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Background and Aims: Current knowledge on the temporal dynamics of the brain
functional organization in amyotrophic lateral sclerosis (ALS) is limited. This is the first
study on alterations in the patterns of dynamic functional connection density (dFCD)
involving ALS.

Methods: We obtained resting-state functional magnetic resonance imaging (fMRI) data
from 50 individuals diagnosed with ALS and 55 healthy controls (HCs). We calculated
the functional connectivity (FC) between a given voxel and all other voxels within the
entire brain and yield the functional connection density (FCD) value per voxel. dFCD was
assessed by sliding window correlation method. In addition, the standard deviation (SD)
of dFCD across the windows was computed voxel-wisely to measure dFCD variability.
The difference in dFCD variability between the two groups was compared using a two-
sample t-test following a voxel-wise manner. The receiver operating characteristic (ROC)
curve was used to assess the between-group recognition performance of the dFCD
variability index.

Results: The dFCD variability was significantly reduced in the bilateral precentral
and postcentral gyrus compared with the HC group, whereas a marked increase
was observed in the left middle frontal gyrus of ALS patients. dFCD variability
exhibited moderate potential (areas under ROC curve = 0.753–0.837, all P < 0.001)
in distinguishing two groups.

Conclusion: ALS patients exhibit aberrant dynamic property in brain functional
architecture. The dFCD evaluation improves our understanding of the pathological
mechanisms underlying ALS and may assist in its diagnosis.

Keywords: amyotrophic lateral sclerosis, dynamic, functional connectivity density, resting-state, functional
magnetic resonance imaging

Abbreviations: ALS, amyotrophic lateral sclerosis; fMRI, functional magnetic resonance imaging; ALFF, amplitude of low-
frequency fluctuations; FC, functional connectivity; FCD, functional connectivity density; SD, standard deviation; dFCD,
dynamic functional connectivity density; ALSFRS-R, revised ALS functional rating; FD, frame-wise displacement; ROI,
region of interest; ROC, receiver operating characteristic; AUC, the area under the ROC curve; EEG, electroencephalography.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a major motor neuron
disease in adult that involves progressive upper and lower motor
neuron degeneration, thereby resulting in muscular weakness
(Hardiman et al., 2017). Besides major motor symptoms,
clinical and neuroimaging evidence confirm widespread extra-
motor neurodegenerative involvement in ALS (Masrori and Van
Damme, 2020). After the onset of symptoms, the mean duration
of survival is usually 3 to 5 years (Lanznaster et al., 2018). So far,
the therapeutic options for ALS are limited, and timely diagnosis
is crucial for improving clinic symptoms and prolonging survival
(Lanznaster et al., 2018). While the etiology and pathology of ALS
are still unclear, it is imperative to develop new neuroimaging
biomarkers for timely and accurate diagnosis of ALS.

Resting-state functional magnetic resonance imaging (fMRI)
is a non-invasive neuroimaging technique that is based on
measuring blood oxygen level dependent (BOLD) signals and
has gained increased attention in neuroscience investigations
(Smith, 2012). Resting-state fMRI can detect spontaneous neural
activity in cortical and sub-cortical regions, when no specific
task is performed (Lv et al., 2018). In fact, neuroimaging
methods using resting-state fMRI allow the study of brain activity
and improve our understanding of the pathophysiological
mechanisms underlying ALS. For example, this method has
shown that patients with ALS have reduced amplitude of low-
frequency fluctuations (ALFFs), an index of regional neural
activity within the left precentral gyrus as well as left middle
occipital gyrus (Ma et al., 2020), and modified regional
homogeneity (ReHo), an index of regional coherence of neural
activity in the sensorimotor cortex (Bueno et al., 2019).
Furthermore, resting-state fMRI can be used to study and assess
variations in functional connectivity (FC) among distinct brain
regions. The FC method has been used in ALS patients and
has provided more information on ALS-related changes in brain
functional architecture in the resting-state and may potentially
be utilized as biomarker for ALS. For example, investigations
based on resting-state fMRI have reported that patients with ALS
exhibit disruption of FC within motor-related regions and in
extra-motor areas, including the sensorimotor cortex, occipital
cortex, temporal cortex, and insula (Chenji et al., 2016; Li et al.,
2018).

