
plants

Article

A Plant Based Modified Biostimulant (Copper Chlorophyllin),
Mediates Defense Response in Arabidopsis thaliana under
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Abstract: To date, managing salinity stress in agriculture relies heavily on development of salt tolerant
plant varieties, a time-consuming process particularly challenging for many crops. Plant based
biostimulants (PBs) that enhance plant defenses under stress can potentially address this drawback,
as they are not crop specific and are easy to apply in the field. Unfortunately, limited knowledge
about their modes of action makes it harder to utilize them on a broader scale. Understanding how
PBs enhance plant defenses at cellular and molecular levels, is a prerequisite for the development of
sustainable management practices utilizing biostimulants to improve crop health. In this study we
elucidated the protective mechanism of copper chlorophyllin (Cu-chl), a PB, under salinity stress.
Our results indicate that Cu-chl exerts protective effects primarily by decreasing oxidative stress
through modulating cellular H2O2 levels. Cu-chl treated plants increased tolerance to oxidative
stress imposed by an herbicide, methyl viologen dichloride hydrate as well, suggesting a protective
role against various sources of reactive oxygen species (ROS). RNA-Seq analysis of Cu-chl treated
Arabidopsis thaliana seedlings subjected to salt stress identified genes involved in ROS detoxification,
and cellular growth.
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1. Introduction

The beginning of the 21st century is manifested by continual decline of arable land and
yield per capita in part due to climate change associated abiotic and biotic stresses [1]. For
instance, environmental stresses like salinity, drought, cold, heat and heavy metal can cause
more than 50% yield losses [2,3]. Among these stresses, salinity is one of the leading causes
of crop yield reduction [4,5]. According to the Food and Agriculture Organization (FAO),
salinity affects more than 30% of the irrigated land area worldwide, resulting in a monetary
loss of 27.3 billion USD per year [6–8]. This is a ubiquitous issue and currently no continent
is completely free from soil salinity [9]. It is speculated that soil salinity will increase in
future climate change scenarios because of the rise of sea level and temperature, which will
inevitably lead to increased evaporation and further salinization [9]. It is estimated that by
2050 50% of arable land will be impacted by salinity [10–12].

Salinity stress negatively influences seed germination, plant growth, physiology, yield
and it can cause plant death under severe conditions [2]. At the onset of the stress, salt
solutes cause accumulation of high concentration of rhizospheric ions (mainly Na+ and
Cl−), thus reducing water uptake through the roots [13,14]. This consequently leads to
depletion in water potential and osmotic imbalance, while at the same time excessive
amounts of salt enter the plant’s transpiration system [8,12,13]. Therefore, salt stress affects
plant performance in two ways, either as an inhibitor of water uptake (osmotic effect) or as
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an accumulator of ions, with subsequent toxic effects [14]. Additional consequences include
the closure of stomata, which limits CO2 uptake in leaf tissues and consequently reduces
carbon fixation and assimilation [15]. As a result, the photosynthesis rate and carbohydrate
production are reduced, negatively impacting plant growth and yield [8]. Another major
consequence of salt stress is triggering rapid accumulation of reactive oxygen species
(ROS) [16–19].

ROS comprises of both free radicals (hydroxyl radical: •OH, superoxide radicals: O2•–,
perhydroxy radical and alkoxy radicals: RO•) and non-radicals (hydrogen peroxide: H2O2,
and singlet oxygen species: 1O2). Plants generate ROS as by-products of normal cellular
activity during electron transport and during stress, H2O2 in particular has been established
as a signaling molecule that can trigger specific signal transduction pathways [20,21].
Under steady state conditions, the rates of H2O2 production and removal are in balance
as endogenous antioxidant defense systems protect cellular homeostasis from its toxic
effects [22]. Recent evidence indicates that ROS homeostasis can help in plant vegetative
development [21]. For instance, in Arabidopsis H2O2 has been found to accumulate in the
elongation zone of the meristem, contributing to cell differentiation [23]. ROS as signaling
molecules are involved in regulating seed germination through GA and/or ABA signaling
in Arabidopsis [24]. During abiotic stresses, ROS trigger signal transduction pathways
in response to those stresses, resulting in environmental adaptation [21]. However, they
can also increase dramatically leading to physiological and metabolic changes and to
damage in plants [21]. For instance, while pulses of ROS produced by respiratory burst
oxidase homologues (RBOHs) in response to stress can propagate ROS signals to prime and
acclimate plants to stress [25], accumulation of ROS can disturb the cellular balance [26] and
lead to, damage of DNA and proteins, lipid peroxidation and cell death in most extreme
cases [27]. To control ROS concentrations in the cell and counteract stress, plants mobilize
various antioxidants and ROS degrading enzymes. [22]. The antioxidant systems involve
both enzymatic and non-enzymatic H2O2 scavengers. Enzymes, such as catalase (CAT),
ascorbate peroxidase (APX), gluthathione S-Transferase (GST), glutathione peroxidase
(GPX), glutathione reductase (GR), type III peroxidases and peroxyredoxin (Prx); and
non-enzymatic compounds, like ascorbate (AsA), glutathione (GSH), α-tocopherol and
flavonoids, are all involved in regulating cellular H2O2 concentrations [28].

