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ABSTRACT

Cardiovascular diseases are the leading cause of
death worldwide. Research in the last two dec-
ades has emphasized the inflammatory process
as a key component in the pathogenesis of
many of them. The Interleukin-1 family is a
pivotal element of inflammation and has been
well studied as a therapeutic target in various
inflammatory states. Recent trials have explored
the effect of Interleukin-1 blockade in cardio-
vascular diseases and initial evidence of the
relevance of such treatment in this field of
medicine accumulate. This review will describe
the role of Interleukin-1 in heart diseases and
the potential therapeutic effect of its blockade
in such diseases.
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INTRODUCTION

The inflammatory process, which is the biolog-
ical response to tissue injury, was found to have
a major role in the mechanism of different
cardiac pathologies. The inflammatory cascade
is initiated at the site of local injury and is
transmitted by a variety of mediators known as
cytokines. The Interleukin-1 (IL-1) family of
ligands and receptors is the main cytokine
family associated with acute and chronic
inflammation. Among the various members of
the IL-1 family, IL-1b has been proven to be a
therapeutic target for a growing number of
autoinflammatory diseases. Suppression of IL-1b
results in a prompt and persistent decrease in
disease severity [1].

Inflammation plays a central role in many
cardiovascular diseases, including heart failure
[2], myocardial infarction [3], arrhythmias [4],
pericarditis [5], myocarditis [6], and sepsis-in-
duced cardiomyopathy [7]. Interest in imple-
mentation of anti-inflammatory treatment in
the cardiovascular field, targeting the IL-1 fam-
ily of ligands and receptors, has led to different
trials in recent years.

Thorough and comprehensive reviews deal-
ing with targeting IL-1 in heart diseases have
been published in recent years [8, 9]. This nar-
rative review will discuss the role of IL-1 in the
pathogenesis of different heart diseases, the
potential use of IL-1 blockade to improve clini-
cal outcomes in these diseases, and will include
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updated results from different recent clinical
trials.

This article is based on previously conducted
studies and does not contain any studies with
human participants or animals performed by
any of the authors.

The IL-1 Family

Understanding the role of IL-1 in the patho-
genesis of disease has improved greatly since the
publication of ‘‘Biologic Basis for Interleukin-1
in Disease’’ [10]. Blocking IL-1b is now the
standard of care for a class of autoinflammatory
diseases [11]. Autoinflammatory conditions are
often responsive to IL-1b blockade, and much
less responsive to immunosuppressive thera-
pies, which are more suitable for autoimmune
diseases, in which the T cell is the ‘‘key player’’
of inflammation [1].

At first, only two forms of IL-1 were recog-
nized, IL-1a and IL-1b. During the following
years, the IL-1 family has expanded and now
includes 11 ligands and another set of receptors,
co-receptors and inhibitory receptors. Most of
the ligands are pro-inflammatory while the
others serve as antagonists and regulate the
inflammatory response. One ligand (IL-37) is
even anti-inflammatory [1].

The biological activity of IL-1 remains the
model for mediating inflammation (Fig. 1). IL-
1a or IL-1b bind first to their receptor, termed
type 1 (IL-1R1). Then the co-receptor chain,
termed the accessory protein (IL-1RAcP), is
recruited. This triple complex recruits the
adaptor protein MyD88 to the Toll-IL-1 receptor
(TIR) domain of each receptor. Several kinases
are phosphorylated, nuclear factor-jB (NF-jB)
translocates to the nucleus, and the expression
of a vast collection of inflammatory genes,
including IL-1, ensues [12]. Another key player
is the ‘‘inflammasome’’, a cytosolic molecular
structure composed of an adaptor protein, pro-
caspase 1, and a sensor molecule. The best-
characterized inflammasome has a sensor
molecule called nucleotide-binding domain and
leucine-rich repeat pyrin domain containing 3
(NLRP3). This sensor molecule may be activated
by both infectious stimuli, known as pathogen-

associated molecular patterns (PAMPs), and
sterile stimuli, known as damage-associated
molecular patterns (DAMPs), such as choles-
terol, amyloid-beta, urate crystals, and more.
This activation is based on either ATP binding
to the P2X7 receptor and a secondary efflux of
potassium to the extracellular space or reactive
oxygen species (ROS) formation. Upon activa-
tion of the NLRP3-inflammasome, pro-caspase-
1 is converted to an active enzyme. Active cas-
pase-1 then cleaves the IL-1 precursor in spe-
cialized secretory lysosomes or in the cytosol,
followed by secretion of ‘‘mature’’ IL-1b [1, 13].

