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Abstract: The identification of soluble fibroblast growth factor (FGF) receptors in blood and the
extracellular matrix has led to the prediction that these proteins modulate the diverse biological
activities of the FGF family of ligands in vivo. A recent structural characterization of the soluble
FGF receptors revealed that they are primarily generated by proteolytic cleavage of the FGFR-1
ectodomain. Efforts to examine their biological properties are now focused on understanding the
functional consequences of FGFR-1 ectodomain shedding and how the shedding event is regulated.
We have purified an FGFR-1 ectodomain that is constitutively cleaved from the full-length FGFR-
1(IIIc) receptor and released into conditioned media. This shed receptor binds FGF-2; inhibits FGF-2-
induced cellular proliferation; and competes with high affinity, cell surface FGF receptors for ligand
binding. FGFR-1 ectodomain shedding downregulates the number of high affinity receptors from
the cell surface. The shedding mechanism is regulated by ligand binding and by activators of PKC,
and the two signaling pathways appear to be independent of each other. Deletions and substitutions
at the proposed cleavage site of FGFR-1 do not prevent ectodomain shedding. Broad spectrum
inhibitors of matrix metalloproteases decrease FGFR-1 ectodomain shedding, suggesting that the
enzyme responsible for constitutive, ligand-activated, and protein kinase C-activated shedding is a
matrix metalloprotease. In summary, shedding of the FGFR-1 ectodomain is a highly regulated event,
sharing many features with a common system that governs the release of diverse membrane proteins
from the cell surface. Most importantly, the FGFR ectodomains are biologically active after shedding
and are capable of functioning as inhibitors of FGF-2.

Keywords: ectodomain shedding; FGF; soluble receptors; downregulation

1. Introduction

Mounting evidence indicates that ectodomain shedding of cell surface proteins is an
essential element of normal cellular behavior at multiple stages of growth and differentia-
tion (for reviews, see [1–5]). Among its many roles, ectodomain shedding releases mature
growth factors and coreceptors that regulate cellular proliferation and differentiation [6,7],
induces conformational changes that lead to receptor activation [8], and alters the display of
cell adhesion molecules which promote or inhibit cell–cell adhesion and migration [9–11].
Interference with the normal process of ectodomain shedding in Drosophila and mam-
mals leads to a wide variety of developmental and functional defects, emphasizing the
importance of shedding throughout the phylogenetic tree [6,8,10,12].

The shedding of cell surface receptors is a rapid method for regulating the biological
activities of growth factors. Shedding leads to receptor downregulation, decreasing the
number of full-length receptors on the cell surface that can respond to ligand binding.
At the same time, the shed receptor ectodomains retain an affinity for their ligands, which
allows them to function as competitive inhibitors in the pericellular environment. Together,
these complementary processes inhibit cytokine activity in physiologically significant ways.
The biological relevance of this mechanism is shown by the finding that germline mutations

Int. J. Mol. Sci. 2021, 22, 2712. https://doi.org/10.3390/ijms22052712 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-0694-0610
https://doi.org/10.3390/ijms22052712
https://doi.org/10.3390/ijms22052712
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22052712
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/22/5/2712?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 2712 2 of 20

in the 55 kDa tumor necrosis factor (TNF) receptor cause a variety of inherited autoimmune
inflammatory syndromes that are thought to be the result of both reduced levels of the
circulating, soluble TNF receptors and impaired TNF receptor clearance [13]. Furthermore,
medical treatments with recombinant soluble receptors can block the biological activity
of cytokines in vivo, as shown by the reduction of retinal edema in patients treated with
a soluble chimeric vascular endothelial cell growth factor (VEGF) receptor (aflibercept,
EyleaTM) [14] and the reduction of arthritic joint damage in patients treated with a dimeric,
soluble TNF receptor immunoadhesin (Etanercept, EnbrelTM) [14–16].

Studies with mutant Chinese hamster ovary (CHO) cells have shown that the mech-
anisms regulating the shedding of diverse cell surface proteins have many features in
common [17]. Both constitutive and activated cleavage pathways have been identified,
with the latter being activated by cytokines, growth factors, activators of protein kinase C
(PKC), and calcium ionophores [18–20]. A variety of enzymes, which are members of the
metzincin family of zinc-dependent proteinases, are responsible for ectodomain cleavage.
These include the MMPs (matrix metalloproteases) and the ADAM (a disintegrin and
metalloprotease) family members, ADAM-17 (tumor necrosis factor converting enzyme;
TACE), ADAM-12, ADAM-9, and ADAM-10, among others [8,21–24]. The constitutive and
activated cleavage pathways are independent of a specific consensus sequence and are
regulated via a variety of different protein kinase pathways [19,25].

We have proposed that ectodomain shedding of the high affinity fibroblast growth
factor (FGF) receptors (FGFR-1-4) is an essential mechanism for controlling the diverse
biological activities of the FGF family of growth factors during growth and develop-
ment [26–28]. The FGFs are a family of highly conserved and tightly regulated pleiotropic
growth factors which function in diverse biological processes to induce cellular differen-
tiation and proliferation, promote mesodermal induction and patterning, regulate limb
outgrowth and multi-organ development, and enhance neovascularization and wound
repair [29–34]. The prototype member of the FGF family is FGF-2, which is widely dis-
tributed in cells and the extracellular matrix of both proliferating and nonproliferating
cells [35]. The ubiquitous distribution of the FGFs, especially FGF-2, surrounding cells that
respond to FGF-2 in vitro, but are quiescent in vivo, emphasizes that multiple levels of
regulation exist, which control the biological activity of the FGFs. Mechanisms that have
been proposed to explain this phenomenon include the enzymatic release of FGF-2 from
receptors in the extracellular matrix [36], post-translational modifications of the FGFs [37],
alternative signaling pathways [38], specific temporal and spatial FGF receptor expression
patterns [39], and the shedding of both low and high affinity FGF receptors [7,25,27,39,40].

The FGF receptors consist of two classes of cell surface moieties—low affinity heparan
sulfate proteoglycans and a gene family of four high affinity tyrosine kinase receptors
(FGFR-1-4)—which encode multiple isoforms that are generated by the alternative splicing
of mRNA transcripts [40–42]. The major class of FGF binding, transmembrane heparan
sulfate proteoglycans, known as the syndecans, are constitutively shed from cell mem-
branes and are capable of modulating the biological activity of FGF-2 through interactions
with the high affinity FGF receptors [43]. The syndecans are shed in response to thrombin
and growth factors, such as epidermal growth factor (EGF), and are present in wound
fluids [44,45]. The biological activity of the syndecans is regulated by heparinase-like
proteases, which convert the proteoglycans from inhibitors to activators of FGF-2 [7].

