . The fractional errors (mean ± SD) in the estimates obtained from mean
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FIGURE 6 . Effect of filter time constant on the estimates of (r) and h from
nonstationary records : superimposed volleys with the parameters reported in the
text (A-E) . Fractional errors (mean ± SD, 10 independently simulated records) in
the estimates of MEPP rate (triangles) and amplitude (squares), from mean and
variance (solid symbols), or from variance and skew (open symbols) . Variance and
skew are those of data filtered with the time constant indicated on the abscissa,
while the mean was computed before filtering.

(unfiltered) and variance were: -43 ± 2% for (r) and 77 ± 7% for h (no filter) ;
-12 ± 2% for (r) and 14 ± 3% for h (RC - 5 ms) ; -2.5 ± 2% for (r) and
2.7 ± 2% for h (RC = 1 ms) . The errors in the estimates obtained from variance
and skew were : -13 ± 23% for (r) and 47 ± 21% for h (no filter) ; -5 ± 10.5%
for (r) and 10 ± 6% for h (RC ^- 5 ms) ; -0.8 ± 8.5% for (r) and 2 ± 5% for h



FIGURE 7 .

	

(Left) Bispectral density of the skew . To obtain this plot, a record was
divided into 12 sections of 2,048 points, Fourier transforms were performed on
each section, and the bispectral densities were averaged over groups of neighboring
frequencies (15 x 15 for low frequencies, 21 x 21 for intermediate, and 71 x 71
for high frequencies), and also over the 12 sections . Bispectral densities were further
smoothed once over neighboring points (each point is half its original value plus
1/8 of each of the four adjacent points) . The two horizontal axes (X-Y) are Fourier
frequencies on logarithmic scales, and the vertical axis is the bispectral density on a
logarithmic scale . Positive values that would fall below the X-Y plane (i .e ., densities
between 0 and 1) are not plotted ; negative values are plotted below the X-Y plane
(negative logarithm of the absolute value) . Top panel : simulated stationary record
(same as Fig . 2) ; second panel : analytical bispectrum of the simulated MEPP
waveform ; third panel : simulated nonstationary record (same as Figs . 4B and 5) ;
note the deviations from the analytical shape ; fourth panel : same record as in the
third panel, filtered through a 1-ms RC filter; fifth panel : analytical bispectrum of
the simulated MEPP waveform, filtered through a 1-ms RC filter . Differences are
still apparent beween the densities in the two bottom panels, but their contributions
to the skew are negligible (right) . (Right) Integrals of the skew bispectra in the
corresponding panel on the left . Horizontal axes as on the left . Vertical axes are
linear (arbitrary units) . Notice the good agreement between the two top panels
(unfiltered simulated stationary record and analytical plot for stationary data), and
between the two bottom panels (filtered simulated nonstationary record and analyt-
ical plot of filtered stationary data) .
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(RC = 1 ms). The random errors in the estimates of (r) and h were reduced
further when the moments of three independent filtered records were averaged.
This averaging procedure is equivalent to increasing by threefold the duration
of a data-collection interval, and the resultant reduction in the random errors
agrees with the predictions of the theory (Appendix) .
The skew bispectra of the simulated records shown in Fig. 7 support the

theoretical prediction that the contributions of nonstationarities to the skew are
limited to the bandwidth of r(t) and are effectively removed by appropriate high-
pass filtering.

FIGURE 8 .

	

Histograms of the distribution of h as determined from 'y functions
with various values of ,B and y. Ordinates: number of events. Abscissae: value of h
(arbitrary units) . For one set of histogram (5,000 events/histogram), ,B = 1 and (h)
(indicated by vertical arrows) decreased as y was decreased from 10 to 1 . For the
other set (10,000 events/histogram), both 3 and ti were varied such that (h) was
constant .