Fig. 1 IL-1b synthesis and secretion. IL-1b binds to the
IL-1 receptor type 1 (IL-1R1). Then the co-receptor chain,
termed the accessory protein (IL-1RAcP), is recruited. This
triple complex recruits the adaptor protein MyD88 to the
Toll-IL-1 receptor (TIR) domain. Several kinases are
phosphorylated, nuclear factor-jB (NF-jB) translocates to
the nucleus, and pro-ILb transcription ensues. The
NLRP3-inflammasome is a cytosolic molecular structure
composed of an adaptor protein, pro-caspase 1, and the
NLRP3 sensor molecule, which may be activated by both
infectious stimuli, known as pathogen-associated molecular
patterns (PAMPs) and sterile stimuli, known as damage-
associated molecular patterns (DAMPs). This activation is
based on either ATP binding to the P2X7 receptor with a
secondary efflux of potassium to the extracellular space or
reactive oxygen species (ROS) formation. Upon activation
of the NLRP3-inflammasome, pro-caspase-1 is converted
to an active enzyme. Active caspase-1 then cleaves the IL-1
precursor in specialized secretory lysosomes or in the
cytosol, followed by secretion of ‘‘mature’’ IL-1b

26 Cardiol Ther (2018) 7:25–44



Blocking IL-1-Mediated Disease

Anakinra is a recombinant human interleukin-1
competitive receptor antagonist that blocks the
biologic effects of interleukin-1, thereby reduc-
ing systemic inflammatory responses. In 2001,
anakinra received US Food and Drug Adminis-
tration approval for the treatment of rheuma-
toid arthritis. It has also been successfully
studied in randomized trials as an effective
treatment option for other systemic autoin-
flammatory diseases, such as Familial Mediter-
ranean fever (FMF), cryopyrin-associated
periodic syndromes (CAPS), TNF receptor-asso-
ciated periodic syndrome (TRAPS), adult and
juvenile Still’s disease, and others. Today, some
of these diseases are also successfully treated
with neutralization by human anti–IL-1 mono-
clonal Abs, such as canakinumab, which is an
approved treatment for FMF, CAPS, TRAPS, and
more.

IL-1 in Heart Failure

Patients with chronic or decompensated heart
failure (HF) demonstrate a marked increase in a
variety of proinflammatory cytokines, including
IL-1, with increasing levels according to the
degree of disease severity, independent of whe-
ther the etiology is ischemic, hypertensive,
idiopathic dilated cardiomyopathy, or inflam-
matory [14]. The inflammatory biomarker
C-reactive protein (CRP), which is a known
surrogate marker for IL-1 activity, is an inde-
pendent predictor of adverse outcomes in
patients with acute or chronic heart failure [2].
The cytokine hypothesis of heart failure sug-
gests that a precipitating event triggers activa-
tion of proinflammatory cytokines, which leads
to detrimental effects on left ventricular func-
tion and accelerates the progression of heart
failure.

Some mechanisms relating IL-1 to impaired
systolic function have been purposed. IL-1b was
shown to decrease the beta-adrenergic respon-
siveness of L-type calcium channels in a cAMP-
independent mechanism [15]. Moreover, IL-1b
decreased the expression of genes important to
the regulation of calcium homeostasis

(phospholamban, sarcoplasmic reticulum cal-
cium ATPase), in a reversible manner [16]. IL-1b
also increases nitric oxide synthase (NOS)
expression in cardiac myocytes, leading to
increased nitric oxide (NO) activity, lower
energy production, and myocardial contractil-
ity, through a direct attack on the mitochondria
[17, 18].

Some members of the IL-1 family have
favorable cardiac effects. Two family members,
IL-33 and ST2, are a ligand and a receptor that
combine to enter the cardiac myocyte and
protect against hypertrophy and fibrosis. ST2
exists as two main isoforms, a transmembrane
receptor ST2L and a soluble receptor sST2.
During adverse conditions such as wall stress,
fibrosis, and inflammation, sSt2 is shed and acts
as a decoy receptor for IL-33, blocking the
favorable effects of IL-33 in the heart [19].
Increased levels of sST2 are expressed in patients
with cardiac hypertrophy, fibrosis, ventricular
dilatation, and reduced ventricular contractil-
ity, and is considered an independent predictor
of 1-year mortality in acute decompensated HF
[20]. It was also proved to be a strong predictor
of hospitalizations and mortality in chronic,
well-treated, stable CHF patients [21]. Patients
with elevated sST2 levels tend to have abnormal
echocardiographic findings, including enlarged
left ventricular volumes, reduced contractility,
and increased pressures. Thus, several studies
have determined that those with chronic heart
failure seem to have better hemodynamic pro-
files when sST2 is below 35 ng/ml. As a result, it
was suggested that outpatient therapies should
be aimed at this new therapeutic threshold goal
[22].