We have identified a class of high affinity, soluble FGF receptors in blood and other
biological fluids, and in the extracellular matrix of vascular endothelial cells [27,28,35,46].
This group of soluble receptors consists of at least five isoforms of the high affinity FGF
receptor gene family, including a two and three Ig-like loop ectodomain of FGFR-1(IIIb) and
FGFR-1(IIIc), and a unique two Ig-domain secreted isoform called FGFR-1(IIIa) (Figure 1).
Analysis of the carboxyl-terminus indicates that the two and three Ig-like loop ectodomains
of FGFR-1 are generated by proteolytic cleavage of the full-length cell-surface FGF receptors,
eight amino acids proximal to the transmembrane domain [26,47].
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ding of other transmembrane proteins from the cell surface? Here, we show that the pro-
teolytically cleaved three Ig-like loop form of the FGFR-1 ectodomain inhibits the activity 
of FGF-2 by competing with high affinity FGF receptors for ligand binding and blocks 
FGF-2-induced cell proliferation and in-vitro angiogenesis. Shedding of the FGFR-1 ecto-
domain is regulated by both ligand binding and activators of PKC and the two signaling 
pathways appear to be independent of each other. Full-length FGFR-1 receptors decrease 
as the shedding of the FGFR-1 ectodomain increases, consistent with receptor downregu-
lation. Constitutive, ligand-activated, and PKC-activated shedding appears to be regu-
lated by a metalloprotease family member. FGF receptor mutants, with deletions and sub-
stitutions intended to disrupt the conformational stability at the putative cleavage site, are 
still shed in proportion to the expression levels of the high affinity receptor. Therefore, the 
release of a biologically active FGFR-1 ectodomain is both a constitutive and tightly regu-
lated event, sharing many features with the system that regulates the release of other di-
verse membrane proteins from the cell surface.  

Figure 1. Schematic illustration of the full-length transmembrane FGFR-1 receptors showing the two
and three Ig-like extracellular domains (IIIc) that are proteolytically cleaved from the cell surface.
A two-loop ectodomain of FGFR-1 is expressed from an alternatively spliced transcript of mRNA
and secreted into the extracellular milieu without proteolytic processing.

The biological activities of the native, circulating soluble FGF receptors have not been
reported. However, recombinant isoforms of the extracellular domains of FGFR-1 and
FGFR2 inhibit FGF-2-induced proliferation [48] and block FGFR2 signaling [34], supporting
the hypothesis that soluble FGF receptors are modulators of FGFs in vivo. In order to study
the properties of the soluble receptors further, we turned to a cell-based system to obtain
substantial quantities of the proteolytically cleaved ectodomain that is derived from the
extracellular domain of the full-length cell surface receptor and the secreted receptor that
is produced by the expression of an alternatively spliced mRNA transcript.

In this paper, we focus on three important questions: (i) Is the FGFR-1 ectodomain bi-
ologically active after shedding? (ii) Is the shedding event regulated in vitro? (iii) Does the
shedding process share similarities with the common system responsible for the shedding
of other transmembrane proteins from the cell surface? Here, we show that the proteolyt-
ically cleaved three Ig-like loop form of the FGFR-1 ectodomain inhibits the activity of
FGF-2 by competing with high affinity FGF receptors for ligand binding and blocks FGF-2-
induced cell proliferation and in-vitro angiogenesis. Shedding of the FGFR-1 ectodomain
is regulated by both ligand binding and activators of PKC and the two signaling pathways
appear to be independent of each other. Full-length FGFR-1 receptors decrease as the
shedding of the FGFR-1 ectodomain increases, consistent with receptor downregulation.
Constitutive, ligand-activated, and PKC-activated shedding appears to be regulated by a
metalloprotease family member. FGF receptor mutants, with deletions and substitutions
intended to disrupt the conformational stability at the putative cleavage site, are still shed
in proportion to the expression levels of the high affinity receptor. Therefore, the release
of a biologically active FGFR-1 ectodomain is both a constitutive and tightly regulated
event, sharing many features with the system that regulates the release of other diverse
membrane proteins from the cell surface.

2. Results
2.1. Identification of a Shed FGFR-1 Ectodomain in the Conditioned Media of Transfected
COS 7 Cells

To explore the possibility that the FGFR-1 ectodomain is shed constitutively from
cells that express full-length FGFR-1, we utilized a transient transfection assay, which has
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previously been used to evaluate the release of a variety of ectodomains from cell surface
proteins [17]. We analyzed the serum-free conditioned media from COS 7 cells that were
transfected with the full-length, three Ig-like domain isoform of FGFR-1 (see Figure 2). Us-
ing a specific antibody (Mab6) raised against the extracellular domain of FGFR-1, we identi-
fied a shed FGFR-1 ectodomain in the conditioned media of the FGFR-1-transfected COS 7
cells, but not in the media of untransfected or vector transfected COS 7 cells. The FGFR-1
ectodomain was shed into the conditioned media constitutively, increasing in a time-
dependent manner (Figure 2, left). The molecular weight of the shed receptor was between
70 and 85 kDa, which is identical to the size of the native, three Ig-like domain form of
soluble FGFR-1 that has been purified from blood [28].
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Figure 2. Constitutive and ligand-induced FGFR-1 ectodomain shedding. COS 7 cells transfected 
with full-length FGFR-1 cDNA were placed in serum-free media for up to four hours, in the pres-
ence or absence of recombinant, human fibroblast growth factor (FGF)-2. After collecting the con-

Figure 2. Constitutive and ligand-induced FGFR-1 ectodomain shedding. COS 7 cells transfected
with full-length FGFR-1 cDNA were placed in serum-free media for up to four hours, in the presence
or absence of recombinant, human fibroblast growth factor (FGF)-2. After collecting the conditioned
media, the FGFR-1 ectodomain was precipitated with WGA-Sepharose, eluted with sample buffer,
and analyzed by SDS-PAGE and immunoblotting with an antibody to the extracellular domain
of FGFR-1 (Mab6). The left panel shows the time course of the constitutive release of an 85 kDa
FGFR-1 ectodomain and the right lane shows the time course of the activated release of the FGFR-1
ectodomain in the presence of FGF-2. The negative control consists of the 4 h time point of media
from untransfected cells. The densities of the bands were measured with NIH Image software and
the percent change in intensity of the bands was calculated using the control lane as a reference for
comparison. Standard deviations were calculated for each individual band by the imaging software.