The antioxidant mediated defense capacity may vary among plant species and geno-
types, and depend on specific types of stresses and their duration [29]. Exogenous applica-
tion of various chemical compounds (phytohormones, polyamines, melatonin, epigenetic
inhibitors, etc.) has been shown to enhance abiotic stress tolerance, including salinity, in
many plant species [22]. A relatively new addition to this list is the exogenous application
of plant biostimulants (PBs). These are the often modified substances of natural origin or
microorganisms that in minute quantities can promote plant growth and development
through activation of the plant’s own metabolic and defense mechanisms [30]. When
exposed to abiotic stresses, plants pretreated (primed) with these chemical compounds
have been shown to have lower ROS accumulation and be more tolerant to oxidative stress.
This is a result of plant’s enhanced ROS detoxifying/scavenging capacity which correlates
with increased transcript levels of both enzymatic and non-enzymatic components of the
antioxidant system [31]. Though PBs have been reported to reduce the adverse effect of
stress through the activation of conserved protective pathways, their mode of protection is
often poorly characterized [32,33].

Copper chlorophyllin (Cu-chl), a semi synthetic water-soluble chlorophyll derivative,
has been shown to serve as oxidative stress reducing agent in mammalian cells through its
presumed strong antioxidant activity [34–36]. More recently, the protective role of Cu-chl
against drought stress in tomato has also been reported, where foliar application of Cu-
chl–containing products increased leaf antioxidant enzymes activity, as well as glutathione
(GSH) content [37]. However, the molecular pathways through which Cu-chl exerts its
activity remain currently not understood. Here, we provide new insights into the biological
function of Cu-chl in improving tolerance to high salinity stress in A. thaliana. We use
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RNA-Seq analysis to investigate the gene regulation underlying Cu-chl’s protective effect.
We report that the application of exogenous Cu-chl results in upregulation of several classes
of ROS detoxifying genes and genes previously involved in stress protection.

2. Results
2.1. Pretreatment with Cu-chl Reduces H2O2

Salt stress triggers the accumulation of intracellular H2O2, a signature of oxidative
imbalance in plant cells [26]. To determine whether Cu-chl reduces oxidative imbalance
under salt stress, we examined histochemically (diaminobenzidine (DAB) staining) the
levels of H2O2 produced in salt treated A. thaliana seedlings primed with Cu-chl. DAB
is oxidized by H2O2 typically in the presence of heme containing peroxidases, in this
case horseradish peroxidase, and forms a dark to light brown precipitate inside the cells,
whereby the intensity of the precipitate reflects the amounts of H2O2 in cells. A. thaliana
seeds were pre-treated with 0, 100 and 200 µM Cu-chl while stratifying at 4 ◦C for three
days. Seeds from each treatment were then grown in 0.5X liquid MS media in duplicates
for 10 days. Finally, seedlings were exposed to 150 mM NaCl for three hours and collected
for DAB staining.

We found that the pre-treatment of seeds with 200 µM Cu-chl reduced the level
of H2O2 under salinity stress compared to untreated seeds as indicated by lighter DAB
staining (Figure 1a). We measured quantitatively H2O2 content using Amplex® Red assay,
which showed a significant reduction of endogenous H2O2 in Cu-chl pretreated seedlings
under salt stress (Figure 1b).
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Figure 1. Copper chlorophyllin, Cu-chl, induced changes in cellular H2O2 accumulation under salt stress. Seedlings were
grown in four biological replicates for each treatment under the same growth conditions. Finally, two of them were used for
diaminobenzidine (DAB) assay and the other two for the Amplex® Red assay, and the whole experiment was repeated twice:
(a) DAB staining of A. thaliana seedlings in the absence (i–iii) of salt and after 3 h salt treatment (iv–vi). Note the lighter
DAB staining in seedlings treated with 200 µM Cu-chl. (b) Quantification of H2O2 by Amplex® Red assay. Mean ± SE was
calculated from two biological and three technical replicates for each treatment. Asterisk indicates significant difference
(p = 0.05) according to two-sample t-test.

2.2. Cu-chl Protects Arabidopsis thaliana Seedlings from Herbicidal Damage by Reducing H2O2

Accumulation of toxic levels of reactive oxygen species in tissues can be caused
not only by various abiotic stresses, but also by the application of herbicides [38]. To
determine whether Cu-chl has a protective effect against herbicide induced ROS, we
used the ROS-generating herbicide, methyl viologen dichloride hydrate (paraquat), to
induce oxidative stress in Arabidopsis seedlings [39]. Paraquat accepts electrons from



Plants 2021, 10, 625 4 of 18

photosystem I and transfers them to molecular oxygen, thereby producing destructive
amounts of ROS. When treated with paraquat, Arabidopsis leaves displayed the typical
paraquat induced phenotype and bleached under light, remaining small and yellow-brown
in color (Figure 2i) [40], and DAB staining revealed higher peroxide accumulation in leaves
(Figure 3i). While application of Cu-chl either to seeds or growth media reduced paraquat
induced damage to leaf greening (Figure 2ii–ix) and reduced H2O2 accumulation in leaves
(Figure 3ii–ix). In addition, pre-treatment and supplement of Cu-chl in the media reduced
paraquat induced leaf growth inhibition (Figure 2), suggesting that Cu-chl can improve
plant growth under stress.

