
Biostatistics (2022) 23, 3, pp. 772–788 C
doi: 10.1093/biostatistics/kxaa056
Advance Access publication on February 2, 2021

Marginal modeling of cluster-period means and
intraclass correlations in stepped wedge designs with

binary outcomes

FAN LI∗

Department of Biostatistics, Yale School of Public Health, 60 College St, New Haven, CT 06520, USA
and

Center for Methods in Implementation and Prevention Science, Yale School of Public Health, 135
College St, New Haven, CT 06510, USA

fan.f.li@yale.edu

HENGSHI YU

Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109,
USA

PAUL J. RATHOUZ

Department of Population Health, The University of Texas at Austin, Dell Medical School, 1601 Trinity
St, Bldg. B, Austin, TX 78712, USA

ELIZABETH L. TURNER

Department of Biostatistics and Bioinformatics, Duke University School of Medicine, 2424 Erwin Rd,
Durham, NC 27710, USA

JOHN S. PREISSER

Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill,
NC 27514, USA

SUMMARY

Stepped wedge cluster randomized trials (SW-CRTs) with binary outcomes are increasingly used in pre-
vention and implementation studies. Marginal models represent a flexible tool for analyzing SW-CRTs
with population-averaged interpretations, but the joint estimation of the mean and intraclass correla-
tion coefficients (ICCs) can be computationally intensive due to large cluster-period sizes. Motivated
by the need for marginal inference in SW-CRTs, we propose a simple and efficient estimating equations
approach to analyze cluster-period means.We show that the quasi-score for the marginal mean defined from
individual-level observations can be reformulated as the quasi-score for the same marginal mean defined
from the cluster-period means.An additional mapping of the individual-level ICCs into correlations for the
cluster-period means further provides a rigorous justification for the cluster-period approach. The proposed
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approach addresses a long-recognized computational burden associated with estimating equations defined
based on individual-level observations, and enables fast point and interval estimation of the intervention
effect and correlations. We further propose matrix-adjusted estimating equations to improve the finite-
sample inference for ICCs. By providing a valid approach to estimate ICCs within the class of generalized
linear models for correlated binary outcomes, this article operationalizes key recommendations from the
CONSORT extension to SW-CRTs, including the reporting of ICCs.

Keywords: Cluster randomized trials; Finite-sample correction; Generalized estimating equations; Intraclass correla-
tion coefficient; Matrix-adjusted estimating equations (MAEE); Statistical efficiency.

1. INTRODUCTION

1.1. Overview and objectives

Cluster randomized trials (CRTs) are pragmatic clinical trials that test interventions applied to groups
or clusters (Hayes and Moulton, 2009). Methodology for designing, conducting, and analyzing CRTs
has been rigorously developed over decades (Turner, Li, and others, 2017; Turner, Prague, and others,
2017). A principal, but not the sole reason why CRTs are considered is that the intervention has one or
more components defined at the cluster level. Increasingly, CRTs employ stepped wedge (SW) designs,
which are one-way crossover designs where all clusters start out in the control condition and switch to the
intervention at randomly assigned time points (Hussey and Hughes, 2007). Logistical considerations such
as the need to deliver the intervention in stages and the desire to eventually implement the intervention in
all clusters are key factors involved in the decision to adopt a SW-CRT. Given the increasing popularity
of these designs, the development of statistical methods and computational tools for valid analysis is
critically important.

For the past decade, the design and analysis of SW-CRTs have mostly been based on linear mixed
models (Li and others, 2020). Particularly, a major direction of research has been to study these methods
under different random effects structures whose choice induces a marginal covariance structure (Hooper
and others, 2016; Kasza and others, 2019). While not as frequently studied in the SW-CRT literature,
generalized linear mixed models (GLMM) are a broad class of cluster-specific models to analyze clustered
binary outcomes. However, their application carries a couple of caveats. First, with few exceptions (e.g.,
identity link), the interpretation of the intervention effect changes according to different specifications
of the latent random-effects structure. Second, while GLMMs are flexible insofar as accounting for the
dependence of observations within clusters via random effects, they may not adequately describe the pattern
and magnitude of intraclass correlation structures on the natural measurement scale of the outcomes. This
is because exact expressions for the marginal mean and correlation are generally lacking for GLMMs with
a nonidentity link function (Zeger and others, 1988). Perhaps for this reason, while GLMMs are used in
the analysis of SW-CRTs with binary outcomes, they are seldom used as the basis for planning SW-CRTs,
with an exception in Zhou and others (2020) who developed a numerical approach for power calculation
using the random-intercept linear probability model.