Growth factors and cytokines have been shown to induce ectodomain shedding by
the activation of specific signaling cascades [19]. To examine whether FGF-2 could enhance
shedding of the FGFR-1 ectodomain in an autocrine manner by binding to the cell surface
FGF receptors and activating downstream signaling pathways, we added exogenous FGF-2
(0.5 ng/mL) to the serum-free media and repeated the time course. We found that shedding
of the FGFR-1 ectodomain was increased by the addition of FGF-2, most notably after
four hours (Figure 2, right). Image analysis of the four-hour time points revealed that the
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increase in shedding in the presence of FGF-2 was approximately three-fold over the level
of constitutive shedding.

2.2. Ligand-Induced Shedding Leads to a Decrease in Full-Length FGFR-1 Receptors

We explored the dose dependency of ligand-induced shedding in COS 7 and CHO cells
to determine whether this event was cell-type specific or representative of a more general
phenomenon. Using transiently transfected COS 7 cells and the stably transfected CHO cell
line FGFR-1/pcDNA3, we observed an increase in the shedding of the FGFR-1 ectodomain
in both cell types after stimulation with FGF-2 (Figure 3A,B, upper). Ligand-induced
ectodomain shedding was dose-dependent, reaching a maximum at slightly different
concentrations of FGF-2 in the two cell types.
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Figure 3. Ligand-induced ectodomain shedding downregulates full-length receptors in cell extracts.
(A) COS 7 cells, transiently transfected with full-length FGFR-1(IIIc) cDNA, and (B) CHO cells, stably
transfected with full-length FGFR-1(IIIc) cDNA, were placed in serum-free media in the presence
of different concentrations of FGF-2. Conditioned media and cell extracts were collected after two
hours. The shed FGFR-1 ectodomain was precipitated with WGA-Sepharose. Full-length FGFR-1
in the cell lysates was precipitated with an antibody to the C-terminus of FGFR-1 and/or extracted
with sample buffer. The samples were analyzed by SDS-PAGE and immunoblotting with Mab6.
The upper and lower panels show the release of the FGFR-1 ectodomain from COS 7 and CHO cells,
respectively, and the corresponding decrease in the level of the full-length receptor. The densities of
the bands were measured with NIH Image software and the percent change in intensity of the bands
was calculated using the control lane (0 ng/mL) as a reference for comparison.

Since the shedding of cell surface proteins has been proposed to be a mechanism
of receptor downregulation [3], we examined the cell lysates to determine whether the
full-length cell surface FGF receptors decreased as the shedding of the FGFR-1 ectodomain
increased. We found that FGF-induced shedding of the FGFR-1 ectodomain led to a
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dose-dependent decrease in the 140 kDa full-length cell surface FGF receptor in both cell
lysates (Figure 3A,B, lower). These results support the concept that shedding of the FGFR-1
ectodomain could play a role in the downregulation of cell surface FGF receptors after
ligand binding.

2.3. Purification of the Soluble FGFR-1 Ectodomains

With the evidence that FGFR-1 ectodomain shedding is a regulated event, we fo-
cused on the question of whether the soluble FGFR-1 ectodomains are biologically active.
We passed FGFR-1 CHO cell conditioned media over an FGF-2/heparin-Sepharose affinity
column to determine whether the soluble FGFR-1 ectodomains could bind FGF-2. Both
the shed and secreted FGFR-1 ectodomains bound avidly to the FGF-2/heparin-Sepharose
column. Coomassie blue staining of the eluants revealed molecular weights of 70–85 kDa
and 55–60 kD for the shed FGFR-1 and the secreted FGFR ectodomains, respectively
(Figure 4A,B). The purified FGFR-1 ectodomains had the same electrophoretic character-
istics as the native, 85 kDa and 55 kD soluble FGF receptors isolated and purified from
blood [26,28].
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2.4. The Shed FGFR-1 Ectodomain Functions as a Biologically Active Inhibitor of FGF-2

We tested the inhibition of FGF-2 activity with two forms of soluble FGFR-1 receptors:
A proteolytically shed form of soluble FGFR-1 and a secreted soluble FGFR, expressed
from an alternatively spliced transcript that lacks a transmembrane domain [26]. We used
a classic FGF-2-induced aortic endothelial cell proliferation assay to test the effects of
soluble FGF receptors on FGF-2-induced proliferation, and an 125I-FGF-2 receptor-binding
assay to address the mechanism of this activity. We found that both the shed and secreted
FGFR-1 ectodomains inhibited FGF-2-induced aortic endothelial cell proliferation in a
dose-dependent manner (Figure 5A,B).

To explore the mechanism behind this inhibition, we switched to Swiss 3T3 cells
due to the higher number of cell surface FGF receptors in this cell line. We measured
125I-FGF-2 binding to high affinity, cell surface receptors in both the presence and absence
of the shed FGFR-1 ectodomain. We found that the shed FGFR-1 ectodomain effectively
reduced 125I-FGF-2 binding to high affinity FGF receptors (Figure 5C, left), supporting
the interpretation that the mechanism of inhibition is due to competition between soluble
and cell surface FGF receptors for FGF-2 binding. To further support this interpretation,
we examined the effect of the secreted FGFR-1 ectodomain on cellular proliferation in Swiss
3T3 cells, using a 3H-thymidine incorporation assay. Similar to the effects of soluble FGFR-1
receptors in the ABAE cell proliferation assays, the secreted FGFR-1 receptor inhibited
FGF-2-induced 3T3 cell proliferation to a similar degree as the inhibition of 125I-FGF-2
binding (Figure 5D, right). These results support the interpretation that the shed and
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secreted FGFR-1 ectodomains inhibit the biological activity of FGF-2 in multiple cell types
and compete with the high affinity, cell surface FGF receptors for binding to FGF-2.
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Figure 5. The soluble FGFR-1 receptors inhibit the biological activity of FGF-2. (A,B) Adult aortic endothelial cell
proliferation is inhibited by soluble FGF receptors. Cells were plated in 24-well chambers in complete medium with
0.125 ng/mL FGF in the absence or presence of increasing concentrations of the shed (A) or secreted (B) FGFR-1 ectodomain
on days 1 and 3. After five days in culture, the cells were trypsinized and counted with a Coulter Counter. (C) Soluble
FGF receptors inhibit FGF-2 binding to cell surface FGF receptors in the 125I-FGF-2 ligand binding assay. Swiss 3T3 cells
were grown to confluence in 24-well plates. The cells were labeled for 2 h at 4 ◦C with 125I-FGF-2 (2 ng/mL) in the absence
or presence of increasing concentrations of the shed FGFR-1 ectodomain. High affinity FGF-2 binding was determined
after removing FGF-2 bound to low affinity sites with a high salt wash. Results are presented as the decrease in 125I-FGF-2
binding to 3T3 cell surface FGFR-1 receptors in the presence of the shed ectodomain. (D) Swiss 3T3 cell 3H-thymidine
incorporation assays. Swiss 3T3 fibroblasts were grown to confluence in 96-well dishes and switched to low serum media
for 2 days in DME (Dulbecco’s Modified Eagle’s Media) with 0.5% calf serum. The rate of DNA synthesis was measured 24 h
after the addition of FGF-2 and/or secreted FGFR-1 and 5 h after incubation with 0.2 mCi/well of [methyl-3H]thymidine
(6.7 Ci/mole, ICN). The cultures were then processed for scintillation counting, as previously described [49].
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2.5. The Secreted FGFR-1 Receptor Inhibits Capillary Tube Formation in Collagen Gels

