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ABSTRACT We report the complete genome sequence of Acidithiobacillus ferriphilus
GT2, an acidophile isolated from gold mill tailings. The circular genome of GT2 con-
tains 2,489 predicted protein-coding units and a single plasmid. Functional analysis
indicates the metabolic potential to oxidize iron and reduced sulfur compounds and
to fix N2 and CO2.

A cidithiobacillus ferriphilus species include iron- and sulfur-oxidizing autotrophic
bacteria isolated from metal-rich, acidic environments, such as acid mine drainage

sites or hydrothermal pools (1). Due to their metabolic versatility and high tolerance to
transition metals and salts, strains of A. ferriphilus have been proposed for industrial
use in the bioleaching of sulfidic ores (1, 2). However, no complete and finished ge-
nome sequences of A. ferriphilus are currently available in public databases. We iso-
lated, sequenced, and annotated the genome of A. ferriphilus GT2 to better understand
its metabolic potential and the mechanistic underpinnings of its high metal and salt
tolerance.

A. ferriphilus GT2 was isolated from gold mill tailings (Colorado, USA). A 1-g wet tailing
sample was inoculated in 10 mL DSMZ medium 882 (https://www.dsmz.de/microorganisms/
medium/pdf/DSMZ_Medium882.pdf). Enrichments were incubated at 30°C for 3 weeks and
then diluted 1:100 into fresh media. GT2 was isolated on solid agar plates of 2:2 medium (3).
Subsequently, GT2 was routinely cultivated in DSMZ medium 882, including for the harvest-
ing of cells for DNA isolation. The FastDNA spin kit for soil (MP Biomedicals) was used to
extract DNA according to the manufacturer’s recommendations. The size of genomic DNA
was determined using gel electrophoresis (E-Gel SizeSelect II agarose gel; Invitrogen), which
revealed a fluorescent band of.15 kb. The sample was then sheared using a g-TUBE device
(Covaris, Inc.), and the average size of the sample was verified using the 2100 Bioanalyzer
instrument (Agilent Technologies). Approximately 1 mg of genomic DNA was used as input
for library preparation using the SMRTbell Express template prep kit 2.0 (Pacific Biosciences).
During library preparation, the sample underwent DNA damage and end repair as well as
barcode adapter ligation. Following library preparation, DNA fragments ranging from 6 kb
to 10 kb were selected using the Sage Science BluePippin automated size-selection instru-
ment. The final library concentration was measured using the Qubit double-stranded DNA
(dsDNA) high-sensitivity (HS) assay kit (Thermo Fisher Scientific), and the average library size
(7,668 bp) was determined using the Agilent 2100 Bioanalyzer instrument. The library was
then subjected to circular consensus sequencing (CCS) using a 15-h movie time on the
PacBio Sequel IIe instrument to generate HiFi reads. This resulted in 40,250 HiFi reads with a
mean size of ;6,756 bp. Preassembly read quality control (QC) was performed using the
SMRT Link Run QC module. The CCS analysis workflow (SMRT Link software; Pacific
Biosciences) was used to trim reads of adapters and compute consensus sequences from
multiple passes around a circularized single DNA molecule (SMRTbell template). De novo as-
sembly of the genome into 2 contigs (N50 contig length, 2,524,963 bp) was accomplished
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using the Improved Phase Assembler (IPA) via SMRT Link 10.1.0. IPA consists of several key
processes, including overlapping (pancake), phasing (nighthawk), filtering overlaps (falcon),
contig construction (falcon), and polishing (racon). Default parameters were used except
where otherwise noted. The NCBI Prokaryotic Genome Annotation Pipeline (PGAP) was used
for sequence annotation. Average nucleotide analysis (ANI) was computed in Anvi’o 7 (4, 5)
using PyANI (6).

GT2 was identified as a strain of A. ferriphilus based on its 98.5% average nucleotide
identity with the BLAST method (ANIb) and 100% 16S rRNA nucleotide identity to A.
ferriphilus DSM 100412. Whole-genome sequencing resulted in two finished sequences,
including a circular chromosome (2,524,963 bp; GC content, 57%) and a single plasmid
(14,357 bp; GC content, 51%). The genome is 98.59% complete with a total of 2,489
coding DNA sequences (CDSs). Functional analysis indicated the metabolic potential to
oxidize ferrous iron and reduced sulfur compounds as energy sources and to fix N2 and
CO2 via the nif regulon and the Calvin-Benson-Bassham (CBB) cycle, respectively.
Additionally, a variety of putative metal resistance genes were annotated, including
those for arsenic, copper, mercury, cobalt, zinc, cadmium, and iron. The isolation and
complete genome sequence of A. ferriphilus GT2 may provide a valuable resource for
improving the utility of A. ferriphilus strains in biomining applications and increasing
our understanding of microbial communities implicated in acid mine drainage.

Data availability. The PacBio genome sequence has been deposited in GenBank
under the BioProject accession number PRJNA751914, the BioSample accession num-
ber SAMN20559762, the SRA accession number SRR15345381, and the GenBank acces-
sion numbers CP080536 and CP080537.
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