Animal models describe a reversible systolic
dysfunction and reduced LV contractility
reserve (measured by a reduced responsiveness
to isoproterenol) following a single or multiple
injections of IL-1b in otherwise healthy mice
[23]. Exploring the effect of circulating IL-1
activity, mice were injected with plasma
obtained from patients with acute decompen-
sated systolic HF, patients with stable chronic
systolic HF, as well as from healthy subjects. The
results were similar to exogenous administra-
tion of IL-1b, as described above—plasma from
decompensated HF patients (but not from
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healthy controls) induced a significant systolic
and diastolic dysfunction and reduced contrac-
tile reserve. Interestingly, mice who were pre-
treated with anakinra or an IL-1b antibody
avoided this deleterious effect [24], which led to
the assumption that IL-1b acts as a cardio-de-
pressant, as was shown in severe sepsis [25].
Mice injected with plasma from patients with
stable chronic systolic HF with elevated plasma
levels of CRP showed normal resting systolic
function but significantly impaired contractile
reserve [24].

In the cardio-oncology field, one study in
mice showed that IL-1 mediates the doxoru-
bicin cardiotoxicity and a sequential study
approved that blocking IL-1 with anakinra in
such mice diminished doxorubicin-induced
microstructural damages of cardiac tissue and
rescued doxorubicin-caused reduction of car-
diac functions exemplified by left ventricle
ejection fraction (LVEF) and fraction shortening
[26]. In fact, IL-1 was also found to play a role in
radiation-induced cardiomyopathy, with mice
divided into wild-type vs. IL-1R1 knock-out,
and exposed to thoracic X-ray therapy. Knock-
out mice, and wild-type mice treated with ana-
kinra, showed preserved contractile reserve and
LVEF at 4 months, in oppose to wild-type mice
without treatment, which showed impairment
in both parameters. Interestingly, all groups did
not avoid other deleterious effects, such as left
ventricle (LV) end-diastolic pressure, associated
with increased myocardial interstitial fibrosis
and pericardial thickening [27].

The first clinical study to evaluate the effects
of IL-1 blockade on cardiac function reported
that a single injection of anakinra (150 mg) in
patients with rheumatoid arthritis (RA) without
HF significantly improved parameters of
myocardial contractility and relaxation, coro-
nary flow reserve (measured by echocardiogra-
phy), and endothelial function (measured by
brachial artery flow-mediated dilatation). These
were observed within 3 h of treatment and were
sustained after 1 month of treatment [28]. A
case report of a patient with RA and heart failure
with preserved ejection fraction (HFpEF) who
improved her NYHA functional class and peak
aerobic capacity after replacing Etanercept, a

TNF inhibitor, with anakinra, also implied the
beneficial effects of IL-1 blockade on HF [29].

The AIR-HF was a pilot clinical study that
tested the effect of 2 weeks of treatment with
anakinra on cardiopulmonary exercise perfor-
mance in seven patients with heart failure with
reduced ejection fraction (HFrEF) and evidence
of elevated CRP ([2 mg/L). Both median peak
oxygen consumption (VO2) and ventilator effi-
ciency (VE/VCO2 slope) improved from base-
line, both being statistically significant [24].

The ADHF study randomized 30 patients
with acute decompensated HF, reduced LVEF
(40%), and elevated CRP levels (C 5 mg/l) to
either receive anakinra 100 mg twice daily for
3 days followed by once daily for 11 days or
matching placebo, in a 1:1 double blinded
fashion. At 72 h, anakinra reduced CRP by 61%
versus baseline, compared with a 6% reduction
among patients receiving placebo (P = 0.004).
In patients with paired baseline and day 14
echocardiograms (n = 14), anakinra was associ-
ated with a greater recovery in LVEF [? 10%
(? 3, ? 14)] compared with placebo [0 (- 16%
to ? 5%), P = 0.020]. There were no significant
differences between treatment groups in the
initial length of stay or total hospital days dur-
ing the 14 days. Two patients in the anakinra
group and three patients in the placebo group
experienced worsening HF or readmission for
HF [OR 0.61 (0.09–4.34), P = 0.62] [30].