Using a well-known model of in vitro angiogenesis, we tested the ability of the se-
creted FGF receptor to block FGF-2-induced capillary tube growth in collagen gels [50].
Within seven days of growth, the ABAE cells cultured in the presence of FGF-2 invaded
the collagen gel and formed three-dimensional capillary tubes with branching patterns.
Cells cultured in the absence of FGF-2 showed no evidence of capillary tube formation.
Cells cultured with FGF-2 and increasing concentrations of the secreted FGFR-1 ectodomain
showed progressively less capillary tube formation (Figure 6A–E), demonstrating that the
soluble FGF receptors inhibit FGF-2-induced angiogenesis in the extracellular matrix in a
dose-dependent manner.
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Figure 6. Inhibition of in-vitro angiogenesis and capillary tube formation by soluble FGFR-1 receptors.
Phase-contrast images of ABAE cells forming three-dimensional capillary structures (arrows) in
collagen gels grown with FGF-2 (500 pg) in the absence (A) or presence (B) of the secreted FGFR-1
receptor (300 ng). Bar = 200 um. Panels (C,D) show the corresponding capillary tube structures
highlighted in red. (E) The area of capillary tube formation was quantified using ImageJ.

2.6. Inhibition of FGFR-1 Ectodomain Shedding by Metalloprotease Inhibitors

A diverse group of membrane proteins are shed by a mechanism which is sensi-
tive to metalloprotease inhibitors [17]. To examine whether the constitutive and ligand-



Int. J. Mol. Sci. 2021, 22, 2712 9 of 20

activated FGFR-1 ectodomain shedding is also dependent on this system, we tested the
effect of metalloprotease inhibitors on the release of the FGFR-1 ectodomain in COS 7
cells. Cells treated with the metalloprotease inhibitors—marimastat and CGS27023A—
showed a dose-dependent decrease in constitutive FGFR-1 ectodomain shedding (Figure 7).
FGF-2-activated shedding was also inhibited. There was no evidence of cytotoxicity (data
not shown).
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Figure 7. Inhibition of constitutive FGFR-1 ectodomain shedding by MMP inhibitors. COS 7 cells transiently transfected
with FGFR-1(IIIc) were placed in serum-free media in the presence of different concentrations of (A) marimastat and (B) CGS
27023A, as indicated. The samples were run in duplicate. The conditioned media was collected after an overnight incubation
and the shed FGFR-1 ectodomain was precipitated with WGA-Sepharose. The samples were analyzed by SDS-PAGE and
immunoblotting with Mab6. The densities of the bands were measured with NIH Image software and the percent change in
intensity of the bands was calculated using the control lane (0 uM) as a reference for comparison. Standard deviations were
calculated for each individual band by the imaging software.

2.7. FGFR-1 Ectodomain Shedding Is Not Inhibited by Mutations Surrounding the Cleavage Site

The putative cleavage site of the FGFR-1 ectodomain is located between Val-Met, eight
amino acids from the transmembrane domain [26,47]. We constructed an FGFR-1 mutant
containing a deletion at the putative cleavage site and analyzed the degree of FGFR-1
ectodomain shedding following the transfection of COS 7 cells with the mutant FGFR-1
construct. We found that a seven amino acid deletion surrounding the putative cleavage
site did not prevent shedding of the FGFR-1 ectodomain (Figure 8). Indeed, the relative
degree of ectodomain shedding was not significantly different from the wild type receptor,
adjusting for the 50% lower level of expression of the full-length receptor mutant (see the
histogram in Figure 8). We constructed and examined two additional mutants:FGFR-1/P2,
which contains a 10 amino acid deletion with a proline-glycine substitution and FGFR-1/L4,
which contains a 14 amino acid deletion in the region of the putative cleavage site. Both
of these mutants were also cleaved. Although the extent of ectodomain shedding was
lower than with the wild type receptor, this difference was eliminated when the level of
shed receptor was compared to the overall level of expression of the full-length, mutant
receptors. These findings indicate that FGFR-1 ectodomain shedding is not inhibited by
mutations containing deletions and substitutions at the putative cleavage site, which is a
feature that is relatively common for other cell surface proteins.
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Figure 8. The effect of FGFR-1 mutations on ectodomain shedding. COS 7 cells were transfected
with vector alone (pcDNA3) or FGFR-1 constructs, as indicated, including FGFR-1 (wild-type),
FGFR-1/B1, FGFR-1/P2, and FGFR-1/L4. The conditioned media and cell extracts were collected
after an overnight incubation. The shed FGFR-1 ectodomains were precipitated with WGA-Sepharose
and analyzed by SDS-PAGE and immunoblotting with Mab6. The densities of the bands were
evaluated using NIH Image software.

2.8. Constitutive FGFR-1 Ectodomain Shedding Is Activated by TPA

Several studies have demonstrated that the constitutive shedding of diverse trans-
membrane proteins is activated by protein kinase C signaling pathways [17]. To determine
whether activators of protein kinase C enhance shedding of the FGFR-1 ectodomain, we
examined shedding of the FGFR-1 ectodomain in the presence of the PKC activator—TPA.
FGFR-1-transfected COS 7 cells were treated with TPA in the presence or absence of G06983,
which is a specific inhibitor of all PKC isoforms except PKCµ [51]. We found that TPA
activated FGFR-1 ectodomain shedding at concentrations ranging from 10 to 100 ng/mL
and that this enhancement was abolished in the presence of G06983. (Figure 9A). These
results indicate that shedding is dependent on cellular signaling mechanisms and the
activation of PKC pathways.