The abovementioned studies on ALS are based on the
major assumption that resting-state fMRI signals are stationary
during scanning. However, dynamic changes in brain activity
may occur over time (Calhoun et al., 2014). In fact, various
complex cognitive and motor functions are associated with the
brain function of dynamically integrating and coordinating
information over time (Vidaurre et al., 2017). Resting-state
fMRI-based dynamic FC analysis may be employed to reflect
the dynamic properties of brain function as well as improve
our understanding of brain development/maturation/aging
(Chen et al., 2018) and cognitive-behavioral (Nomi et al., 2017)
mechanisms. Furthermore, the utilization of dynamic FC analysis
enables us to elucidate the mechanisms underlying several
psychiatric and neurological disorders such as schizophrenia
(Sendi et al., 2021a) and Alzheimer’s disease (Sendi et al., 2021b).

Several studies have assessed FC changes in ALS using a dynamic
point of view. In one recent resting-state fMRI study, individuals
with ALS exhibited altered temporal traits of functional network
connectivity, which is an informative variation of FC, between
sensorimotor network and default mode/cognitive-control
networks (Chen et al., 2021). Another investigation has found
increased dynamic FC stability in the left sensorimotor cortex
and right temporal pole, whereas decreased functional stability
was observed in the right middle/inferior frontal gyrus in ALS
patients (Wei et al., 2021). In addition, changes in dynamic FC
property were correlated to ALS disease severity (Wei et al.,
2021). These studies have demonstrated that dynamic FC analysis
has the potential to uncover underlying mechanisms of ALS and
facilitate in the development of new neuroimaging biomarker.

Functional connectivity density (FCD) analysis is an extension
of the FC method that calculates the total FC strength of a given
node with all other nodes within a whole-brain network (Lv
et al., 2018). Nodes with higher FCD value suggest that these
may be more important in functional integration (Tomasi and
Volkow, 2010). Recently, the dynamic FCD (dFCD) approach,
which combines FCD analysis and the sliding window correlation
method, has also been employed to explore dynamic neural
communication among distinct brain regions and thus has
drawn increasing attention. For example, by calculating the
standard deviation (SD) of FCD values across sliding windows,
it is possible to quantify dFCD variability, which reflects
abnormalities in brain dynamics in individuals diagnosed with
psychiatric and neurological disorders, including generalized
anxiety disorder (Chen et al., 2020) as well as epilepsy (Li
et al., 2019). The current study aimed to investigate the altered
dynamic properties of brain function in ALS by conducting the
first assessment of dFCD variability to further provide the new
insights into the mechanisms underlying ALS disease.

MATERIALS AND METHODS

Participants
This study received approve from the Research Ethics Committee
of Fujian Medical University Union Hospital. All subjects
provided their written informed consent. A total of 50 patients
who received a diagnosis of sporadic ALS and 55 healthy
controls participated in this study. The El Escorial criteria
(Brooks et al., 2000) were utilized in diagnosing ALS, with
disease severity assessment by the revised ALS Functional
Rating Scale (ALSFRS-R). Duration of ALS disease was also
noted, with the rate of disease progression calculated using
the following equation: (48-ALSFRS-R)/disease duration. The
two study groups were matched in terms of age, gender,
and educational attainment (Table 1). The following exclusion
criteria were employed: (1) other neuropsychiatric disorders
such as Alzheimer’s disease, epilepsy, Parkinson’s disease, or
depression; (2) received psychotropic medications; (3) had co-
morbidities such as respiratory failure or other chronic disorders
such as heart failure and cancer; and (4) with contraindications
of MRI examination.
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TABLE 1 | Subjects’ demographic and clinical information.

Healthy controls
(n = 55)

ALS patients
(n = 50)

P-value

Age (years) 52.8 ± 6.9 52.3 ± 9.0 0.99

Gender (females/males) 19/36 19/31 0.71

Education (years) 7.8 ± 3.4 7.3 ± 3.9 0.40

Site of onset
(bulbar/cervical/lumbosacral)

– 8/33/9 –

Diagnostic category
(definite/probable/possible)

– 11/22/17 –

ALSFRS-R score – 40.7 ± 5.3 –

Disease duration (months) – 17.4 ± 16.1 –

Disease progression rate – 0.64 ± 0.59 –

ALS, amyotrophic lateral sclerosis; ALSFRS-R, revised ALS Functional Rating
Scale. “–”, no data available.