In the D-HART trial, a total of 12 patients
with HFpEF with NYHA class II–III symptoms
were enrolled in a double-blind, randomized,
placebo-controlled, crossover trial and assigned
1:1 to receive anakinra 100 mg or placebo for
14 days and an additional 14 days of the alter-
nate treatment (placebo or anakinra). A car-
diopulmonary exercise test was performed at
baseline, after the first 14 days, and after the
second 14 days of treatment. The primary end
point was placebo-corrected interval change in
peak oxygen consumption. All 12 patients
completed both phases and experienced no
major adverse events. Anakinra led to a statis-
tically significant improvement in peak oxygen
consumption (? 1.2 ml/kg/min, P = 0.009) and
a significant reduction in plasma CRP levels
(- 74%, P = 0.006). The reduction in CRP levels
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correlated with the improvement in peak oxy-
gen consumption (R = - 0.60, P = 0.002) [31].

IL-1 blockade in the Recently Decompen-
sated Heart Failure Anakinra Response Trial
(REDHART) will evaluate the safety and efficacy
of anakinra in adult patients with recently
decompensated heart failure and systolic dys-
function (LVEF\50%), in terms of aerobic
exercise capacity and ventilatory efficiency
measured by a cardiopulmonary exercise test.
Secondary outcomes of survival free of hospital
admissions will be tested. This randomized,
double-blinded, placebo-controlled trial enrol-
led 60 patients who were treated within 2 weeks
after discharge with anakinra 100 mg daily for
2 weeks, anakinra 100 mg daily for 12 weeks, or
placebo daily for 12 weeks with a follow-up of
24 weeks. Results have yet to be published.

The D-HART 2 trial is a phase 2, 2:1 ran-
domized, double-blind, placebo-controlled,
single-center clinical trial, which enrolled
HFpEF patients, NYHA class II-III symptoms,
with hsCRP levels[2 mg/l, to receive anakinra
100 mg once daily or placebo for 12 weeks. The
co-primary endpoints will be placebo-corrected
interval changes in peak oxygen consumption
and ventilatory efficiency at week 12, and the
secondary endpoints will investigate the effects
of IL-1 blockade on cardiac structure, systemic
inflammation, endothelial function, quality of
life, body composition, nutritional status, and
clinical outcomes. The study was completed in
June 2017 and results are awaited [32].

IL-1 in Coronary Artery Disease,
Myocardial Infarction, and Remodeling

Inflammation plays a key role in coronary artery
disease (CAD) and other manifestations of
atherosclerosis [3]. IL-1 plays a crucial role in
stimulation of the post-infarction inflammatory
response and is involved in the pathogenesis of
cardiac remodeling. Thus, targeting the IL-1
signaling cascade may be a promising thera-
peutic target for patients with myocardial
infarction [33]. In a mouse model of myocardial
infarction, IL-1a is released by dying cardiomy-
ocytes [34] and IL-1b synthesis is significantly
upregulated after infarction [35] and is

predominantly localized in leukocytes, fibrob-
lasts, and vascular cells, but also in cardiomy-
ocytes [36].

For many years, the IL-1 family has been
associated with the regulation of endothelial
and smooth muscle cell mitogenesis, thrombo-
genic response of endothelial cells, leukocyte
adherence, lipoprotein metabolism, extracellu-
lar matrix production, and vascular permeabil-
ity [37]. It is also related to plaque formation
and rupture via different pathways: stimulation
of vascular smooth muscle through upregula-
tion of growth factor-b (TGF-b) [38], suppres-
sion of endothelial cell proliferation [39],
expression of adhesion molecules by endothe-
lial cells [40], and by modification of endothe-
lium, which later favors thrombosis [41].
Neutrophil elastase (NE) was found to be a
potential ‘‘trigger’’ for IL-1 processing and
release from human coronary endothelial cells
[42].

Interleukin-37 (IL-37) is a member of the IL-1
family, which was found to correlate with sev-
ere coronary artery calcification (CAC) [43].
Patients with CAD have higher levels of IL-1RI
compared with normal people. Within the CAD
patients, those with myocardial infarction have
the highest levels, compared with unstable ang-
ina (UA) or stable angina pectoris (AP) patients
[44].