Motivated by the Washington State Expedited Partner Therapy (EPT) trial (Golden and others, 2015),
we consider marginal model based analyses of SW-CRTs with binary outcomes and flexible choice of
link functions. Marginal models separately specify the mean and the intraclass correlation structures,
with the interpretation of the marginal mean parameters remaining the same regardless of correlation
specification (Liang and Zeger, 1986; Zeger and others, 1988). Further, the marginal modeling approach
may be more robust because misspecification of the correlation structure does not affect the consistency of
the regression parameter estimator in the marginal mean model. Finally, the marginal modeling framework
permits direct estimation of intraclass correlation coefficients (ICCs) and assessing their uncertainty on
the natural measurement scale of the outcomes. Such information is particularly useful as input parameters
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for sample size determination in cluster trials, generally (Preisser and others, 2003), and in SW-CRTs,
specifically (Li and others, 2018). Accurate reporting of the intraclass correlation structures has been long
advocated in parallel CRTs (Preisser and others, 2007) and aligns with item 17a of the recent CONSORT
extension to SW-CRTs, which recommends reporting of various intraclass correlation estimates to facilitate
the planning of future trials (Hemming and others, 2018).

1.2. Motivating study: the Washington State EPT trial

The Washington State EPT trial is a SW-CRT that evaluates the population effect of an expedited
patient-delivered partner notification strategy versus the standard partner notification for the treatment
of Chlamydia and Gonorrhea infection (Golden and others, 2015). The intervention includes the promo-
tion of patient-delivered partner therapy through commercial pharmacies and targeted provision of public
health partner services and was designed to increase treatment adoption for sex partners of individual
heterosexual patients. The randomization is carried out at the level of local health jurisdiction (LHJ),
namely the administrative unit corresponding to a single county. Each LHJ is a cluster, and a total of 23
LHJs were randomized from 2007 to 2010 over four waves until the intervention had been disseminated
in all LHJs. Cross-sectional surveys were conducted based on sentinel women aged 14–25 years in each
LHJ at baseline and in between waves to measure the prevalence of Chlamydia and Gonorrhea. Due to
the cross-sectional design, different women are included in different periods.

Following Golden and others (2015), we restrict the analysis to the 22 LHJs that provide individual-
level data on the Chlamydia outcome. Define Yijk as the binary Chlamydia infection status for sentinel
woman k = 1, . . . , nij surveyed during period j = 1, . . . , J in LHJ i = 1, . . . , I ; the value of Yijk equals 1
if the sentinel woman reports Chlamydia and 0 otherwise. Li and others (2018) and Li (2020) specified
the following marginal mean model for SW-CRTs

g(μijk) = βj + Xijδ, (1.1)

where μijk is the mean of Yijk , g is the link function, βj is the jth period effect, Xij is the intervention
indicator, and δ is the time-adjusted average intervention effect on the link function scale. Because it is
also of interest to report the within-period and between-period correlations, Li and others (2018) proposed
a paired estimating equations approach to simultaneously estimate the intervention effect and correlation
parameters. However, in many cross-sectional SW-CRTs, the cluster-period sizes nij’s are large and highly
variable. In the EPT trial design, for example, the cluster-by-period diagram in Figure 1 shows that the
cluster size ni+ = ∑J

j=1 nij ranges from 277 to 5393. As the correlation estimating equations can involve
as many as

(5393
2

) ≈ 14.5 million residual cross-product terms in one cluster, the estimation of correlations
via individual-level analysis quickly becomes computationally burdensome or infeasible.

With these considerations in mind, this article develops a computationally convenient marginal mod-
eling approach to estimate the intervention effect, the ICCs and their respective sampling variances in
SW-CRTs with large and variable cluster sizes. While binary outcomes are the focus of the methods
development, application, and evaluation of statistical properties of the proposed method, extensions to
continuous and count outcomes are discussed in the Supplementary Material available at Biostatistics
online. In what follows, we reformulate the estimating equations based on individual-level analysis to
ones based on cluster-period means to alleviate the computational challenge without compromising the
ability to estimate individual-level ICCs. We allow flexible link functions for the marginal mean and con-
sider the estimation and inference for two multilevel correlation structures appropriate for cross-sectional
SW designs.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa056#supplementary-data
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Fig. 1. Cluster-by-period diagram of the Washington State EPT Trial. Each white cell represents a control cluster-
period and each gray cell indicates an intervention cluster-period. The corresponding cluster-period sizes are indicated
in each cell.