Plants 2021, 10, x FOR PEER REVIEW 4 of 20 
 

 

2.2. Cu-chl Protects Arabidopsis thaliana Seedlings from Herbicidal Damage by Reducing H2O2 
Accumulation of toxic levels of reactive oxygen species in tissues can be caused not 

only by various abiotic stresses, but also by the application of herbicides [38]. To deter-
mine whether Cu-chl has a protective effect against herbicide induced ROS, we used the 
ROS-generating herbicide, methyl viologen dichloride hydrate (paraquat), to induce oxi-
dative stress in Arabidopsis seedlings [39]. Paraquat accepts electrons from photosystem 
I and transfers them to molecular oxygen, thereby producing destructive amounts of ROS. 
When treated with paraquat, Arabidopsis leaves displayed the typical paraquat induced 
phenotype and bleached under light, remaining small and yellow-brown in color (Figure 
2i) [40], and DAB staining revealed higher peroxide accumulation in leaves (Figure 3i). 
While application of Cu-chl either to seeds or growth media reduced paraquat induced 
damage to leaf greening (Figure 2ii–ix) and reduced H2O2 accumulation in leaves (Figure 
3ii–ix). In addition, pre-treatment and supplement of Cu-chl in the media reduced para-
quat induced leaf growth inhibition (Figure 2), suggesting that Cu-chl can improve plant 
growth under stress. 

 
Figure 2. Paraquat induced phenotypes in Arabidopsis seedlings in the presence and absence of 
Cu-chl. Note bleaching on leaves, and stunted leaf growth (i) in the absence of Cu-chl. Cu-chl pre-
treatment only (ii,iii), and pre-treatment and supplement (iv–ix) in the media showed improved 
growth and less bleaching of Arabidopsis seedlings. 

Figure 2. Paraquat induced phenotypes in Arabidopsis seedlings in the presence and absence of
Cu-chl. Note bleaching on leaves, and stunted leaf growth (i) in the absence of Cu-chl. Cu-chl
pre-treatment only (ii,iii), and pre-treatment and supplement (iv–ix) in the media showed improved
growth and less bleaching of Arabidopsis seedlings.

2.3. RNA-Seq Reveals the Molecular Mechanism of Cu-chl

To investigate the H2O2 regulatory mechanism induced by Cu-chl, we conducted
RNA-Seq under salinity stress with (Cu-chl NaCl in the following) and without treatment
(NaCl in the following) of 1 mM Cu-chl. RNA-Seq data resulted in high quality reads across
all three biological replicates in each treatment (Cu-chl NaCl, NaCl). Sequencing data and
the statistics of their genomic alignment, considering average value of the replicates for
each treatment is summarized in Table S1. For each of the treatments, the overall alignment
percentage was reliable (more than 98%). We also assessed the variation of each gene
between replicates by dispersion plot, which showed that data were clustered around the
curve (red line, ideal fitted line for differential gene expression (DGE), with the dispersion
decreasing with increasing mean expression levels (Figure 4a). This indicates that the data
are a good fit for the DGE analysis [41]. Moreover, we estimated the variation among
the replicates and throughout the treatments by principal component analysis (PCA) plot
(Figure 4b). It showed strong grouping of replicates for NaCl, whereas data points for
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Cu-chl NaCl were dispersed on the plane. This implies that the expression of genes among
the replicates of NaCl treatment is more convergent than Cu-chl NaCl. However, we
considered all of them in the downstream analysis which makes it more conservative.
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Figure 3. DAB staining of 2-week-old Arabidopsis seedlings pre-treated with Cu-chl and incubated
with 100 nM paraquat for 3 h. Cu-chl was applied as seed treatment (concentrations indicated on
the left) and in the growing media (concentrations indicated on the top right corner of each image)
followed by paraquat treatment. Note the stronger DAB staining in leaves in the absence of Cu-chl
treatment (i).
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Figure 4. Distribution of samples and variation among the replicates and throughout the treatments: (a) dispersion/variation
of each gene among the replicates. Black dot and blue circle designate, respectively, the mean of normalized counts and
variation of a gene. Strongly clustered data points around the red line suggests that data are well distributed and fit for
differential gene expression (DGE) analysis (b) principal component analysis (PCA) plot of relative distribution of biological
replicates and the treatments. PCA1 and PCA2, respectively, denote the highest and second highest variation of samples
among the treatments. All three replicates for NaCl showed strong grouping, where Cu-chl NaCls were dispersed on the
plane. However, note the low percent of variation with PCA1, which indicates, there were no extreme outliers throughout
the samples.
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Differentially expressed genes along with significantly up and downregulated genes
(padj < 0.05 and log2FoldChange ≥ 1.0, indicated in red color) were determined using
DESeq2 [41], and are shown as Volcano plot (Figure 5a). We found 879 genes were upregu-
lated and 192 genes were downregulated in the Cu-chl NaCl compared to NaCl treatment
(Figure 5a). Gene annotation for the significant genes was then carried out using DAVID
bioinformatics resources v6.8 [42]. Top gene classes based on their molecular functions are
shown as bubble plot, where color and size of the bubble, respectively indicate the False
Discovery rate (FDR) and number of genes belong to each class (Figure 5b). Since many of
them had higher FDR values (>0.05), we have manually checked each class and removed
false positive associations.
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Within the enriched cohort we found two predominant gene classes associated with
H2O2 detoxification: 34 peroxidases and 16 glutathione S-transferases (GSTs), enriched with
much lower FDR < 0.05 (Figure 5b, Table 1). Eleven of the 16 GST genes and all 34 peroxidases
were more upregulated in the Cu-chl NaCl than NaCl. Among the 34 peroxidases, 26
were found to belong to the class III peroxidase super family (Table 1). Among the GSTs
upregulated in Cu-chl NaCl, we found members of the phi (GSTF), tau (GSTU) and lambda
(GSTL) classes, while members of the minor GST classes, dehydroascorbate reductase (DHARs),
and tetrachlorohydroquinone dehalogenase were not affected by Cu-chl (Table 1). In addition,
we found 5 Rboh genes associated with H2O2 signaling and priming, were more upregulated
in Cu-chl NaCl (Table 1) [43]. Interestingly, expression of other classes of antioxidant
enzymes involved in H2O2 degradation/scavenging was not affected by treatment with
Cu-chl (Table S2).