Acquisition of Magnetic Resonance
Imaging Data
Magnetic resonance imaging data acquisition was performed
using a 3.0T scanner (Prisma, Siemens Medical Systems,
Erlangen, Germany). We employed the multiband slice
acquisition technique to capture resting-state functional
images with the echo-planar imaging sequence, and the
following parameters were used: multiband factor = 4, repetition
time = 700 ms, acquisition matrix = 76 × 76, echo time = 30 ms,
flip angle = 50◦, slice thickness = 3 mm (no interslice gap),
field of view = 228 mm × 228 mm, 600 volumes, and 48
axial slices. We asked the participants to have their eyes
closed and to refrain from thinking about anything specific,
and to remain still. For spatial normalization of functional
images, we captured three-dimensional T1-weighted images
(resolution = 1 mm3) using the magnetization prepared
rapid gradient echo (MPRAGE) sequence, with the following
parameters: repetition time = 1.61 s, echo time = 2.25 ms,
acquisition matrix = 224 × 224, field of view = 224 × 224 mm,
flip angle = 8◦, slice thickness = 1.0 mm, and 176 slices.

Functional Magnetic Resonance Imaging
Data Preprocessing
Preprocessing of functional MRI data was performed using
Statistical Parametric Mapping software (SPM1) and the Data
Processing and Analysis of Brain Imaging toolbox (DPABI2). The
first 30 volumes were discarded to allow signal equilibration and
to give time for the participants to adapt to the scanning noise.
We conducted realignment to correct head motion at various
time points. No participants showed head movement >2.0 mm of
translation or 2.0 degrees of rotation in the x, y, and z directions.
Frame-wise displacement (FD), which shows volume-to-volume
changes in head position, was also determined. The functional
data consisting of the final sample were within the established
motion thresholds of mean FD <0.25 mm. In addition, no
significant difference (P = 0.12) in the mean FD value between
the HC (0.07 ± 0.03 mm) and ALS (0.08 ± 0.04 mm) groups
was observed. For normalization, individual structural images
were initially co-registered using the mean functional image,

1http://www.fil.ion.ucl.ac.uk/spm
2http://rfmri.org/DPABI

with the transformed structural images segmented and then
normalized into the Montreal Neurological Institute (MNI)
space with a high-level non-linear warping algorithm, i.e., the
Diffeomorphic Anatomical Registration Through Exponentiated
Lie algebra (DARTEL) procedure (Ashburner, 2007). Then, we
spatially normalized each functional volume to the MNI space
using the deformation parameters that were estimated during
the earlier step. After that, we processed the functional data
using the linear trends as well as temporal band-pass filtering
(0.01–0.08 Hz). Then, several nuisance covariates such as Friston
24-parameter, cerebrospinal fluid signal, and white matter signal
were removed from the time series of all voxels by linear
regression. As indicated in a previous study (Yan et al., 2012),
global signal regression was not conducted because of concerns of
increasing negative correlations (Weissenbacher et al., 2009) and
potential distortions in group differences involving the intrinsic
FC (Gotts et al., 2013).

Analysis of Dynamic Functional
Connection Density Variability
The analysis of dFCD was processed with the Temporal Dynamic
Analysis (TDA) toolkit as implemented in DPABI. dFCD analysis
was conducted using the sliding-window approach, with a
window size of 90 TR (= 63 s) and a sliding step of 3 TR
(= 2.1 s) (Yan et al., 2012). As controversies on the parameter
settings of the sliding-window approach remain, the analyses
with different window lengths (= 60 TR and 120 TR) as well
as sliding steps (= 2 TR and 4 TR) were also conducted to
assess reproducibility of our results. In every sliding window, the
Pearson’s correlation coefficient (r) of each pair of brain voxels
was calculated. This procedure was restricted to a gray matter
mask, which was obtained using the automated anatomical
labeling (AAL) atlas in the absence of the cerebellum (Li et al.,
2019; Chen et al., 2020). We hence obtained a voxel-based whole-
brain correlation for each voxel of every window. Then, we
employed r = 0.25 as the correlation coefficient threshold to
determine the connectivity between two voxels (Yan et al., 2012);
this was performed to eliminate the weak correlations that were
induced by noise. Then, in each window, the FCD, which is the
weighted sum of positive correlations using each connection’s
correlation coefficient r > 0.25, was calculated. Within the brain
network, the FCD value of each node indicates its connectivity
strength to all the other nodes and indicates its importance in
functional integration.

To assess temporal variations in dFCD, the standard deviation
(SD) of dFCD was calculated across the sliding windows
following a voxel-wise manner. The SD maps were subsequently
Z-standardized against their own mean and SD among all voxels
within the gray matter mask. We then regarded these as the dFCD
variability map of each subject. Lastly, we spatially smoothened
individual dFCD variability maps using a 4-mm Gaussian kernel.