To determine whether both constitutive shedding and protein kinase C-induced
shedding were sensitive to metalloprotease inhibitors, we examined the effect of marimastat
and CGS27023A on constitutive and TPA-activated cleavage. We found that marimastat
and CGS27023A abolished constitutive and TPA-activated shedding (Figure 9B), suggesting
that both constitutive, ligand-induced and PKC-activated shedding pathways involve a
member of the metalloprotease family of enzymes.
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FGFR-1 and that SU5402 reduced FGF-2-activated FGFR-1 ectodomain shedding to the 
level observed with constitutive shedding (Figure 10A). Controls showed that FGF-2-ac-
tivated shedding was associated with ERK phosphorylation, which was blocked by the 
FGFR-1 tyrosine kinase inhibitor SU5402 (Figure 10B). These data suggest that ligand-ac-
tivated FGFR-1 ectodomain shedding occurs through a mechanism that involves FGF re-
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2-activated shedding of the FGFR-1 ectodomain (Figure 10A), although it did block TPA-

Figure 9. 12-O-tetradecanoyl phorbol 13-acetate (TPA) enhances FGFR-1 ectodomain shedding. (A) COS 7 cells transiently
transfected with FGFR-1(IIIc) were placed in serum-free media in the presence of different concentrations of TPA plus
or minus G06983. The conditioned media was collected after a 36 h incubation and the shed FGFR-1 ectodomain was
precipitated with WGA-Sepharose. The samples were analyzed by SDS-PAGE and immunoblotting with Mab6. The densities
of the bands were measured with NIH Image software and the percent change in intensity of the bands was calculated using
the control lane (0 ng/mL) as a reference for comparison. Standard deviations were calculated for each individual band
by the imaging software. (B) COS 7 cells transiently transfected with FGFR-1(IIIc) were placed in serum-free media in the
presence or absence of 100 ng/mL TPA and the metalloprotease inhibitors marimastat (25 mM) and CGS 27034A (50 mM).
The conditioned media was collected after a 36 h incubation and the FGFR-1 ectodomain was analyzed as described above.

2.9. FGF-2-Activated Shedding Is Blocked by a Specific Inhibitor of the FGF Receptor Tyrosine
Kinase, But Not by a PKC Inhibitor

We also examined whether stimulation of the FGF receptor tyrosine kinase signaling
pathway was necessary for ligand-activated FGFR-1 ectodomain shedding. We analyzed
the levels of the shed FGFR-1 ectodomain in the conditioned media of FGFR-1 CHO cells
treated with FGF-2 in the presence or absence of a specific inhibitor of the FGF receptor
tyrosine kinase—SU5402 [52]. We found that FGF-2 induced the ectodomain shedding of
FGFR-1 and that SU5402 reduced FGF-2-activated FGFR-1 ectodomain shedding to the level
observed with constitutive shedding (Figure 10A). Controls showed that FGF-2-activated
shedding was associated with ERK phosphorylation, which was blocked by the FGFR-1
tyrosine kinase inhibitor SU5402 (Figure 10B). These data suggest that ligand-activated
FGFR-1 ectodomain shedding occurs through a mechanism that involves FGF receptor
tyrosine kinase signaling (Figure 10B).
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Figure 10. FGF-2-activated shedding is blocked by an FGF receptor tyrosine kinase inhibitor. CHO
cells were placed in serum-free media in the presence of FGF-2 and the FGF receptor tyrosine kinase
inhibitor SU5402, or the PKC inhibitor G06983. Conditioned media and cell extracts were collected
after two hours. The shed FGFR-1 ectodomain was precipitated with WGA-Sepharose. The cells
were extracted directly into SDS-PAGE sample buffer. The samples were analyzed by SDS-PAGE
and immunoblotting with Mab6 (A) or antibodies to phospho-ERK and total ERK (B) to test for the
inhibition of FGFR-1 activation by SU5402.

Finally, we investigated whether FGF-2-activated FGFR-1 ectodomain shedding was
regulated by PKC signaling. We found that the PKC inhibitor G06983 did not reduce
FGF-2-activated shedding of the FGFR-1 ectodomain (Figure 10A), although it did block
TPA-stimulated shedding (Figure 9A). This result demonstrates that the ligand-activated
shedding pathway is independent of the PKC cleavage pathway and that multiple stimuli
can converge independently on this target.

3. Discussion

In this investigation, we purified a constitutively shed FGFR-1 ectodomain, which
is the three Ig-like domain form of FGFR-1(IIIc), to demonstrate that circulating FGFR-1
ectodomains are biologically active inhibitors of FGF-2. Specifically, we have shown that
the shed FGFR-1 ectodomain binds to an FGF-2/heparin-Sepharose affinity column, blocks
FGF-2-induced proliferation in endothelial cells and 3T3 fibroblasts, inhibits in vitro angio-
genesis and capillary tube formation, and competes with high affinity cell surface FGFR-1
receptors for ligand binding. These data demonstrate that the FGFR-1 ectodomain can
still bind ligands after proteolytic shedding from cell surface receptors and supports the
fundamental hypothesis that the shed FGFR-1 ectodomains in blood may function as circu-
lating inhibitors of the FGFs in vivo. In contrast to previous studies that utilized genetically
engineered soluble receptors or ectodomain fusion proteins, this report is the first demon-
stration that a natural and constitutively shed FGFR-1 ectodomain is biologically active.

This report also demonstrates that FGFR-1 ectodomain shedding shares many fea-
tures with the common mechanism that governs the release of other cell surface receptors,
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cell adhesion molecules, and growth factors. The finding that constitutive and regulated
shedding occurs in at least two different cell types is consistent with the idea that FGFR-1
shedding is not restricted to a specific cell type and is representative of a more gener-
alized phenomenon which occurs in multiple types of cells sharing common pathways.
Of particular interest is the question of which signaling pathways are involved in these
shedding events and whether they are the same or different. Although all the pathways
involved in FGFR-1 ectodomain shedding are not known, our data show that at least two
independent pathways are involved: A ligand-activated pathway which requires activa-
tion of the FGF receptor tyrosine kinase and another pathway involving PKC activation.
While the activation of receptor tyrosine kinases has been implicated in the shedding
of unrelated transmembrane proteins [19], our findings have added significance because
FGFR-1 shedding appears to result from FGF-2 binding to and activation of its own receptor.
How activation of the FGF receptor leads to the shedding of its receptor ectodomain is not
known at this time.

In addition, the finding that FGF-2 enhances shedding of the ectodomain of its high
affinity receptor is of special interest because it suggests that FGFR-1 ectodomain shedding
could be an autocrine feedback mechanism for downregulating FGFR-1 receptors after
ligand binding. Therefore, the FGFR-1 receptor joins a group including the TNF receptor
and the CSF-1 receptor, which use this mechanism to rapidly modulate their response to
ligands in the pericellular environment [3,53,54]. Whether or not the truncated cytoplas-
mic domain persists after ectodomain shedding and has any role in the cell remains to
be investigated.