2. MODELING CLUSTER-PERIOD MEANS IN CROSS-SECTIONAL DESIGNS

Because marginal mean model (1.1) is a function of both period and intervention, we consider collapsing
the individual-level outcomes to cluster-period means Y i = (Y i1, . . . , Y iJ )

T = (Yi1+/ni1, . . . , YiJ+/niJ )
T ,

where Yij+ = ∑nij
k=1 Yijk is the cluster-period total, and nij the cluster-period size. We assume that the

cluster-period sizes are variable, which is almost always the case with cross-sectional SW-CRTs. Let the
mean of Y i be μi = (μi1, . . . , μiJ )

T , where for a binary outcome μij = E(Yij+)/nij is the prevalence in the
(i, j)th cluster-period. Because the right hand side of marginal model (1.1) depends only on cluster and
period, aggregating over cluster-periods implies the same marginal model, g(μij) = βj + Xijδ. Writing
θ = (β1, . . . , βJ , δ)T , the generalized estimating equations (GEE; Liang and Zeger, 1986) for θ are

I∑
i=1

DT
1iV

−1
1i (Y i − μi) = 0, (2.2)
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where D1i = ∂μi/∂θT and V 1i = cov(Y i) is the working covariance matrix parameterized by the
individual-level variances and pairwise correlations. This is the usual GEE applied to correlated binomial
data, and our novel contribution is to enable the estimation of individual-level ICCs that parameterize the
cluster-period mean covariance V 1i.

Several prior efforts collapsed individual-level observations for analyzing SW-CRTs. Hussey and
Hughes (2007) suggested a linear mixed model based on cluster-period means with a random inter-
cept. For binary outcomes, their approach only estimates the treatment effect on the risk difference scale
and does not estimate valid ICCs defined from the individual-level model under variable cluster sizes (see
Supplementary material Appendix A available at Biostatistics online for details). Thompson and others
(2018) proposed a permutation test based on cluster-period means. However, their approach assumed
working independence and ignored the estimation of correlation structures. Our approach distinguishes
from these two earlier efforts by allowing arbitrary link functions in the marginal mean model for binary
outcomes as well as by enabling valid estimation and inference for ICC structures.

In cross-sectional designs, distinct sets of participants are included in each period, and require mod-
eling both the within-period and between-period correlations for each pair of individual-level outcomes.
We consider two multilevel correlation structures: the nested exchangeable and the exponential decay
structures. The nested exchangeable correlation structure (Li and others, 2018) differentiates between
the within-period and between-period ICCs. Specifically, this structure assumes a constant correlation α0

between two individual outcomes from the same cluster within the same period, and a constant correlation
α1 between two individual outcomes from the same cluster across two periods. Equating α1 with α0 leads
to the simple exchangeable structure as in standard GEE analyses (Hussey and Hughes, 2007). The expo-
nential decay correlation structure was recently introduced in the context of linear mixed models (Kasza
and others, 2019; Li and others, 2020). While this structure assumes a constant correlation α0 between
two individual outcomes from the same cluster within the same period, it allows the between-period cor-
relation to decay at an exponential rate. Mathematically, the correlation between two outcomes measured
in the jth and lth periods (1 ≤ j, l ≤ J ) is α0ρ

|j−l| (0 ≤ ρ ≤ 1). In the absence of decay (ρ = 1), the
exponential decay structure also reduces to the simple exchangeable structure. Example matrix forms of
these correlation structures are provided in STable 1 in the Supplementary material available at Biostatis-
tics online. In the following two sections, we develop estimation and inference strategies under each of
these correlation structures.