The Dependence of X4 upon (r) and the Effects ofDistributed MEPP Amplitudes
When r(t) is stationary, the X� 's are proportional to (r) (Rice, 1944). The random
error in their estimates should increase with (r) (for n > 2), and should decrease
with high-pass filtering (Segal et al ., 1985). We examined the behavior of X4 of
simulated stationary records. For unfiltered data, the slope of the log-log plot of
X4 vs . (r) was 0 .998 (correlation coefficient, 0.993) over the range from 10/s to
1,000/s; the coefficient of variation (CV = mean/SD) of the estimates (15 at each
(r)) rose from 0 .07 to 0.41 over this range, and it exceeded 1 at 3,000/s. For
filtered data (r = 1 ms), the slope was 0.968 (correlation coefficient, 0.983) over
the range from 10/s to 10,000/s, and CV increased from 0 .11 to 0.49 over this
more extensive range. Thus, a4 behaves as expected when (r) is stationary, and
it can be estimated with reasonable accuracy at rates approaching 10,000/s, if
the data are appropriately filtered .
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We also simulated stationary ((r) = 932/s) records of filtered MEPPs whose h
factors were distributed in accordance with y distributions . In one set of simu-
lations, the ,# parameter of the distributions was fixed at 1, while y varied from
oo (all h's equal) to 1 . In a second set, both (3 and y were varied such that (h)
remained constant [(h) = K(y + 1)/a, where K is a scale factor). Fig. 8 shows the
resulting distributions of h. The distribution is approximately Gaussian (CV --
0 .3) when y = 10 and is highly skewed when y = 1 .
Table I shows the values of R and the apparent (r) and (h) calculated from

X2 and X3 of the simulated records . As y falls, the apparent (r) falls and the
apparent (h) rises ; they approach values of -1/3 and 2, respectively, of the
applied values when y nears 1 . The table also shows the results obtained when
the measured values of R are used to correct the apparent (r) and (h) for the
distribution of h . The corrected values lie within 9% of the applied ones when
y <_ 2 and within 18% of the applied ones when y = 1 . When r(t) is stationary,
R is a reliable measure of the spread in the distribution of h, and it can be used
effectively to correct (r) and (h) for errors arising from that spread .

TABLE I

Effects of the Distribution ofh on R, (r), and (h)
Determined by Fluctuation Analysis ofStationary Records

Parameters
of .y distri
bution Meas-

	

R

	

(r)

	

(h)
ured

. y

	

.y

	

Expected Measured Apparent Corrected Applied

	

Apparent Corrected

DISCUSSION

Nonstationary Rates

Mean values ± SD . 15 measurements were made under each condition. Applied (r) =932 s' .

This work demonstrates that the generalized Campbell theorem (Rice, 1944)
can be applied to appropriately filtered records of shot noise, and that reliable
values for the amplitude, h, and mean rate of occurrence, (r), of the elementary
events obtained even when the rate, r(t), is not stationary . Filtering works because
it selectively depresses the regions of the power spectrum (variance) and bispec-
trum (skew) where the frequency composition of the noise differs from that of
the waveform of the event, w(t) . The main uncertainties encountered when the
method is applied to experimental data pertain to correctly deducing w(t) from
the power spectrum of the unfiltered noise and ensuring that the filter has
adequately removed the frequency components of r(t) from the noise. If both
have been done successfully, then the frequency compositions of the filtered

1 M 65 .1 1 0.98610 .081 937±85 974 5,500 5,693±270 5,533
1 10 9.7 0.923 0.927±0 .080 740±63 999 5,500±15 6,640±284 5,340
1 5 5.2 0.889 0.891±0 .073 626±48 945 3,005±11 4,080±161 3,080
0.545 5 5.1 0.889 0.891±0 .073 626±49 947 5,509±20 7,478±297 5,639
1 2 2.3 0.833 0.842:0 .062 465±32 916 1,503±8 2,535±89 1,585
0.270 2 2.5 0.833 0.847±0 .065 466±33 893 5,558±28 9,332±337 5,948
1 1 1.4 0.800 0.813 :0 .055 364±23 819 903±7 2,020±65 1,165
0.175 1 2 .3 0.800 0.842±0 .061 387±25 762 5,701±35 11,087±375 6,930
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noise and the filtered waveform, w'(t), are identical and are equally affected by
further changes in the filter time constant . Therefore, consistency among the
estimates of (r) and h obtained with different filters is strong empirical evidence
that w(t) is correct and that the frequency components of r(t) have been removed.
More accurate results are obtained when the mean of unfiltered records and the
variance of filtered records can be used, rather than the skew and variance .
However, when the mean is changed by factors other than the summation of the
elementary events, the skew and variance are more reliable (Segal et al ., 1985).
This is often the case at the neuromuscular junction, where the membrane
potential of the muscle fiber is affected by many factors other than MEPPs. The
skew method fails at very high MEPP rates (Segal et al ., 1985), but its upper
limit can be raised by high-pass filtering to levels that exceed the highest ones
encountered so far.
Phenomena other than rate nonstationarity can distort stationary shot noise