Genetic loss of IL-1R1 in mice decreases
dilation of the infarcted heart, reducing colla-
gen deposition and attenuating matrix metal-
loproteinases expression [45]. Anakinra has
reduced cardiomyocytes apoptosis and inhib-
ited caspase-1 and caspase-9 activities in a
mouse and rat model of myocardial infarction
[46]. Treating post-MI mice with specific anti-IL-
1b antibodies had similar consequences, with
prevention of deterioration in systolic and
diastolic function [47].

A trial investigating the effect of anakinra on
RA patients reported a greater improvement in
coronary flow reserve, arterial compliance, and
ejection fraction, in addition to apoptotic and
oxidative markers in CAD patients compared to
patients without CAD [48].

Small clinical trials have tested the effec-
tiveness of IL-1 inhibition in patients with
myocardial infarction. The VCU-ART trial
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randomized ten patients with ST-segment ele-
vation MI (STEMI) to daily anakinra or placebo
for 14 days, in a double-blind fashion. Anakinra
was shown to be safe and presented an
improvement in left ventricle volume indexes,
both in cardiac magnetic resonance (CMR) and
in echocardiography, on a 3-month follow-up
[49]. The following VCU-ART 2 could not
reproduce this effect in a larger population of 30
patients with stable STEMI. Nevertheless, com-
bining the two cohorts yielded a significant
reduction in incidence of new HF with anakinra
(30 vs. 5%, P = 0.035) [50]. An extended follow-
up, to a median of 28 months, has shown a
significant reduction in new-onset HF without a
significant effect on recurrent ischemic events
[51]. The ongoing VCU-ART 3 has another arm
of high-dose anakinra, with a primary endpoint
of CRP levels in 14 days and secondary end-
points of LVEF and new-onset HF, all in
12 months of follow-up. Study completion is
estimated to be in February of 2018.

The MRC-ILA Heart Study was a phase 2,
double-blinded, randomized, placebo-con-
trolled study that recruited 182 patients with
NSTEMI presenting\48 h from onset of chest
pain, dividing them to receive daily anakinra or
placebo for 14 days. Anakinra showed a reduc-
tion in inflammatory markers without infarct
size effect on CMR. Major adverse cardiovascu-
lar event (MACE) at day 30 and 3 months was
similar. The study showed a significant excess of
events in 12 months of follow-up in the ana-
kinra group, but was under-powered for late
events [52].

The CANTOS study is a randomized, double-
blind, placebo-controlled, multi-center trial of
canakinumab treatment, involving 10,061
patients with previous MI and CRP levels of
2 mg or more per liter. The trial compared three
doses of canakinumab (50, 150, and 300 mg,
administered subcutaneously every 3 months)
with placebo. The primary end point was non-
fatal myocardial infarction, nonfatal stroke, or
cardiovascular death. At a median follow-up of
3.7 years, the incidence rate for the primary end
point was 4.50 events per 100 person-years in
the placebo group, 4.11 in the 50-mg group [HR
0.93 (95% CI 0.80–1.07; P = 0.30)], 3.86 in the
150-mg group [HR 0.85 (95% CI 0.74–0.98;

P = 0.021)], and 3.90 in the 300-mg group [HR
0.86 (95% CI 0.75–0.99; P = 0.031]. The 150-mg
dose, but not the other doses, met the prespec-
ified multiplicity-adjusted threshold for statis-
tical significance for the primary end point and
the secondary end point that additionally
included hospitalization for unstable angina
that led to urgent revascularization—5.13
events per 100 person-years in the placebo
group vs. 4.29 in the 150-mg group [HR 0.83
(95% CI 0.73–0.95; P = 0.005). A 15% relative
risk reduction of the primary end point with the
150-mg dose of canakinumab translates to an
absolute risk reduction of 0.64% or a number
needed to treat (NNT) of 156. Nearly all of that
reduction came in nonfatal MI. There was no
significant difference in stroke, cardiovascular
death, and overall mortality. A secondary anal-
ysis showed that a more robust reduction of
CRP after the first dose of the drug predicted a
greater clinical benefit. The treatment was
associated with a higher incidence of fatal
infection than was placebo. An exploratory
analysis showed a marked reduction in the
incidence of lung cancer, as well as lung cancer
mortality and total cancer mortality [53–55].
These results suggest that IL-1 is a marker of
disease activity. Nevertheless, altering its levels
might be of prognostic value. The lack of benefit
of the 150-mg dose compared to other doses
will be explored in future trials [56].