Statistical Analysis
We used the non-parametric Mann–Whitney U-test in between-
group comparisons of demographic variables, including mean
FD index, age, and education level, with categorical variables
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(e.g., gender) compared with the chi-square test. Differences with
P < 0.05 were deemed statistically significant.

For every group, the one-sample t-test was utilized on the
dFCD variability maps to assess overall temporal variations.
We used the two-sample t-test to detect differences in dFCD
variability between the two groups using a voxel-wise approach.
We set the statistical threshold to P < 0.05 corrected with the
Gaussian random field (GRF) technique (voxel-level P < 0.001).
Age, gender, educational level, as well as mean FD index were
employed as covariates.

After conducting the two-sample t-test, we regarded areas
with significant differences in dFCD variability as regions
of interests (ROI). We then computed the mean dFCD
variability of the ROIs. Then, by Sepearman correlation
analysis, we assessed the correlation between dFCD variability
and clinical parameters in the ALS patients, and those
with a false discovery rate (FDR)-corrected P-value <0.05

deemed statistically significant. Furthermore, receiver operating
characteristic (ROC) curve analysis was conducted to evaluate
between-group discrimination performance of the mean dFCD
variability index in different ROIs. In addition, the area under
the ROC curve (AUC) was calculated using SPSS 20.0 (SPSS, Inc.,
Chicago, IL, United States).

RESULTS

The pattern of dFCD variability of every group is shown in
Figure 1. Using visual inspection, a set of brain areas showing
relatively higher dFCD variability was bilaterally observed in
the HC group, which mainly involve the parietal, motor-
related, visual, somatosensory, and superior temporal cortices.
However, several bilateral brain areas, including the medial and
orbital frontal cortex, medial temporal cortex, cingulate cortex,

FIGURE 1 | dFCD variability patterns within each group. The brain maps of the T-values indicate the results of one-sample t-testing of dFCD variability. High and low
dFCD variability is represented by red and blue color, respectively. ALS, amyotrophic lateral sclerosis; HC, healthy control; L, left; R, right.
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FIGURE 2 | Regions showing between-group differences in dFCD variability. Regions in red and blue, respectively indicate decreased and increased dFCD variability
in individuals with amyotrophic lateral sclerosis. ROI-1 and ROI-3 are located in the left precentral and postcentral gyri; ROI-2 is located in the left middle frontal
gyrus; and ROI-4 is situated in the right precentral and postcentral gyri. L, left; R, right.

insula, as well as subcortical regions, showed relatively lower
dFCD variability.

Compared with the HC, ALS patients showed significantly
reduced dFCD variability in the bilateral precentral and
postcentral gyrus and showed significantly greater dFCD
variability in the left middle frontal gyrus (Figure 2). In
addition, analyses using different sliding-window parameter
settings depicted highly similar patterns of between-group dFCD
variability difference, indicating the robustness of our results
(Supplementary Figure 1). No significant correlation between
mean dFCD variability in ROIs and clinical parameters in ALS
group was observed, after FDR correction. The results of ROC

FIGURE 3 | The findings of receiver operating characteristic curve analysis.
ROI-1 and ROI-3 are located in the left precentral and postcentral gyri; ROI-2
is located in the left middle frontal gyrus; and ROI-4 is located in the right
precentral and postcentral gyri (the details on the ROIs are in Figure 2 and
Table 2).

curve analysis are shown in Figure 3. The indices of mean dFCD
variability in the ROIs (AUC for ROI-1–ROI-4 = 0.837, 0.753,
0.755, and 0.779, respectively; all P < 0.001) all depicted moderate
potential in differentiating the two groups.

DISCUSSION

Our study investigated ALS-related alterations in brain dynamic
property by assessing dFCD variability from a whole-brain
perspective. The main findings were as follows: (i) The dFCD
variability pattern observed in HC group is concordant to the
findings of previous reports (Li et al., 2019; Chen et al., 2020); (ii)
dFCD variability of ALS decreased in the bilateral precentral and
postcentral gyrus, which represent brain regions implicated in
sensorimotor function; (iii) patients with ALS exhibited increased
dFCD variability in the left middle frontal gyrus, which is
associated with cognitive and behavioral functions; and (iv) the
indices of dFCD variability showed moderate discrimination
power between the two groups, suggesting that it may potentially
be used as a diagnostic biomarker for ALS.