power spectra (e.g., independent, extraneous sources of noise, correlation among
events or nonrandom occurrences; Heiden, 1969; Schick, 1974). It appears to
be a general rule that these components are additive and can be filtered out
whenever their bandwidth is narrower than that of the event waveform. It is
shown in the Appendix that higher moments of the noise should behave in the
same way. However, the band of frequencies that should be filtered from the
higher moments cannot, in general, be predicted from the power spectrum alone;
the spectral compositions of the higher moments of the contaminations must be
known to do this . In the particular cases we have considered, this problem can
be approached empirically by analyzing records passed through different filters .
When the filters have effectively removed the spectral contaminations from all
moments, then consistent and therefore valid results will be obtained .
The power spectrum of r(t) contains information about its kinetics . As the

results in Fig. 5 show, this spectrum can, in principle, be determined in a
straightforward manner whenever the power spectrum of the unitary event can
be separated from that of the noise . Inspection of Figs . 2 and 5 suggests that for
endplate records the two spectra will be separable only when the frequency
components of r(t) lie below "̂25 Hz (time constants on the order of tens of
milliseconds). The time constants, or durations, of many facilitative processes
that affect evoked or asynchronous quantal release usually exceed 40 ms (Katz
and Miledi, 1965 ; Hurlbut et al ., 1971 ; Cooke and Quastel, 1973 ; Magleby,
1973; Castillo and Pumplin, 1975; Misler and Hurlbut, 1983 ; Fesce et al ., 1986),
so that, a priori, there would seem to be a good chance of making the separation
and determining the spectrum of r(t) under a wide variety of conditions . Thus,
the range of parameters of nonstationarity simulated here appears adequate to
test the methods for use with real data . Since the errors were reduced to values
of ^-10%, we conclude that these filtering procedures will overcome problems
arising from nonstationary MEPP rates and other sources of spectral contami-
nation that might occur at real endplates . Segal et al . (1985) showed that slow
exponential trends in r(t) (i .e ., a time constant "̂40 times the duration of the
elementary event) can be studied by appropriately filtering the data before
computing the semi-invariants .
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Effects ofShot Nonuniformity and Nonlinear Summation

Shot noise recorded from physiological preparations can deviate from the ideal
in two additional ways : the individual shots may not be identical in amplitude or
waveform, and they may not add linearly . When the shots are not equal in
amplitude, bias errors arise because (h") is greater than (h)" and their ratio
increases with n. The net result is that (h) is overestimated and (r) is underes-
timated when they are computed from ratios of the X�'s . (This is also true when
(r) and (h) are calculated from a, and X2.) We have shown that the ratio R =
(X3/13)2/(1\2/12)(X4/14) monitors the spread in the distribution of shot amplitudes
and can be used to correct the estimates of (r) and (h) for the effects of that
spread, provided that r is stationary and the distribution of h is known.
When the shots do not sum linearly, then, in effect, their amplitude and