IL-1 in Arrhythmias

Investigations into the electrophysiological
effects of IL-1b have centered on changes in
Ca2? handling and cell–cell coupling [4]. IL-1
was shown to significantly prolong action
potential duration in guinea pig ventricular
cells through changes in the conductance of
calcium channels [57]. Recent studies showed
that IL-1a increased the duration of the action
potential in rat atrial myocardium, while IL-1b
caused an appearance of extra-systolic patterns
[58]. In a model of diabetic mice, IL-1b causes
prolongation of the action potential duration,
induces a decrease in potassium current and an
increase in calcium sparks in cardiomyocytes,
which are changes that underlie arrhythmia
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propensity. These arrhythmias can be success-
fully treated by inhibiting the IL-1b axis with
either IL-1 receptor antagonist or by inhibiting
the NLRP3 inflammasome [59]. Numerous other
studies have found a decrease in L-type Ca2?

current by IL-1b [60]. Decreased responsiveness
of L-type Ca2? current to b-adrenergic stimula-
tion has also been observed with IL-1b [15, 16].
IL-1b alone appears to have a significant impact
on sarcoplasmic reticulum (SR) Ca2? release and
reuptake [61]. Several reports indicate that IL-1b
decreases expression of important Ca2? han-
dling proteins, including ryanodine receptors
(RyR), SR Ca2? -ATPase (SERCA), and phospho-
lamban (PLB) [16, 62, 63].

IL-1b was also shown to decrease connexin
43 (Cx43), a major protein in cardiac gap junc-
tions that is believed to play a crucial role in the
synchronized contraction of the heart. This was
found in post-MI mouse and canine cardiac
myocytes [64]. IL-1b produces cell–cell uncou-
pling, internalization, and reduced expression
of Cx43. In an interesting model of atheroscle-
rotic mice, post-MI hearts of atherosclerotic
mice had a threefold increase in IL-1b expres-
sion, a twofold decrease in Cx43 expression,
with a parallel increase in inducible ventricular
arrhythmias. Furthermore, results could be
reproduced with non-atherosclerotic post-MI
mice that were exposed to lipopolysaccharide
(LPS), which emphasizes the role of inflamma-
tion in deleterious electrophysiological conse-
quences [65].

In a cohort of 112 RA patients, IL-1b, among
other pro-inflammatory cytokines, was posi-
tively correlated with corrected QT (QTc)
interval [66]. Patients with connective tissue
diseases, positive anti-RO/SSA, and long QTc
interval were found to have significantly higher
levels of IL-1b [67]. A recent review suggested
that the cause of prolonged QT in inflammatory
conditions is cytokine induction of reactive
oxygen species and ceramides [68].

In a case–control study of 122 patients with
atrial fibrillation (AF) and 63 non-AF controls,
IL-1 levels were significantly higher in AF
patients compared to control patients. Patients
with permanent and persistent AF had higher
serum levels of IL-1 than those with paroxysmal
AF [69].

DNA sampling from 70 proven lone AF
patients and 70 healthy subjects showed that
the presence of allele 2 of variable number of
the tandem repeat (VNTR) polymorphism of IL-
1 receptor antagonist gene may cause increased
risk for lone AF, which is probably due to the
inadequate limitation of inflammatory reac-
tions [70].

IL-1 in Pericarditis and Inflammatory
Cardiomyopathy

Pericarditis covers a diverse group of diseases
with numerous etiologies. Usually, acute peri-
carditis is triggered by a viral infection and
perpetuated by an autoinflammatory response.
Usually, the disease is self-limiting in a matter
of weeks [71]. Nevertheless, some patients suffer
from recurrences, without a preceding viral ill-
ness, a fact that emphasizes the role of the
autoinflammatory response [72]. Foreign viral
antigens may share similar antigenic sequences
and structures with the susceptible host’s anti-
gens. Via molecular mimicry, the resulting
cross-reactivity may lead to recurrent autoin-
flammatory episodes of pericarditis [73].
Regardless of the specific virus, dysfunctional
response of the inflammasome is the pillar of
the autoinflammatory response in the pericard
[13].