We also identified 33 transcription factors (TFs) that are reported to be involved in
abiotic stress regulation. These include 9 MYBs, 5 basic helix loop helix superfamily proteins
(bHLH), 7 WRKYs, 3 NAC domain containing transcription factors, 7 Zinc finger proteins,
and 2 Heat shock proteins (Table 2). We also checked the differential expression of these
peroxidases, glutathione S-transferases and TFs upon Cu-chl application under control
conditions (without salt stress). We found that these genes were also induced by Cu-chl
under control conditions, however less than when Cu-chl was applied with salt stress
(Tables S3 and S4).
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Table 1. List of genes involved in H2O2 detoxification or signaling were more upregulated in Cu-chl NaCl compared to
NaCl. AtPrx, arabidopsis thaliana Class III peroxidase; Trx, thioredoxin superfamily protein; Rboh, respiratory burst oxidase
homolog/riboflavin synthase-like superfamily protein; Dox, alpha dioxygenase Tpx, thioredoxin-dependent peroxidase;
GSTU, glutathione S-transferase class tau; GSTL, glutathione S-transferase lambda; GSTF, glutathione S-transferase class phi.

Function Gene ID Gene Name log2Fold Change Previously Reported References

H2O2 detoxification

Peroxidases
Class III peroxidases

AT1G05260 AtPrx3 1.93 Cold inducible tolerance, Stamen
abscission [44,45]

AT1G14550 AtPrx5 3.50
AT1G30870 AtPrx7 5.33 TNT treatment [46]
AT1G49570 AtPrx10 3.90

AT1G68850 AtPrx11 1.88 Cuticle metabolism regulation in
response to abiotic stress [47]

AT2G18980 AtPrx16 2.75
AT2G37130 AtPrx21 1.43 Stamen abscission, aluminum stress [45,48]
AT2G38380 AtPrx22 2.02 potassium deficiency [49]
AT2G38390 AtPrx23 2.52
AT2G39040 AtPrx24 3.42
AT3G01190 AtPrx27 4.11 Aluminum stress, TNT treatment [46,48]
AT3G03670 AtPrx28 2.87

AT3G21770 AtPrx30 1.42 Cell elongation, Stamen abscission,
Monolignin polymerization [45,50,51]

AT3G32980 AtPrx32 1.69 Cell elongation [50]
AT4G26010 AtPrx44 1.65

AT4G30170 AtPrx45 2.35 Cell elongation, aluminum stress, TNT
treatment, Stamen abscission [45,48,50,52]

AT4G37520 AtPrx50 1.34 Low oxygen response, phosphate
starvation, Stamen abscission [45,53,54]

AT5G06730 AtPrx54 2.07
AT5G14130 AtPrx55 2.82
AT5G15180 AtPrx56 1.42 Aluminum stress [48]
AT5G17820 AtPrx57 4.38 Arsenic stress, TNT treatment, cell

elongation [46,50,55]
AT5G19890 AtPrx59 4.22 Aluminum stress, Mechanical stimulus [48,51]
AT5G24070 AtPrx61 3.46
AT5G64100 AtPrx69 2.67 Phosphate starvation, sulphur deficiency [52,53]
AT5G66390 AtPrx72 1.33 Cell elongation [50]
AT5G67400 AtPrx73 2.56 Aluminum stress [48]

H2O2 detoxification
and signaling

Other peroxidases

AT1G60740 Trx 4.66
AT5G07390 RbohA 2.94 Lateral root emergence, salinity and cold

stress [54,55]
AT1G09090 RbohB 3.26 Nitrogen fixation, lateral root emergence [56,57]
AT5G51060 RbohC 1.99 Lateral root emergence, salinity and cold

stress [58,59]
AT4G25090 RbohG 2.96 Lateral root emergence [60]
AT4G11230 RbohI 1.12 Drought stress [61]
AT3G01420 Dox1 2.93
AT1G65970 Tpx2 1.27

H2O2 detoxification

Glutathione S-transferase

AT2G29490 GSTU1 2.79
Herbicide treatment, phytoremediation,
oxidative stress response (SO2), salinity,

drought and cold stress
[62–66]

AT2G29480 GSTU2 2.63 Herbicide treatment, salinity and
drought stress [65,67]

AT2G29470 GSTU3 2.64 Oxidative stress response (SO2) [64]
AT2G29460 GSTU4 1.76 Oxidative stress response (SO2), salinity [64,68]
AT2G29420 GSTU7 1.37 Seed germination, ABA response and

osmotic stress [69]
AT3G09270 GSTU8 1.40 Cadmium treatment [70]
AT1G69920 GSTU12 1.68 Salinity stress [71]
AT1G27140 GSTU14 4.32
AT1G78340 GSTU22 2.89

AT1G17170 GSTU24 1.61
TNT treatment, herbicide treatment,
phytoremediation, oxidative stress

response (SO2)
[62–64]

AT5G02780 GSTL1 1.27 Increased tolerance to salinity stress [72]
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Table 2. List of transcription factors (TFs) involved in abiotic stresses regulation and signaling that were more upregulated
in Cu-chl NaCl compared to NaCl.