waveform change with r, and the )1� ' S of the fluctuations are not proportional to
(r) . The effects of nonlinear summation are greatly reduced when (r) and (h)
are computed from X3 and X2, because the MEPP characteristics do not depart
appreciably from the values appropriate to the prevailing mean rate, even though
they may depart considerably from their values at the near-zero rate . Second-
order errors still occur at a neuromuscular junction because the actual fluctua-
tions in potential are slightly smaller than they would be if they were strictly
proportional to the underlying fluctuations in conductance. Since the departure
from linearity increases with the amplitude of the fluctuations, and since the
higher semi-invariants give the greatest statistical weight to the largest fluctua-
tions, the X�'s are systematically underestimated to a degree that increases with
n. The net result at the neuromuscular junction is that (h) is underestimated
and (r) is overestimated when they are computed from the fluctuations in
potential. When the fluctuations are small (<10% of the mean potential), these
second-order effects of nonlinear summation on the X�'s can easily be corrected
for.
Thus, by using the higher semi-invariants of appropriately filtered shot noise,

valid results can be obtained under a variety of conditions that are routinely
encountered in physiological experiments but cannot be treated by the classical
procedure, which uses only the mean and variance . These conditions include:
spurious changes in the mean, nonstationary shot rates, nonlinear summation of
shots, and nonuniform shot amplitudes . The major drawback to the use of the
higher semi-invariants is that the resulting estimates of (r) and (h) have larger
random errors . Voltage-clamp data would not need corrections for nonlinear
summation, but the other features of the new procedure would be profitable
with such data as well . The great flexibility of the modified procedure will permit
detailed studies of the kinetics of quantal secretion under almost any experimen-
tal condition .

APPENDIX

The "Edge Errors"

In the Theory section, we defined r(t) as the ensemble expected rate of occurrence of the
events at time t . Let's consider three general behaviors of r(t) : (a) r(t) is weakly stationary,
i.e ., it changes, either deterministically or randomly, in such a way that its mean and
variance tend to remain constant ; (b) r(t) follows a deterministic function that increases
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less rapidly than an exponential, i .e., the absolute value of [dr(t)ldt]lr(t) decreases as t
increases ; (c) r(t) changes exponentially with time . We assume that the duration of one
event, r, is much shorter than the duration ofthe record, T (see Theory) . In the first two
situations, for 0 -- u _- r, the integral of r(t) from (-u) to (T - u) is closely approximated
by its integral from 0 to T, and the approximation improves as T increases ; the same is
true for higher powers of r(t). When r(t) = Ae"`, however, the two integrals can be very
different, depending on the value of a . Their ratio is about (e""), and the edge error in
the computation of the mean signal (Eq . 7) is -10% for a = I/IOT . These errors will be
larger for higher powers of r(t) . This analysis indicates that the edge errors are negligible
and our derivations are valid whenever progressive changes in r(t) occur more slowly than
exponentials with time constants much longer (^-50 times) than the duration of a single
event .

Effect ofFilters on the Bias Errors

When the MEPP rate is not stationary, the variance is given by (Eq . 13) :

E[(vz)] = T i h2Gw(n)[G .(n)/2~

	

Gw(n)[G.(n)/2 + (r)] = (r)h 2 2 + T ES h2G+u(n)Gr(n)/2,

where the last term on the right is the bias error. If a record is filtered through a circuit
with a known transfer function, H(f), the factor (r)h212 , i .e ., the variance in stationary
conditions, will be reduced to (r)h212, where 12 is the integral of the square of w(t) as
modified by the filter, and the bias will be reduced to :

bias = i Z h2G,~(n) I H(n) I 2G,(n)/2 .T �a,
IfH(f) is such that the maximum value of IH(n)I2G*(n)/(2(r)) is M, then

bias s 1 i (r)h 2MG.(n) = (r)h2M12 .
T � _,

The normalized bias error of the filtered record therefore will be smaller than the ratio
(r)h2MI2/((r)h 2ls) = MI2/12, and will be less than e if M < e 12/72 . Since G,(n)/(2(r)) can
be computed from the power spectra of the noise and the elementary event (Theory and
Fig . 5), if we want the variance to be biased by less than e, it is sufficient that the maximum
value of I H(n) I'G,(n)/(2(r)) be less than J2/I2. The rate of the events and their amplitude
can then be computed by applying Campbell's theorem to the mean unfiltered signal and
the variance of the filtered signal, since the bias error caused by nonstationarity has been
"filtered out ."
The theoretical prediction of how much a filter will reduce the bias error in the skew

is more complex . A procedure analogous to the one just described can be carried out, in
principle, on the skew bispectrum . From Eqs . 15 and 17, the bias is :

bias =

	