In one case series, 13 adults with refractory
pericarditis were treated with anakinra
100 mg/day subcutaneously. Most of them
experienced clinical improvement within 2–-
5 days. Of all patients, only two still needed a
low-dose corticosteroid treatment in a median
follow-up of 23 months [74]. One more case
series described ten adults suffering from idio-
pathic recurrent pericarditis who were treated
with anakinra at a subcutaneous dose of 100 to
150 mg/day. The patients showed a prompt
clinical improvement allowing steroid treat-
ment cessation. However, seven patients suf-
fered from recurrence following termination of
anakinra [75]. More recently, the pilot AIRTRIP
study was published, a randomized trial
involving 21 patients with recurrent pericarditis
at three Italian centers [76]. The patients had
three or more episodes of pericarditis associated
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with an elevated CRP, were steroid dependent,
and did not benefit from colchicine treatment.
Anakinra was administered at 2 mg/kg per day
up to 100 mg, for 2 months. Then, patients who
responded with resolution of pericarditis were
randomized to continuing anakinra (11
patients) or changing to placebo (ten patients)
for 6 months, or until another recurrence of
pericarditis. In a median follow-up of
14 months, Recurrent pericarditis occurred in
nine of ten patients assigned to placebo, com-
pared to two of 11 patients assigned to
anakinra.

Acute myocarditis is an inflammatory disease
of the myocardium that may be confirmed

using imaging and/or histopathologic criteria.
The spectrum of clinical manifestation is wide
and ranges between mild dyspnea or chest pain
that resolve spontaneously and lethal arrhyth-
mias or cardiogenic shock. Different series
attribute 10% of unexplained dilated car-
diomyopathy (DCM) and 4–20% of sudden
cardiac death (SCD) in young adults to
myocarditis [6].

Recent studies indicate that IL-1 is central to
the development of cardiac inflammation in the
pathogenesis of a broad spectrum of conditions.
Mechanistically, during myocardial injury,
dying myocytes release various intracellular
debris and mediators, including IL-1a, which

Table 1 Major cellular mechanisms of IL-1 in heart diseases and their possible clinical effects

Clinical
scenario

Cellular mechanism Possible clinical effect

Heart failure Decreased beta-adrenergic responsiveness of L-type calcium channels [15] Impaired systolic function

Decreased expression of genes important to the regulation of calcium

homeostasis (phospholamban, sarcoplasmic reticulum calcium ATPase)

[16]

Impaired systolic function

Increased NOS expression in cardiac myocytes, leading to increased NO

activity and a direct attack on the mitochondria [17, 18]

Lower energy production and

myocardial contractility

IL-33 down-regulates apoptosis-eliciting enzymes [19] Ischemia–reperfusion injury

protection

Coronary

artery

disease

Upregulation of TGF-b stimulates vascular smooth muscle [38] Plaque formation and rupture

Suppression of endothelial cell proliferation [39] Plaque formation and rupture

Expression of adhesion molecules by endothelial cells [40] Plaque formation and rupture

Enhancement of plasminogen activator inhibitor [41] Plaque formation and rupture

Expression of matrix metalloproteinases [45] Post-myocardial infarction

remodeling

Arrhythmias Prolongation of action potential via calcium channels conduction changes

[57]

Higher arrhythmia propensity

Decreased potassium current and increased calcium sparks in

cardiomyocytes [59]

Higher arrhythmia propensity

Decreased expression of Ca2? handling proteins, including ryanodine

receptors, SR Ca2?-ATPase and phospholamban [16, 62, 63]

Higher arrhythmia propensity

Reduced expression of Cx43 [64, 65] Higher arrhythmia propensity

Cx43 connexin 43, NO nitric oxide, NOS nitric oxide synthase, SR sarcoplasmic reticulum, TGF-b transforming growth
factor beta
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strongly induce the innate immune response
[77], activating the Toll-like receptors (TLRs), in
particular TLR2 and TLR4, and the inflamma-
some [78]. Cardiac TLR4 mRNA expression has
been found to be higher in patients with
myocarditis than controls, and to correlate with
viral RNA values in the heart [79]. IL1b is known
to induce cardiac remodeling that leads to
fibrosis, DCM, and HF following acute
myocarditis in mice [80].

In fulminant myocarditis, the release of IL-1b
results in widespread inflammation, leading to
further death of cardiomyocytes, progressive
loss of viable contractile tissue, and develop-
ment of cardiomyopathy and heart failure [81].

In general, myocardial involvement is part of
the clinical spectrum of inflammatory or
autoinflammatory diseases, which are charac-
teristically mediated by IL-1, such as adult-onset
Still’s disease (AOSD). IL-1 receptor blockade
was found highly effective in several case
reports presenting patients with AOSD and
secondary fulminant myocarditis, which was
successfully treated with anakinra [82].

Furthermore, other case reports describe ful-
minant myocarditis patients, without a medical
history of auto-inflammatory disease, which
improved remarkably after initiating treatment
with anakinra. Some of these patients recovered
from cardiogenic shock requiring mechanical
support including venous-arterial extracorpo-
real membrane oxygenation (ECMO) and
mechanical circulatory support with a left ven-
tricular assist device (LVAD) [83].