Gene ID Gene Name log2Fold Change Previously Reported References

MYB containing domain

AT5G49620 MYB 78 4.44 Abiotic and biotic stress [73]
AT1G74080 MYB122 3.18 Dehydration stress [74]
AT1G79180 MYB63 2.52 Dehydration stress [74]
AT5G54230 MYB49 2.39 Cadmium accumulation [75]
AT1G09540 MYB61 2.17 Stomatal aperture [76]
AT5G65790 MYB68 1.85 High temperature [77]
AT1G48000 MYB112 1.75 Salinity and high light stress [78]
AT4G34990 MYB32 1.35 Salinity stress [79]
AT3G49690 MYB84 1.27 High temperature [77]

Basic helix-loop-helix DNA binding superfamily protein

AT4G21340 bHLH 4.04 Response to phytotoxicity [80]
AT1G02340 bHLH 2.57 Dark induced senescence [81]
AT4G29930 bHLH 1.67 Dehydration stress [74]
AT1G10585 bHLH 1.46 Dehydration stress [74]
AT5G51780 bHLH 1.11 Salinity stress [82]

WRKY DNA binding protein

AT1G68150 AtWRKY09 3.97 Abiotic stresses [83]
AT5G15130 AtWRKY72 2.90 Abscisic acid signal [84]
AT4G22070 AtWRKY31 2.70 Root growth, pathogen attack [85]
AT5G13080 AtWRKY75 2.65 Leaf senescence [86]
AT1G69810 AtWRKY36 1.61 UV responsive [87]
AT1G30650 AtWRKY14 1.31 Abiotic stresses [88]
AT3G01970 AtWRKY45 1.16 Dehydration stress tolerance [89]

NAC containing domain

AT3G18400 ANAC058 1.91 ABA mediated germination [90]
AT1G01010 ANAC001 1.67 Dehydration stress [74]
AT3G29035 ANAC003 1.34 Leaf senescence [91]

Zinc finger protein

AT1G67030 AtZFP67 3.98 ABA repressor [92]
AT5G22890 AtSTOP2 (C2HC ZFP) 3.56 Aluminum and low pH [93]
AT5G57520 AtZFP2 3.51 Salinity stress [82]
AT1G10480 AtZFP5 3.31 Phosphate and potassium

deficiency
[94]

AT1G68360 AtGIS3 (C2HC ZFP) 1.59 Cold stress [95]
AT2G28200 C2H2 ZFP 1.12 Dehydration stress [74]
AT2G19810 AtOZF1(CCCH ZFP) 1.08 Hydrogen peroxide, abscisic acid

and salinity responsive
[96]

Heat shock family protein

AT3G51910 AtHSFA7A 2 2.12 Heat shock response [97]
AT2G26150 AtHSFA2 1.94 Heat shock response [97]

2.4. RNA-Seq Validation by Real-Time RT-PCR (qPCR)

To confirm the data obtained by RNA-Seq, the expression of 6 class III peroxidases
(AtPrx 11, AtPrx 21, AtPrx 27, AtPrx 45, AtPrx 50, and AtPrx 73) and 2 glutathione S-
transferases (GSTU1, GSTU22) were carried out by qPCR (primer sequences are in Table S5).
qPCR results confirmed the data obtained by RNA-Seq, and showed all 6 class III peroxidases,
and the two glutathione S-transferases were more upregulated in Cu-chl NaCl than NaCl
treatment (Figure 6).
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2.5. Effect of Cu-chl on Arabidopsis thaliana Growth

To determine whether Cu-chl has beneficial effects on plant growth, we grew A.
thaliana seeds in 0.5X liquid MS media supplemented with 100 and 200 µM Cu-chl and with-
out Cu-chl for 14 days and measured the shoot length and fresh shoot weight. Both shoot
length (Figure 7a) and weight (Figure 7b) were significantly higher with 100 and 200 µM
Cu-chl treatment than in the control, suggesting that Cu-chl can improve plant growth.

Plants 2021, 10, x FOR PEER REVIEW 11 of 20 
 

 

Figure 7. Effect of Cu-chl on growth and plant biomass: (a) shoot length of A. thaliana seedlings (n 
= 20, values are mean ± SE). (b) Fresh shoot weight (groups of four seedlings, n = 5) of the 20 seed-
lings measured in (a). Four randomly chosen seedlings were weighed together, different letters 
indicate significant difference between treatments according to Fisher’s least significant difference 
(LSD) test at p = 0.05. 

3. Discussion 
To withstand salt stress, plants utilize various protective physiological, cellular and 

molecular mechanisms many of them geared towards reducing cellular concentrations of 
reactive oxygen species (ROS) (mainly hydrogen peroxide, H2O2) [29]. Exogenously ap-
plied biostimulants have been reported to be able to protect plants against stresses [30]. 
Our results indicate that pretreatment of Arabidopsis seedlings with Cu-chl can reduce 
cellular oxidative stress in salt or herbicide treated plants, primarily by decreasing cellular 
oxidative stress through modulating H2O2 levels. Although the precise molecular path-
ways through which Cu-chl maintains oxidative balance during stress are not known, ge-
nome wide analysis of RNA-seq data of salt stressed plants treated with Cu-chl suggests 
that Cu-chl may do that through upregulation of H2O2 detoxifying cellular pathways in-
volving primarily class III peroxidases and Gluthathione S-transferases (Figure 8). 