12

	

hsrus(n, m) ~rs(n, m) + r"2(n) + r` 2(m) + r- 2 (n + m)l .
TT

The factor in brackets can be evaluated by dividing the bispectral density of the signal by
the density expected for stationarity, i .e ., h 2 (r)iVa s(x, y), and subtracting 1 . The effect of
the filter can then be rigorously evaluated following the procedure used on the power
spectrum . This procedure is probably too laborious to be ofpractical interest, and a more
useful empirical approach would be the following : the noise power spectrum is compared
with the one expected in stationary conditions, and the corner frequency of the filter is
chosen so that within its pass-band the difference between the two spectra is less than e
(say, for example, 10%) . If e << 1, this suggests that the errors of Fourier components in
the pass-band are less than (1 + e)1~2 - I ^- e/2 and the errors in the bispectral density of
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the skew are less than (1 + e)"2 - 1 ^- (3/2)e ; the normalized bias error for the skew
computed in the filtered signal will also be less than (3/2)e (in our example, <15%).

Thus, the standard error of the mean decreases when the total number of events that
contribute to the signal increases, regardless of the stationarity of the situation .
The standard error of the variance is computed from the expected value of its square :

where

Random Errors Involved in the Various Procedures

In the Theory section, we have taken the expectations over ensembles of records with the
same r(t) and T . When, in experimental work, only one such record is available, the
expected standard errors in the estimates must be known in order to assess the reliability
of the results obtained from it .
The normalized standard error of the mean is given by :

E[al] _ [T2 fdtfds E[V(t)V(s)]/((r)hl,)' - II

	

((r)

	

(A 1)

Eq . A3 is given by :
where f indicates integration from 0 to T . The expected value in the right-hand side of

E[V(t)V(s)V(u)V(z)] = E ~Z E Z Z w(t - B,)w(s - 6k)w(u - Bm)w(z - Bn)~
k m n

=A+2B+4C+3D+4E+F,

where (indicating now by f integration from -oo to +oo) A = E[V(t)]E[V(s)]E[V(u)]E[V(z)] .
This factor comes from the terms withj, k, m, and n all different : B has the general form
E[V(t)]E[V(s)]fr(u')du'h'w(u - u')w(z - u'), and comes from the terms with j = k or m =
n ; C has the same form as B but comes from terms with j = ~n, j = n, k = m, or k = n ; D
has the general form h4fr(t')dt'w(t - t')w(s - t') fr(u')du'w(u - u')w(z - u') and comes
from terms with j = k and m = n, orj = m and k = n, orj = n and k = m; E has the general
form E[V(t)]fr(s')ds'hsw(s - s')w(u - s')w(z - s'), and comes from terms with the three
indices being equal ; finally, F = fr(t')dt'h 4 w(t - t')w(s - t')w(u - t')w(z - t') and comes
from terms withj = k = m = n .
When the terms are integrated over t, s, u, and z, and edge errors are neglected, they

yield, respectively :

(A) h'zu2(x)iv2(Y)~2(x)r2(Y) ;

(B) h'w2(x)v)2(Y)(r)T[r2(x) + i2(Y)I ;

(C) h'@2(x)v)2(Y)[ra(x, Y) + rs(x , -Y) +'s(-x, Y) + i3(-X, -Y)] ;

(D) h'zu2(x)w2(Y)((r)T)2 + 2h4ro2x)w2(Y)r2(x + y) ;

(E) h'7~2(x)u'2(y)[2''2(x) + 2i2(Y)I ;

(F) h'7Du2(x)'u'2(y)(r)T.
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E[(v ' ) ' ] = E E E[v2(x)v2(y)]IT', (A2)
x__� y=_�

E[v2(x)v2(Y)] = fdtfdsfdufdz E[V(t)V(s)V(u)V(z)] e2re(xe-xs+yu-yz)/T (A3)
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Since E[(v1 )] 2 =