2.1. Nested exchangeable correlation structure

The individual-level correlation structure informs the specification of covariances for cluster-period means.
Under the nested exchangeable correlation structure, the diagonal element of V 1i is

σijj = var(Y ij+) = νij

nij

{
1 + (nij − 1)α0

}
, (2.3)

where νij = μij(1 −μij) is the binomial variance. The design effect, 1 + (nij − 1)α0, is the classic variance
inflation factor for over-dispersed binomial outcomes. The off-diagonal element of V 1i is

σijl = cov(Y ij+, Y il+) = √
νijνilα1. (2.4)

When all nij → ∞, var(Y ij+) → νijα0 and the pairwise cluster-period mean correlation corr(Y ij+, Y il+) →
α1/α0, which is identical to the cluster autocorrelation defined in Hooper and others (2016) and Li
and others (2020) based on linear mixed models. This also suggests that the cluster-period means are
approximately exchangeable when all nij’s are large, but such an approximation may be crude in cases
such as the motivating study where the nij’s vary from 19 to 1553.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa056#supplementary-data
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Define α = (α0, α1)
T , we specify the covariance estimating equations (Zhao and Prentice, 1990) to

estimate α

I∑
i=1

DT
2iV

−1
2i (S i − ηi) = 0, (2.5)

where ηi = (σi11, σi12, . . . , σi22, . . .)T , S i = (si11, si12, . . . , si22, . . .)T , sijl = (Y ij+ − μ̂ij)(Y il+ − μ̂il) is the
residual cross-product, D2i = ∂ηi/∂αT and V 2i is the working variance for S i. Parametric specification of
working covariances V 2i requires the joint distributions of within-cluster triplets and quartets, which are
not provided from the specification of marginal mean and covariances. Henceforth, a practical strategy is
to set V i2 as identity matrix (Sharples and Breslow, 1992). In this case, the following closed-form updates
are implied from (2.5)

α̂0 =
∑I

i=1

∑J
j=1

(
nij−1

nij

)
ν̂ij

(
sijj − ν̂ij

nij

)
∑I

i=1

∑J
j=1

(
nij−1

nij

)2
ν̂2

ij

, α̂1 =
∑I

i=1

∑
j �=l sijl

√
ν̂ij ν̂il∑I

i=1

∑
j �=l ν̂ij ν̂il

. (2.6)

Noticeably, even though the cluster-period sizes nij could be large and pose a computational challenge
for individual-level paired estimating equations, cluster-period aggregation reduces the effective cluster
sizes to J , the number of periods, which rarely exceeds 10 (Grayling and others, 2017). On the other hand,
because SW-CRTs often involve a limited number of clusters (fewer than 30), the residual vector Y i − μ̂i

could be biased toward zero due to overfitting, leading to finite-sample bias in the estimation of correlation
parameters. Here, we extend the multiplicative adjustment of Preisser and others (2008) to the covariance
estimating equations (2.5) by the following argument. Because E[(Y i−μ̂i)(Y i−μ̂i)

T ] ≈ (I−H 1i)cov(Y i),
where H 1i = D1i(

∑I
i=1 D1iV

−1
1i D1i)

−1DT
1iV 1i is the cluster leverage, a bias-adjusted, and hence more

accurate estimator for the covariance of Y i is obtained as

c̃ov(Y i) = (I − H 1i)
−1(Y i − μ̂i)(Y i − μ̂i)

T , (2.7)

where H 1i is evaluated at θ̂ . Improved estimation of correlation parameters may then be achieved by
replacing S i in (2.5) with S̃ i = (s̃i11, s̃i12, . . . , s̃i22, . . .), where s̃ijl is the (j, l)th element of the bias-adjusted
covariance c̃ov(Y i). We will similarly define the cluster leverage for the covariance estimating equations
as H 2i = D2i(

∑I
i=1 D2iV

−1
2i D2i)

−1DT
2iV 2i, which is evaluated at θ̂ and α̂.

When the number of clusters I is large, the joint distribution of I 1/2(θ̂ − θ), I 1/2(α̂ − α) is Gaussian
with mean zero and covariances estimated by

I ×
(

� 0
Q P

)(
�11 �12

�T
12 �22

)(
� QT

0 P

)
, (2.8)

where � =
{∑I

i=1 DT
1iV

−1
1i D1i

}−1
, P =

{∑I
i=1 DT

2iV
−1
2i D2i

}−1
, Q = P

{∑I
i=1 DT

2iV
−1
2i

∂Si
∂θT

}
�,

�11 =
I∑

i=1

C1iD
T
1iV

−1
1i B1i(Y i − μ̂i)(Y i − μ̂i)