Class III peroxidases have been shown to scavenge H2O2 in vivo leading to increased 
ROS/H2O2 detoxification and osmotic adjustment, thereby improving tolerance to abiotic 
stresses. For instance, overexpression of AtPrx 3 has been shown to increase tolerance un-
der dehydration and salt stress, while its suppression gave dehydration and salt-sensitive 
phenotypes in A. thaliana [44]. In another study, AtPrx 11 was found to be part of the com-
plex network controlling cell expansion and cuticle deposition in response to osmotic 
stress, ABA and salt treatment [47]. AtPrx 7 also has been reported to be involved in con-
trolling the H2O2 concentration at the germination stage [98]. Functions of these peroxi-
dases have, been investigated in other crop plants as well. In a study on rice, OsPrx 24, a 
class III peroxidase, was found to be regulated by a transcription factor complex and to 
function as a ROS scavenger to enhance tolerance against drought and salt stress [99]. Jin 
et al. showed overexpression of the class III peroxidase GsPRX 9 conferred soybean salt 
tolerance through mediation of the ROS regulatory network [100]. In transgenic Tobacco, 
heterologous expression of two class III peroxidases, CrPrxs from Catharanthus roseus ex-
hibited increased tolerance to H2O2 treatment and improved germination rate under 
drought, salt and cold stress [101]. 

GSTs from all major classes have also been shown to be involved in the detoxification 
of toxic substances and attenuation of oxidative stresses [102]. In Arabidopsis, expression 
of two GSTs was found elevated in response to aluminum, cold, heat and metal stress, 
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20 seedlings measured in (a). Four randomly chosen seedlings were weighed together, different
letters indicate significant difference between treatments according to Fisher’s least significant
difference (LSD) test at p = 0.05.
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3. Discussion

To withstand salt stress, plants utilize various protective physiological, cellular and
molecular mechanisms many of them geared towards reducing cellular concentrations
of reactive oxygen species (ROS) (mainly hydrogen peroxide, H2O2) [29]. Exogenously
applied biostimulants have been reported to be able to protect plants against stresses [30].
Our results indicate that pretreatment of Arabidopsis seedlings with Cu-chl can reduce
cellular oxidative stress in salt or herbicide treated plants, primarily by decreasing cel-
lular oxidative stress through modulating H2O2 levels. Although the precise molecular
pathways through which Cu-chl maintains oxidative balance during stress are not known,
genome wide analysis of RNA-seq data of salt stressed plants treated with Cu-chl suggests
that Cu-chl may do that through upregulation of H2O2 detoxifying cellular pathways
involving primarily class III peroxidases and Gluthathione S-transferases (Figure 8).
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Solid and dashed green pointed lines, respectively, indicate the genes and mechanisms found in our RNA-Seq data and in
previous studies.

Class III peroxidases have been shown to scavenge H2O2 in vivo leading to increased
ROS/H2O2 detoxification and osmotic adjustment, thereby improving tolerance to abiotic
stresses. For instance, overexpression of AtPrx 3 has been shown to increase tolerance under
dehydration and salt stress, while its suppression gave dehydration and salt-sensitive
phenotypes in A. thaliana [44]. In another study, AtPrx 11 was found to be part of the
complex network controlling cell expansion and cuticle deposition in response to osmotic
stress, ABA and salt treatment [47]. AtPrx 7 also has been reported to be involved in
controlling the H2O2 concentration at the germination stage [98]. Functions of these
peroxidases have, been investigated in other crop plants as well. In a study on rice, OsPrx
24, a class III peroxidase, was found to be regulated by a transcription factor complex and
to function as a ROS scavenger to enhance tolerance against drought and salt stress [99].
Jin et al. showed overexpression of the class III peroxidase GsPRX 9 conferred soybean salt
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tolerance through mediation of the ROS regulatory network [100]. In transgenic Tobacco,
heterologous expression of two class III peroxidases, CrPrxs from Catharanthus roseus
exhibited increased tolerance to H2O2 treatment and improved germination rate under
drought, salt and cold stress [101].

GSTs from all major classes have also been shown to be involved in the detoxification
of toxic substances and attenuation of oxidative stresses [102]. In Arabidopsis, expression
of two GSTs was found elevated in response to aluminum, cold, heat and metal stress,
suggesting a common induction mechanism in response to the oxidative stresses [103].
Overexpression of a tobacco GST with glutathione peroxidase activity in transgenic tobacco
showed increased glutathione-dependent peroxide scavenging that leads to reduced oxida-
tive damage and enhanced tolerance to abiotic stresses [104]. They also found that cold
or salt-stress treatments had less inhibitory effects on the growth of GST overexpressed
transgenic lines. In barley leaves, a senescence-induced tau class GST has been suggested
as an antioxidant, protecting senescing cells from ROS damages, and as an inducer that
involves in secondary metabolism [105]. These studies support our data that upon Cu-chl
treatment, class III peroxidases and GSTs act on reducing H2O2 under salinity stress. In
addition, we found members of several transcription factor families, such as MYB, WRKY,
NAC, bHLH, etc. that are known to play key roles in ROS signaling pathways in response
to stresses, resulting in salt tolerance in Arabidopsis, rice and wheat [106].