	

h'w2(x)w2(y)[rs(x) + (r)Tl[r""2(y) + (r)T]/T', the expected square
x=-m Y=_m

error of the variance is :

2 Re[ri,(x, y) + r"s (x, -y)] + 2[r" 4 (x) + r` 2 (y) + r2 (x +y)] + (r) T
h'iV2(x)w2(y)

	

Ta (A4)

When this is normalized to the square value of the variance of a stationary record [given
by the double sum in x and y of h'w2(x)w2(y)((r)lT)2], we have a standard square error of
the variance :

2Re[r,(x, y) + r",(x, -y)] + 2[r"2(x) + r"2(y) + r"2 (x + y)]

	

_1
(02

)2 , Max

	

(()T)2

	

+ ()T

	

(A5)r

	

r

It is apparent that all the factors produced by nonstationarity (those within the brackets)
have the same bandwidth as r(t), and they will be removed by any filter that eliminates
the bias errors from variance and skew . The remaining factor 1/((r)T) gives a standard
error ((r)T)-', which decreases in proportion to the square root of the total number of
events . The errors owing to the nonstationarity will also be reduced by increasing the
observation time, T, provided that the ratios of r"",/T and 2r" 2/T to (r)2 (i .e ., the ratios of
the power density and bispectral density of r(t) to the square of the mean rate] increase
less than linearly with T. It is easily shown that this is the case as long as r(t) changes more
slowly than an exponential whose time constant is much longer than the duration of an
elementary event . This restriction has already been set on r(t) for "edge errors" to be
negligible .
The random errors of the skew can be derived in an analogous way and the results are

similar, i .e ., one part of the error is independent of the time course of r(t) and is
proportional to ((r)T)-' ; the rest of the error is limited to the bandwidth of r(t), and is
reduced as T increases as long as trends in r(t) are limited as indicated above .

Other Sources ofDistortion of the Power Spectra

Consider the very general case where each shot event has a different amplitude, hj , a
different waveform, wj(t), and a different probability density function for the arrival time,
pj(t) . Assume also, for the sake of simplicity, that the signal is AC-coupled, so that (V) =
0, and that we can neglect edge errors and treat the signal as if it were given by the
contributions of K complete events, which occur between the times t = 0 and t = T . Then
foTpj (t)dt = 1, and the n" central moment of V(t) is given by :

fT

	

T K

	

,n

T

	

T o
[

	

hjj(t - Oj) dt .

If we develop the n" power of the sum overj in the same way in which we proceeded in
the analysis of Eqs . 9 and 14, we get many multiple sums, plus a single sum (when all the
indices of the terms are equal), of the form :

j

K Ir

=1 L
hjwl( t - BJ)j .

When we take the expected value of this particular factor, we get :
,/ 'rT

E [,~ [hJwj( t - B1)]nJ - I
J

	

[hjwj(t - t')]npj(t')dt' .
~=i

	

j=~ o
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Integrating over t and neglecting edge errors :
1 fT K

	

T

	

1 K

	

T

T

	

dt
jI

	

[h;wi(t - t')]"pi(t')dt' = T,Z (hi)'" fpj(t')di' J

	

[wi(t)]"dt
-1 f.

	

=1

= T)Z (hi)" JO

	

[wi(t)]"dt = T K jZ (hi)"(I� )i

=
T

The bar indicates average over the population and KIT is again the mean rate .
Therefore, even when the events are inhomogeneo_us and their occurrences are non-

random, non-Poissonian, or correlated, a factor (r)h"1� is present in the n` h moment
of the resulting signal . All other factors in the n`h moment are additive . By the
same procedure, it is easily shown that the spectral density of any one moment of
V(t) has a component given bL(r) times the corresponding average spectral density of
the waveforms of the events, h"ru� , and other additive components . This result has been
extensively discussed in the literature for the power density (Heiden, 1969 ; Schick, 1974) ;
it is equally true for higher moments . If the extraneous additive components occupy a
limited region of the spectrum of w(t), then all of them, in principle, can be removed by
filtering .
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