T BT
1iV

−1
1i D1iC

T
1i

�12 =
I∑

i=1

C1iD
T
1iV

−1
1i B1i(Y i − μ̂i)(S̃ i − η̂i)

T BT
2iV

−1
2i D2iC

T
2i



778 F. LI AND OTHERS

�22 =
I∑

i=1

C2iD
T
2iV

−1
2i B2i(S̃ i − η̂i)(S̃ i − η̂i)

T BT
2iV

−1
2i D2iC

T
2i,

where we will discuss the choice of {C1i, C2i} and {B1i, B2i} in the following. If we set C1i = I dim(θ),
C2i = I dim(α), B1i = I dim(Y i)

, B2i = I dim(S̃i)
, equation (2.8) becomes the robust sandwich variance in the

spirit of Zhao and Prentice (1990), or BC0. Because the number of clusters included in SW-CRTs are
frequently less than 30, the following finite-sample bias corrections could provide improved inference for
θ and α. Specifically, setting C1i, C2i as identity but B1i = (I dim(Y i)

− H 1i)
−1/2, B2i = (I dim(S̃i)

− H 2i)
−1/2

results in the bias-corrected covariance that extends Kauermann and Carroll (2001), or BC1. Setting
C1i, C2i as identity but B1i = (I dim(Y i)

− H 1i)
−1, B2i = (I dim(S̃i)

− H 2i)
−1 results in the bias-corrected

covariance that extends Mancl and DeRouen (2001), or BC2. Finally, setting B1i, B2i as identity but
C1i = diag{(1 − min{ζ1, [DT

1iV
−1
1i D1i]jj�})−1/2}, C2i = diag{(1 − min{ζ2, [DT

2iV
−1
2i D2i]jjP})−1/2} extends

Fay and Graubard (2001), or BC3. Usually we set ζ1 = ζ2 = 0.75 to ensure that multiplicative bias
correction is no larger than 2-fold. When I is smaller than 30, each of these bias-corrections could inflate
the variance relative to BC0 and potentially improve the finite-sample behavior of the sandwich variance.

2.2. Exponential decay correlation structure

Under the exponential decay correlation structure, the covariances for cluster-period means V 1i include
diagonal element σijj defined in equation (2.3), and off-diagonal element becomes σijl = cov(Y ij+, Y il+) =√

νijνilα0ρ
|j−l|. When all nij → ∞, the pairwise cluster-period mean correlation corr(Y ij+, Y il+) → ρ |j−l|,

which corresponds to a first-order auto-regressive structure. Again, such an approximation may not be
accurate in the Washington State EPT trial because the cluster-period sizes could occasionally be small
and quite variable.

Unlike the expression obtained under the nested exchangeable correlation structure, σijl obtained under
the exponential decay structure is nonlinear in the decay parameter ρ. Based on estimating equations (2.5)
and the bias-adjusted covariance S̃ i, we can show that each update of (α0, ρ) joint solves the following
system of equations

α̂0 =
∑I

i=1

∑J
j=1

(
nij−1

nij

)(
s̃ijj ν̂ij − ν̂2

ij
nij

)
+∑I

i=1

∑
j �=l s̃ijl

√
ν̂ij ν̂ilρ̂

|j−l|

∑I
i=1

∑J
j=1

(
nij−1

nij

)2
ν̂2

ij +∑I
i=1

∑
j �=l ν̂ij ν̂ilρ̂2|j−l|

(2.9)

I∑
i=1

∑
j �=l

|j − l|s̃ijl

√
ν̂ij ν̂ilρ̂

|j−l|−1 −
I∑

i=1

∑
j �=l

|j − l|ν̂ij ν̂ilα̂0ρ̂
2|j−l|−1 = 0. (2.10)

In particular, we observe that the second equation is a polynomial function of ρ to the order of 2|J −1|−1,
and so one can use root-finding algorithms to search for the zero-value within the unit interval. Given
each update of the marginal mean parameters, an update of the exponential decay correlation structure
can be obtained by iterating between (2.9) and (2.10). The variance estimators for both θ and α with
finite-sample corrections can be obtained by following the approach in Section 2.1. Extensions of the
proposed cluster-period marginal modeling approach for continuous and count outcomes are presented in
the Supplementary material Appendix B available at Biostatistics online.