This study exhibited that pretreatment of Arabidopsis seeds with Cu-chl was sufficient
to reduce oxidative stress in salt or herbicide treated seedlings, suggesting treated plants
have enhanced defensive capacity against salt stress. One possible scenario is that Cu-chl
can activate defense signaling networks culminating in ROS scavenging through activation
of genes involved in ROS signaling. We found 5 NADPH/respiratory burst oxidases (Rbohs)
upregulated more in Cu-chl treated plants under stress. Rbohs are reported to be involved
in ROS signaling, for example in barley, they have been marked as a hallmark of salt
tolerant genotype, as their expression was increased significantly in a salt-tolerant mutant
compared to the control after exposure to salt stress [106]. In Arabidopsis, overexpression
of RbohI is reported to significantly improve the drought tolerance [61]. In another study
on Brassica campestris, expression of RbohA and RbohD was found to be induced by different
abiotic stressors like low temperature, salt and dehydration [55]. Rbohs are also reported to
assist in class III peroxidases mediated induction of cellular processes like seed germination,
cell elongation, lignification, wound healing, and plant senescence [107,108]. The O2•–

released during the oxidative cycle by Rboh can convert peroxidase into compound III, an
oxygenated intermediate state of peroxidase. This compound consequently can catalyze
the production of •OH from H2O2 in the cell wall and induce cell elongation [109]. We
found enhanced seedlings growth by pre-treatment and supplement of Cu-chl in the media
under both control (Figure 7) and stress conditions (Figure 2), which further supports this
Cu-chl induced growth stimulatory pathways by class III peroxidases and Rbohs. Taken
together, we propose a mechanism in which Cu-chl reduces H2O2 under salinity stress
where class III peroxidases and GSTs function as the central molecules (Figure 8). Upon
induction by Cu-chl, class III peroxidases and GSTs act by reducing the local concentration
of H2O2 (peroxidative), and in association with Rbohs, class III peroxidases may favor
plant growth by generating oxygen radicals (hydroxylic cycle) [110]. Cu-chl also stimulates
TFs that can induce downstream salt responsive genes to alleviate stress.

In a paper published by Zhang et al. on tomato, Cu-chl was shown to alleviate oxida-
tive stress caused by water deficit [37]. The availability of extensive genomic resources on
Arabidopsis makes it the ideal host to investigate the functions and molecular mechanisms
underpinning the role of Cu-chl in the mediation of plant defense under stress, but results
obtained from Arabidopsis sometimes cannot be translated to crops. However, our data
show that Cu-chl induced plant defense through upregulation of class III peroxidases,
glutathione S-transferases and abiotic stress responsive transcription factors, which are
highly conserved in plants. Further experiments should be done to see if the described
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mechanism is shared across plant species, and if the results seen in this study can be
translated for field applications to other crops.

4. Materials and Methods
4.1. Seed Sterilization and Stratification

A. thaliana seeds (Columbia-0) were surface sterilized in 70% ethanol for 30 sec fol-
lowed by 40% sodium hypochlorite for five min and rinsed four times in sterile water.
For seeds that needed pre-treatment, Cu-chl was added at different concentrations (see
paragraphs below) to 1 mL of sterile water directly to the seeds in an Eppendorf tube.
Tubes containing seeds pre-treated or un-treated were then wrapped with aluminum foil
and kept in the dark at 4 ◦C for three days.

4.2. H2O2 Accumulation Measurement via DAB (3,3′-Diaminobenzidin) and Amplex® Red Assay
under Salt Stress

After pre-treatment with 100 or 200 µM Cu-chl and three days incubation at 4 ◦C,
four groups of 20 seeds per treatment (0, 100 and 200 µM Cu-chl) were placed in 10 mL
of 0.5X liquid MS media in 12 separate Petri plates and grown in a shaking incubator at
21 ◦C and 20 rpm, maintaining 12 h light cycle for 10 days. Seedlings were then transferred
to 10 mL of fresh 0.5 × liquid MS media, treated with 150 mM NaCl for three hours,
washed with sterile distilled water and collected for DAB staining and Amplex® Red
assay. To qualitatively measure the level of H2O2 in the tissue, DAB assay was conducted
using the SIGMAFASTTM DAB with Metal Enhancer kit (Sigma Aldrich, St. louis, MO,
USA) following the user manual. In brief, four tablets from each of DAB/Cobalt and urea
hydrogen peroxide were dissolved in 20 mL ultrapure MiliQ water (MilliporeSigma™
Milli-Q™ Ultrapure Water Systems, Thermo Fisher scientific, Waltham, MA, USA) by
vortexing and poured in a 50 mL beaker. Seedlings from each treatment (two biological
replicates of 20 seedlings/treatment) were dipped into the DAB solution and vacuum
infiltrated for two minutes. After that, seedlings were placed in sterile distilled water in
Petri plates and incubated in the dark overnight, when DAB is oxidized by H2O2 and forms
dark-brown color. To observe color intensity, chlorophyll was removed by incubating the
seedlings in 3:1 v:v, 90% ethanol:acetic acid at 70°C for 10 min.