IL-1 in Sepsis-Induced Cardiomyopathy

In oppose to the early phase of septic shock that
classically includes hyperdynamic left ventricle,
low systemic vascular resistance and warm
periphery (‘‘warm shock’’), the late phase com-
prises global left ventricular systolic dysfunc-
tion, poor peripheral perfusion, cool periphery
(‘‘cold shock’’), and finally, death. Sepsis-in-
duced cardiomyopathy (SIC) is a reversible
myocardial dysfunction that typically resolves
in 7–10 days. It is characterized by left ventric-
ular dilatation and depressed ejection fraction
[84, 85].

The pathophysiology of sepsis is believed to
involve multifaceted interactions between
pathogens and the immune system. The term
‘‘cytokine storm’’ relates to the breach of bal-
ance between the desirable inflammatory
response and the activity of anti-inflammatory
cytokines, with a corresponding tissue injury.
Excess inflammatory mediators stimulate the
production of reactive oxygen and nitrogen
species, causing adjacent tissue injury with the
further release of DAMPs that enhance the
inflammatory process, creating a positive feed-
back circle that finally leads to cardiac dys-
function, multiple organ failure, and death [7].

While earlier theories suggested that global
myocardial ischemia might be responsible for
SIC, different studies suggested that it cannot
explain this phenomenon [86]. An alternative
concept, of a direct myocardial depression, is
considered the major mechanism, with attenu-
ation of the adrenergic response at the car-
diomyocyte level due to down-regulation of b-
adrenergic receptors and depression of post-re-
ceptor signaling pathways. Different mecha-
nisms for myocardial depression involving IL-1
have been suggested. First, being a direct
myocardial depressant factor [87]. Second,
causing NO synthase expression in the myo-
cardium, which increases total levels of sar-
coplasmic reticulum Ca2? and myocardial
dysfunction [88]. Third, IL-1 might lead to
mitochondrial dysfunction, with diminished
activities of complexes I and II of the mito-
chondrial respiratory chain [18].

Treatment options rely on the basic
approach to sepsis, as defined by early goal-di-
rected therapy and surviving sepsis campaign
bundles, with prompt and adequate antibiotic
therapy, accompanied by surgical removal of
the infectious focus, if indicated and feasible,
while maintaining adequate arterial pressure
using fluid resuscitation and norepinephrine.
Other specific agents that were evaluated in the
setup of SIC, such as dobutamine, levosimen-
dan, milrinone, recombinant thrombomodulin,
and beta-blockers, have not yet shown to posi-
tively affect clinical outcomes. Studies regarding
direct IL-1 blockade in this setup are still
lacking.
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CONCLUSIONS

As we described, it seems that inflammation
plays a role in the pathogenesis of many heart
diseases, with IL-1 being one of the main medi-
ators in this inflammatory process.Major cellular
mechanisms involving IL-1 in heart diseases are
summarized in Table 1. Until recently, animal
models, observational data, and small pilot
studies implied an encouraging effect of IL-1
blockade in coronary heart disease, heart failure,
pericarditis, and myocarditis. Table 2 summa-
rizes the current clinical trials evaluating IL-1
blockade. Initial small clinical trials have shown
reduced CRP levels and improvement in car-
diopulmonary exercise test parameters. Clinical
trials in the setup of coronary disease have
described better LV volume indices in STEMI
patients treated with anakinra, with a reduction
of new-onset HF. On the other hand, a larger
clinical trial in NSTEMI patients showed a
reduction in inflammatory markers in the ana-
kinra group, but with no effect on infarct size on
CMR or MACE at 30 and 90 days. The anakinra
group even had higher rates of MACE in
12 months. The only randomized trial regarding
patients with recurrent pericarditis was very
small, but described impressive results when
comparing anakinra to placebo. The recently
published pivotal clinical trial of IL-1b blockade
in the secondary prevention of patients with
myocardial infarction (CANTOS) marks a new
therapeutic target and might indicate a new era
in cardiovascular medicine. Yet, while the bene-
ficial effects described in the study are statisti-
cally significant, their clinical significance
remains questionable. The ability of anti-in-
flammatory treatment in general, and IL-1
blockade in particular, to reduce morbidity and
mortality inheart diseases,with a reasonable cost
and adverse effects, still needs to be evaluated.
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