Our results are consistent with the proposal that a member of the metalloprotease
family regulates FGFR-1 ectodomain shedding. The specific enzyme involved in these
cleavage pathways is not yet known, but candidates include members of the ADAMs
family of metalloproteases, particularly ADAMs-12, -17, -10, and -9, which are responsible
for the shedding of multiple cell surface proteins, including tumor necrosis factor-alpha
(TNF-α), transforming growth factor (TGF-α), L-selectin, amyloid precursor protein (APP),
and heparin-binding epidermal growth factor-like growth factor (HB-EGF) [2,22–24,55].
These enzymes are inhibited by hydroxamate compounds, such as marimastat and CGS
27023A, which interfere with zinc binding to the metalloprotease domain [56]. In our
study, the concentrations of hydroxamate-based MMP inhibitors which blocked FGFR-1
ectodomain shedding are within the µM range shown to inhibit specific ADAM family
members in other ectodomain shedding systems [56]. Studies are currently in progress to
determine whether FGFR-1 ectodomain shedding can be induced by ADAM-17 (TACE) or
other ADAM family members.

Our group attempted, albeit unsuccessfully, to create an FGFR-1 mutant which was
resistant to ectodomain shedding. The introduction of successively larger deletions and
substitutions failed to induce structural changes that blocked cleavage without interfering
with the normal expression levels of the FGF receptor. Even with the substitution of amino
acid sequences from other transmembrane receptors that are not cleaved under normal
conditions, such as betaglycan [57], we were unable to generate a noncleavable receptor.
We conclude that the factors that promote FGFR-1 shedding supersede the amino acid
sequence in the cleavage region. These findings are consistent with the proposal that
ectodomain shedding is more dependent on factors that regulate access of the protease to
the cleavage site than on the actual consensus sequence itself [58].

The primary goal of this study was to focus on the biological activities of the soluble
FGF receptors and introduce the mechanisms that regulate shedding. There are some
limitations in this study. First, while there is broad cross-reactivity of MMPs across mul-
tiple species, there may be some differences in the mechanisms regulating proteolytic
cleavage of the human FGF receptors in COS 7 and CHO cells due to species differences.
This possibility and other cell-type specificity questions can be investigated in future
studies. Second, the shedding mechanisms in this study point to proteases that have
similarities with the ADAMs family of metalloproteases, which are key regulators of
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growth and differentiation. These specific family members deserve additional study as
regulators of FGF-2-induced endothelial cell growth and regulation in blood and the ex-
tracellular matrix. Third, the downregulation of FGFR-1 and other cell surface receptors
can be achieved through multiple mechanisms, from ectodomain shedding to endocytosis-
mediated receptor degradation. The relative importance of ectodomain shedding compared
to endocytosis-mediated receptor degradation should be examined further.

In summary, this report joins two other studies that support the emerging role of FGF
receptor shedding as a regulatory mechanism for the FGF growth factor family in vivo.
Transgenic mice that overexpress a secreted FGFR2 ectodomain during development de-
velop severe phenotypic abnormalities that are associated with a disturbance in FGF
signaling during patterning and organogenesis [34]. Secondly, shed syndecan proteogly-
cans, which are low affinity FGF receptors purified from wound fluids in vivo, regulate
the mitogenic activity of FGF-2 [7,44,45]. It is tempting to speculate that the shed FGFR-1
ectodomain may interact with the shed syndecan proteoglycans in a synergistic manner to
regulate the biological activity of FGF-2 in vivo. Future studies are needed to examine this
in more detail. Taken together, these studies suggest that FGFR-1 ectodomain shedding
could play an important physiological role in both growth and development.

4. Experimental Procedures
4.1. Plasmids and Reagents

The 155 amino-acid form of human recombinant FGF-2 was expressed in Escherichia coli [59]
and purified using heparin-Sepharose affinity chromatography and ion-exchange chro-
matography, as previously described [60]. The FGFR-1/pcDNA3 mammalian expression
plasmid was constructed by subcloning the human three Ig-domain FGFR-1(IIIc) gene [61]
into the HindIII- BamH1 site of pcDNA3 (Invitrogen, San Diego, CA, USA). The mam-
malian expression plasmid—pSV2/dhfr—which expresses the dihydrofolate reductase
gene, was a gift from Dr. Shunichi Shimasaki (University of California; San Diego, CA,
USA). Horseradish peroxidase-conjugated goat anti-mouse IgG was purchased from Bio-
rad (Hercules, CA, USA). Monoclonal antibodies (Mab6) were raised to the extracellular
domain of the three Ig-like domain isoform of recombinant FGFR-1 produced in insect
cells [48] and were purified from the conditioned media of hybridoma cells using pro-
tein G-Sepharose columns. FGFR-1 antibodies (anti-Flg, C-terminus) and ERK 1 (K-23)
antibodies were purchased from Santa Cruz Biotechnologies (Santa Cruz, CA, USA). An-
tibodies to phospho-p44/42 MAP kinase (Thr202/Tyr204) were purchased from New
England BioLabs (Beverly, MA, USA). Marimastat and CGS 27023A were generous gifts
from Dr. Motowo Nakajima (Novartis; Takarazuka, Japan). 12-O-tetradecanoyl phorbol
13-acetate (TPA) was purchased from Sigma (St. Louis, MO, USA) and wheat germ lectin
Sepharose was purchased from Amersham Pharmacia Biotech (Piscataway, NJ, USA).
G06983 was purchased from Calbiochem (La Jolla, CA, USA). SU5402 was a gift from
Dr. Hideo Kimura (National Institute of Neuroscience, Tokyo, Japan).

4.2. Cell Culture and Transfections

All cell culture media was obtained from Life Technologies (Rockville, MD, USA),
unless otherwise indicated. COS 7 cells were cultured in Dulbecco’s modified Eagle’s
medium (high glucose) supplemented with 10% fetal calf serum (HyClone, Logan, UT,
USA), and 100 units/mL penicillin G sodium and 100 µg/mL streptomycin sulfate. COS
7 cells were transfected in 100 mm plates by the high efficiency calcium phosphate pre-
cipitation method, according to standard procedures [62], or by lipofectamine, using the
manufacturer’s protocol, and split into 60 mm plates for the analysis of FGFR-1 ectodomain
shedding. CHO/dhfr- cells were cultured in Iscoves Modified Dulbecco’s Media (IMDM)
containing 10% fetal calf serum, supplemented with 0.1 mM hypoxanthine (Life Technolo-
gies; Gibco BRL), 0.01 mM thymidine (Sigma Chemical; St. Louis, MO, USA), 100 units/mL
penicillin G sodium, and 100 µg/mL streptomycin sulfate. NIH (3T3 cells were cultured in
DMEM (high glucose) supplemented with 10% calf serum, 2 mM glutamine, 100 U/mL
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penicillin G sodium, and 100 µg/mL streptomycin sulfate. Adult bovine aortic endothelial
cells were cultured in DMEM (low glucose) supplemented with 10% fetal bovine serum,
10 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), 2 mM glutamine,
0.1 mM nonessential amino acids, 100 units/mL penicillin G sodium, and 100 µg/mL
streptomycin sulfate.