Quantification of H2O2 was carried out by using the Amplex® Red hydrogen per-
oxide/peroxidase assay kit (Thermo Fisher Scientific, Waltham, MA, USA) on the two
remaining biological replicates per each treatment. Standard curve was generated using
H2O2 supplied in the kit (R2 = 0.98). Fifty mg of seedlings from each of the 6 plates (two
out of the four biological replicates per each of the three treatments) were ground and
diluted in 50 mM sodium phosphate buffer (pH = 7.4). Fluorescence intensity of three
technical replicates for each of the six plates was measured by setting excitation at 560 nm
and emission at 590 nm using SpectraMax® i3x Multi-Mode Microplate Reader (Molecular
Devices, San Jose, CA, USA). Finally, concentrations of H2O2 in the samples were calculated
using the standard curve. Both DAB and Amplex® Red assays were repeated twice.

4.3. H2O2 Accumulation Measurement under Herbicide Stress

Protective role of Cu-chl against herbicidal damage was determined by using a ROS-
generating herbicide, methyl viologen dichloride hydrate (paraquat) (Sigma Aldrich, St.
louis, MO, USA). After 0, 100 and 200 µM Cu-chl pre-treatment, followed by stratification
at 4 ◦C, 12 petri plates of 20 seeds/plate for each treatment (0, 100 and 200 µM Cu-ch,
total 36 plates) were grown in 10 mL of 0.5 × liquid MS media. Plates from each pre-
treatment group were separated in three groups of four plates each. Four plates from each
pre-treatment (12 plates) were grouped and supplemented with 0, 100 or 200 µM Cu-chl,
so that each pre-treatment group was supplemented with all three post-treatments. After
two weeks (growth conditions as in 4.2), 100 nM paraquat was applied in each Petri plate.
Seedlings from two petri plates for each treatment were then collected for DAB assay three
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hours post paraquat application and the remaining two plates were left for 10 days to
observe bleaching of the leaves.

4.4. Cu-chl and Salt Stress Application for RNA-Seq and qPCR

After stratification at 4 ◦C, 15 seeds/petri plate without any pre-treatment were grown
in a shaking incubator maintaining the same growth conditions as mentioned above.
Seedlings were then transferred to 10 mL of fresh 0.5 × liquid MS media containing either
100 µL DMSO (mock treatment) or 1 mM Cu-chl in DMSO. Seedlings were incubated
for 24 h followed by two hours salt treatment with 100 mM NaCl. Cu-chl and NaCl
concentrations, and duration of the treatment were different than the ones used in the
assays above and were optimized based on preliminary experiments to reach maximum
level of gene expression. Fifty mg of seedlings per plate and three biological replicates for
each treatment (Control without any Cu-chl and NaCl, Cu-chl, NaCl and Cu-chl NaCl)
were harvested for RNA extraction using Quick RNA Plant Miniprep kit (Zymo Research
Corporation, Irvine, CA, USA).

4.5. Effect of Cu-chl on Seedling Growth

After pre-treatment with 100 and 200 µM Cu-chl, A. thaliana seedlings were grown for
two weeks maintaining the same growth conditions as above. Twenty seedlings from each
of the treatments (0, 100 and 200 µM Cu-chl) were randomly selected to measure shoot
length using Image J and fresh shoot weight.

4.6. RNA Sequencing and Analysis

A uniquely barcoded library was made from each sample using the Illumina TruSeq
Stranded mRNA Library kit (Illumina, Inc., San Diego, CA, USA) at the Genomic Core
Facility, Penn State. An approximately equimolar pool of the libraries was made and
sequenced on a NextSeq 550 high output system (Illumina, San Diego, CA, USA), which
was set for 75 nt single read sequences. This provided about 30 million reads per sample.
Sequences were analyzed using a series of bioinformatics tools in Bash and R background.
In brief, raw reads for all of the replicates in each treatment were checked and preprocessed
by Fastqc [111]. After checking the quality, reference genome (A. thaliana, TAIR 10) was
used, and sequences were aligned and mapped against the genome by Hisat2 [112]. The
aligned files were assembled and merged into one file by StringTie2 [113] and raw reads
per sample were counted by featureCounts [114]. Finally, differential gene expression
(DGE) analysis was carried out using the DESeq2 package in Bioconductor library [41] and
differentially expressed genes throughout the treatments were functionally annotated by
using DAVID bioinformatics resources v6.8 [42].

4.7. cDNA Synthesis and qPCR

Total RNA was extracted using Quick-RNA Plant Kit (Zymo Research, Irvine, CA,
USA) the manufacturer’s instructions. 400 ng of total RNA was used for cDNA synthesis
using the High-Capacity cDNA reverse transcription kit (Thermo Fisher Scientific, Waltham,
MA, USA) according to the user manual.

qPCR was done using ssoAdvanced universal SYBR green super mix (Bio-Rad, Her-
cules, CA, USA) in BIO-RAD CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad)
following the manufacturer’s instructions. The reaction was set up in technical triplicates
using Elongation factor 1 α as the internal control. Thermo cycling conditions were 95◦C
for 30 sec, followed by 39 cycles of 95 ◦C for 5 s, 60 ◦C for 30 s. A dissociation protocol with
a gradient from 65 ◦C to 95 ◦C (5.0 secs and 0.5 ◦C ramp/cycle) was used for generating
melting curves. Primers used for qPCR are listed in Table S5. Three biological replicates and
three technical replicates were used for analysis. Finally, a software provided by Bio-Rad
was used to analyze differential gene expression (DGE) using 2-∆∆CT method [115] and
statistical analysis was done by two samples t-test using Minitab19 [116].
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