Our finding of abnormal dFCD variability in ALS can be
supported by the evidence from neurophysiological studies based
on electroencephalography (EEG). By analyzing neural electrical
signals from EEG, recent studies have shown altered FC patterns
in ALS such as the increased synchronous EEG oscillations
between the frontal and parietal regions (Nasseroleslami et al.,
2019) and reorganization of inferior cortical network topology
(Fraschini et al., 2016). Simultaneous resting-state EEG-fMRI
investigations have revealed that the dynamic properties in FC
that were detected by fMRI are closely correlated to EEG signals
(Tagliazucchi et al., 2012). In these contexts, the abnormal dFCD
variability in patients with ALS was not an unexpected finding.

The ALS patients had several regions with decreased
dFCD variability and involved the sensorimotor cortex (i.e.,
the bilateral precentral and postcentral gyrus). Alterations in
the primary motor cortex and premotor cortex are typical
neuroimaging features of ALS (Menke et al., 2017). Previous
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TABLE 2 | Regions exhibiting between-group differences in dFCD variability.

Region Voxels Brodmann area MNI coordinates Peak T-value

x Y z

ROI-1: Left precentral and postcentral gyrus 37 4/6/3 −24 −21 69 6.08

ROI-2: Left middle frontal gyrus 22 9 −45 33 36 −4.82

ROI3: Left precentral and postcentral gyrus 22 4/3/6 −60 −15 33 4.60

ROI4: Right precentral and postcentral gyrus 34 4/3 36 −21 63 3.91

ROI, region of interest.

studies have reported that the sensorimotor cortex is involved
in ALS as evidenced by volume atrophy (Agosta et al., 2012),
fiber degradation (Chio et al., 2014), and decreased N-acetyl
aspartate/creatine ratio (NAA/Cr) or NAA levels (Buhour et al.,
2017). Concordant to our findings, resting-state fMRI studies that
employed the static connectivity analysis have revealed decreased
FC within the sensorimotor network (Agosta et al., 2013; Chenji
et al., 2016). Furthermore, in terms of dynamics, resting-state
fMRI studies have observed reduced temporal variability in ALFF
in the sensorimotor cortex (Ma et al., 2020). What’s more, an
earlier resting-state fMRI study has indicated that ALS patients
show an altered dynamic FC pattern between the sensorimotor
network and the default mode network (Chen et al., 2021). Given
that the sensorimotor cortex plays a key role in somatosensory
and in performing and coordinating motor function, the altered
dFCD variability in these regions may lead to somatesthesia
and abnormal control of voluntary movements, which are often
observed in ALS patients (Christidi et al., 2018).

Individuals with ALS show altered dFCD variability in the left
middle frontal gyrus. In parallel, a positron emission tomography
study in ALS observed decreased glucose metabolism in various
brain regions, including the left middle frontal gyrus (Cistaro
et al., 2014). Also, our finding is concordant to an earlier report
that demonstrated decreased FC strength in the left prefrontal
cortex (e.g., middle frontal gyrus) (Li et al., 2017). The left
middle frontal gyrus has been implicated in cognitive functions,
which include executive attention (Thomsen et al., 2004) and
mnemonic responses (Leung et al., 2002). A growing body of
research has found that the deficits in cognition (such as executive
function and memory) (Beeldman et al., 2016) are involved
in ALS. Therefore, we hypothesize that alterations in dFCD
variability involving the left middle frontal gyrus are associated
with impaired cognition in ALS.

The present study has several limitations. First, we conducted
a cross-sectional design and did not assess the development of
functional abnormalities during ALS progression. Second, the
absence of analysis according to ALS subtypes prevented us
from elucidating the effect of clinicopathological heterogeneity
on the dynamic property of brain function. Third, the further
comprehensive cognitive assessment could help us directly
explore the relationship between altered dFCD variability
and cognitive dysfunction in ALS. Forth, the ROC curve
analysis was performed after that the ROIs were determined
by between-group comparison; thereby, the concern about
overfitting should be noted. Finally, the fixed time sliding
window method applied in current study may not effectively

capture the dynamics of functional collaboration among
brain regions to some extent (Bansal et al., 2019). Future
research can consider a more flexible dynamic window control
approach [e.g., randomized window method (Zhu et al.,
2021)].

Our results revealed abnormal dynamic patterns of brain
functional architecture in ALS, which were reflected by the
altered dFCD variability in the sensorimotor cortex and left
middle frontal gyrus. dFCD evaluation could help us further
understand the pathological mechanisms underlying ALS and
may contribute to improved diagnosis.
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