4.3. Production of Stably Transfected FGFR-1 Expressing CHO Cell Lines

Two stably transfected CHO cell lines overexpressing the secreted form of the FGFR-1
receptor and the full-length three Ig-like domain isoform of FGFR-1(IIIc) were produced,
defined as FGFR-1/pcDNA3 (h1/p3). The cell lines were produced by cotransfecting
CHO/dhfr- cells with 20 µg of secreted FGFR-1 or full length FGFR-1/pcDNA3 and 1 µg of
pSV2/dhfr using Lipofectamine, according to the manufacturer’s recommendations (Life
Technologies; Rockville, MD, USA). The transfected CHO cells were switched to IMDM
containing 10% dialyzed fetal calf serum and 0.01 µM methotrexate (Sigma Chemical;
St. Louis, MO, USA). Multiple clones were isolated, amplified with increasing concentra-
tions of methotrexate, and screened to select colonies expressing high levels of the soluble
FGFR-1 receptors. The level of protein expression was determined by immunoblot analysis.
Clones were expanded, adapted to serum-free SFXTM-CHO media (Hyclone; Logan, UT,
USA), and grown to concentrations of 1–10× 106 cells/mL in 1 L Celline CL1000 flasks (IBS
Integra Biosciences; Ijamsville, MD, USA). The serum-free conditioned media containing
the shed or secreted soluble FGF receptors was collected three times weekly.

4.4. Cell Lysis, Immunoprecipitation, and Gel Electrophoresis

Transfected COS 7 cells were rinsed with cold PBS and lysed in 1% NP-40 lysis buffer
(20 mM Tris (pH7.5), 150 mM NaCl, 1 mM DTT, 1% (v/v) NP-40, 0.5 mM PMSF, 20 µg/mL
leupeptin, and 1 µg/mL aprotinin). The lysates were clarified by centrifugation and
the proteins were immunoprecipitated by incubating the cell lysates with anti-FGFR-1
antibodies (Santa Cruz, CA, USA) at 4 ◦C. After 2 h, protein G-Sepharose beads (25 µL
bead volume) were added and the samples were incubated for an additional 15 h at 4 ◦C.
The immunoprecipitated proteins were extensively washed in lysis buffer and eluted
by boiling in SDS sample buffer. The proteins were resolved by SDS-PAGE on an 8%
polyacrylamide gel (Invitrogen, San Diego, CA, USA).

4.5. Immunoblotting

Proteins separated by SDS-PAGE (sodium dodecyl (lauryl) sulfate-polyacrylamide
gel electrophoresis) were electrotransferred to nitrocellulose membranes and blocked in
blocking buffer (5% (w/v) nonfat dried milk, 50 mM Tris (pH 7.5), 150 mM NaCl, and 0.05%
(v/v) Tween-20) for 2 h at room temperature on a rocker. The membranes were probed
with Mab6 (2 µg/mL) for 15 h at 4 ◦C, as previously described [26]. The immunoreac-
tive proteins were detected by enhanced chemiluminescence (Pierce; Rockford, IL, USA).
All immunoblotting originals can be found at Supplementary Materials.

4.6. Analysis of the Cleavage and Release of Soluble FGFR-1

COS 7 cells transfected with FGFR-1/pcDNA3 were rinsed three times with phos-
phate buffered saline (PBS) and incubated in 2 mL of serum-free OptiMem medium (Life
Technologies, Gibco BRL) for 2–24 h, depending on the experiment, at 7% CO2 and 37 ◦C.
The conditioned medium was collected and clarified by centrifugation to remove cellular
debris and 1.8 mL was incubated with WGA (wheat germ agglutinin)-Sepharose beads
(25 µL bead volume) overnight at 4 ◦C on a rocker to precipitate the FGFR-1 ectodomain.
Following the incubation period, the beads were collected, washed three times in PBS,
and boiled in SDS sample buffer. The shed FGFR-1 ectodomain was detected by im-
munoblot analysis. A semi-quantitative analysis of the FGFR-1 receptor signals was carried
out using the public domain NIH Image program (developed at the U.S. National Institutes
of Health.
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We studied the regulation of soluble FGFR-1 shedding in COS 7 cells which were tran-
siently transfected with FGFR-1/pcDNA3, and in CHO cells which were stably transfected
with FGFR-1/pcDNA3. The cells were incubated in 2 mL of serum-free OptiMem medium
either overnight or for 2–4 h in the presence of various dilutions of the following reagents:
Human recombinant FGF-2 alone; the MMP inhibitors marimastat and CGS 27023A
(0–400 µM); TPA (0–100 ng/mL) in the presence or absence of the protein kinase C in-
hibitor G06983 (1 µM); and FGF-2 in the presence or absence of the FGF receptor tyrosine
kinase inhibitor SU5402 (20 µM) or the protein kinase C inhibitor G06983 (1 µM). The con-
ditioned media containing the shed FGFR-1 ectodomain was collected and analyzed as
described above.

4.7. Purification of Recombinant Soluble FGFR-1 Ectodomains

The shed FGFR-1 ectodomain in the conditioned media of FGFR-1/pcDNA3 cells was
purified to homogeneity over an FGF/HS (heparin sulfate) affinity column [28,63]. Briefly,
3 mg of human recombinant FGF-2 was loaded on a 5 mL heparin-Sepharose Hi-Trap
column (Amersham Pharmacia Biotech, Piscataway, NJ, USA) in 50 mM Hepes (pH 7.5),
0.5 M NaCl, and 10 mM DTT (dithiothreitol) and washed with 50 mM Hepes (pH 7.5) and
0.5 M NaCl (loading buffer). The FGFR-1 conditioned media was adjusted to 0.5 M NaCl,
0.3 mM PMSF (phenylmethylsulfonyl fluoride), pH 7.5; loaded over the FGF-2/HS column;
and washed with loading buffer until the absorbance returned to the baseline. The FGFR-1
ectodomain was eluted with a linear gradient of Buffer A (20 mM NaAcetate pH 5.0, 0.1 M
NaCl, 0.3 mM PMSF), containing 21% Buffer B (A + 3 M NaCl, 0.3 mM PMSF). The eluate
containing the FGFR-1 ectodomain was dialyzed against PBS and concentrated using a
stirred Ultrafiltration Cell concentrator (Millipore Corp., Bedford, MA, USA). Coomassie
blue staining was performed using the GelCode Blue Stain Reagent (Pierce; Rockford, IL,
USA). A typical yield was 40 ug of the shed FGFR-1 ectodomain from 100 mL of h1/p3
conditioned media.

We also purified the shed and secreted FGFR-1 ectodomains with WGA-Sepharose and/or
DEAE-Sepharose columns. For this procedure, conditioned media from FGFR-1/pcDNA3 or
secreted FGFR-1/pcDNA3 cell lines was passed over a WGA-Sepharose column (Vector
Labs; Burlingame, CA, USA); rinsed with 20 mM Hepes (pH 7.5); and eluted with 20 mM
Hepes, 2 mM EDTA (ethylenediaminetetraacetic acid), and 10% glycerol containing 0.5 M
N-acetylglucosamine. The sample was diluted 1:1 with Buffer A (10 mM NaPO4, pH 8.0),
loaded on a DEAE-Sepharose column, and eluted with a linear gradient of Buffer A contain-
ing 0.5 M NaCl. The fractions containing the shed FGFR-1 and secreted ectodomains were
analyzed by SDS-PAGE in combination with immunoblotting and dialyzed against PBS.

4.8. Cell Proliferation Assays

ABAE cells were plated in 24 well plates at 3000 cells/well. The cells were treated in
duplicate in the presence or absence of 0.125 ng/mL of recombinant FGF-2 and various
concentrations of purified soluble FGF receptors on day 1 and again on day 3. After five
days in culture, the cells were washed with phosphate-buffered saline, incubated with 0.5%
trypsin/EDTA and counted with a Coulter counter (Beckman Coulter; Miami, FL, USA).

4.9. Gel Invasion Angiogenesis Assays

Adult bovine aortic endothelial (ABAE) cells were seeded onto collagen gels prepared
with 500 µL Vitrogen 100 (Collagen Corp., Fremont, CA, USA) in 24-well tissue culture
plates at 2 × 105 cells/well in DMEM containing FGF-2 (500 ng) and secreted FGFR-1
receptor at doses of 0, 30, 300, and 3000 ng/mL. After seven days, the invasive capillary-
like structures were photographed within the collagen gel using phase contrast microscopy.
Capillary tube formation was quantified as the total area of vessel growth in three separate
photographic fields for each condition using ImageJ software.
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4.10. 125I-FGF-2 Ligand Binding Assays
125I-FGF-2 ligand binding assays were performed as previously described [64]. Swiss 3T3

fibroblasts were cultured to confluence in 24-well dishes. The cells were chilled to 4 ◦C
and 300 µL of ice-cold dilutions of 125I-FGF-2 (2 ng/mL) in HEPES-buffered DMEM, 0.2%
gelatin, and the soluble FGFR-1 ectodomains were added to the cells in triplicate and
incubated for 2 h at 4 ◦C. The cells were washed once with 0.5 mL of PBS, and twice with
0.5 mL of 20 mM HEPES, 2 M NaCl, pH 7.5, to remove FGF-2 bound to low affinity sites,
and then solubilized with 1% Triton X-100 buffer (1% Triton X-100, 50 mM HEPES, pH 7.5,
50 mM NaCl, 5 mM EDTA, 1 mM Na2VO3), and this was counted as FGF-2 bound to high
affinity sites.

4.11. Measurement of the Stimulation of DNA Synthesis

Swiss 3T3 cells were grown in 96-well dishes (4000 cells/well) for 2 days in DMEM
containing 10% calf serum, at which time they were confluent. After washing with serum-
free DMEM, they were incubated for a further 2 days in DMEM with 0.5% calf serum.
The rate of DNA synthesis was measured 24 h after the addition of FGF-2 and soluble FGF
ectodomains by the addition of 0.2 mCi/well of [methyl-3H]thymidine (6.7 Ci/mole, ICN),
followed by incubation for 5 h. The cultures were then processed for scintillation counting,
as previously described [49].

4.12. Construction of FGFR-1 Mutants

The 3.5 kb cDNA fragment encoding human FGFR-1 in the mammalian expression
vector pcDNA3 (FGFR-1/pcDNA3) was used to generate the mutants employed in this
study. A 138 bp HincII-KpnI fragment containing a portion of the third Ig-domain and
the transmembrane region was subcloned into pBluescript for PCR mutagenesis. The first
mutant—Bingo (B1)—was made by deleting a stretch of seven amino acids called PAVMTSP
(ProAlaValMetThrSerPro) containing the putative Val-Met cleavage site [26,47], located just
eight amino acids before the transmembrane domain. The mutant P2 was constructed by
deleting three additional amino acids, for a total deletion of 10 amino acids (EERPAVMTSP),
and substituting a proline-glycine pair (CCG-GGT) to introduce conformational instability
in the region of the cleavage site. The third mutant—L4—contained a deletion of 14 amino
acids (LEALEERPAVMTSP) preceding the transmembrane region. The loss of a NaeI
restriction site served as a marker to identify the mutants.

The primers used to generate the mutants (upstream and downstream sequences)
were as follows: 5′ CTGGAAGAGAGGCTGTACCTGGAGATC 3′ and 5′ CAGCCTCTCT
TCCAGGGCTTC 3′ for Bingo (B1); 5′ CGGACCCAGGGCTTCCAGAACGGT 3′ and 5′

GTTCTGGAAGCCCTGGGTCCGCTGTACCTGGAGATCATC 3′ for P2; and 5′ AACG-
GTCAACCATGCAGAGTG 3′ and 5′ GCATGGTTGACCGTTCTGTACCTGGAGATCATC
3′ for L4. The mutations were confirmed by sequencing before subcloning back into the
HindIII-KpnI site of pcDNA3/FGFR-1 (h1/p3) for further studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
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Abbreviations

FGF fibroblast growth factor
FGFR fibroblast growth factor receptor
PKC protein kinase C
MMP matrix metalloprotease
TNF tumor necrosis factor
CHO Chinese hamster ovary
ADAM a disintegrin and metalloprotease
MAP kinase mitogen activated protein kinase
ERK extracellular signal regulated kinase
EGF epidermal growth factor
TIMP tissue inhibitor of metalloprotease
TPA 12-O-tetradecanoyl phorbol 13-acetate
ABAE cells adult bovine aortic endothelial cells
DMEM Dulbecco’s modified Eagle media
IMDM Iscoves modified Dulbecco’s media
SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis
WGA wheat germ agglutinin
CSF colony stimulatory factor
PCR polymerase chain reaction
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