Marginal modeling of SW trials with binary outcomes 779

3. CONSIDERATIONS ON ASYMPTOTIC EFFICIENCY

We assess the asymptotic efficiency in estimating the intervention effect δ based on estimating equations
defined for cluster-period means. In the same context, Li and others (2018) provided a paired estimat-
ing equations for individual-level outcomes, which in principle serves as the efficiency gold-standard.
However, the computational burdens of that approach in analyzing the motivating trial are 2-fold: those
associated with repeatedly inverting a large correlation matrix for marginal mean estimation and those
associated with enumerating all pairwise residual cross-products for correlation estimation. These com-
putational disadvantages prohibit the application of individual-level GEE to analyze SW-CRTs with large
cluster-period sizes, especially when the correlation model includes more than one parameter. In contrast,
the cluster-period GEE converges in seconds because the induced correlation matrix is of dimension J ×J
and only

(J
2

)
pairwise residual products need to be enumerated in each cluster. It is then of interest to

study whether the cluster-period GEE compromises efficiency in estimating the intervention effect δ. To
proceed, we observe that both the nested exchangeable and exponential decay correlation structures are
special cases of the block Toeplitz structure defined in Supplementary material Appendix C available at
Biostatistics online. In Supplementary material Appendix D available at Biostatistics online, we show
that, as long as the working correlation model for individual-level data is block Toeplitz, the marginal
mean estimating equations for cluster-period means are equivalent to those for individual-level outcomes.
Specifically, we define the individual-level estimating equations for θ as

∑I
i=1 ET

1iM
−1
1i (Y i − ϑi) = 0,

where Y i = (Yi11, Yi12, . . . , Yi21, . . .)T , ϑi = (μi11T
ni1

, . . . , μiJ 1T
niJ

)T , M 1i = cov(Y i), and E1i = ∂ϑi/∂θT ,
and the following result holds.

THEOREM 1 Assuming marginal mean model is (1.1) and the individual-level working correlation is block
Toeplitz, the quasi-score defined from the cluster-period means and the induced cluster-period mean
covariance structure is identical to the quasi-score defined from the individual-level outcomes. That is,
DT

1iV
−1
1i (Y i − μ) = ET

1iM
−1
1i (Y i − ϑi) for each cluster i. Similarly, DT

1iV
−1
1i D1i = ET

1iM
−1
1i E1i.

To establish the above general result under variable cluster-period sizes, a mathematical induction
argument (Supplementary material Appendix D available at Biostatistics online) is necessary because
an analytical inverse cannot be easily obtained for the block Toeplitz matrix. Theorem 1 indicates that
there is no loss of asymptotic efficiency for estimating the intervention effect that results from cluster-
period aggregation, as long as the induced cluster-period mean correlation matrix is properly specified.
Particularly, assuming equal cluster-period sizes and a linear mixed model with Gaussian outcomes,
Grantham and others (2019) suggested that the linear mixed model based on the cluster-period summary
results in no loss of information for estimating the treatment effect in SW-CRTs as long as the within-period
observations are exchangeable. Theorem 1 generalizes their finding to GEE with arbitrary specification
of link and variance functions and further relaxes their equal cluster-period size assumption.

Theorem 1 also provides a convenient device to numerically evaluate the asymptotic relative efficiency
(ARE) between accurately modeling the cluster-period mean correlations versus using a working inde-
pendence structure. To further support the application of the proposed approach versus using working
independence in analyzing the motivating study, we calculate the ARE in estimating δ between these two
approaches. To do so, we assume a SW-CRT with 22 clusters and 5 periods, where the randomization
follows the cluster-by-period diagram in Figure 1. We set the true marginal mean model as equation (1.1)
with a logit link. The period effect βj’s are specified so that the outcome prevalence decreases from 25% to
20% in the absence of intervention, and the intervention effect corresponds to an odds ratio of eδ = 0.75.
To account for variable cluster-period sizes, we resample the cluster-period sizes from the motivating
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Table 1. Mean relative efficiency in estimating the marginal intervention effect δ when the correlation
structure is properly modeled versus when working independence is used in the GEE analyses of cross-
sectional SW-CRTs with variable cluster-period sizes bootstrapped from the Washington EPT study

True correlation: nested exchangeable True correlation: exponential decay

α0 = 0.1 α0 = 0.05 α0 = 0.02 α0 = 0.1 α0 = 0.05 α0 = 0.02

α1 ARE α1 ARE α1 ARE ρ ARE ρ ARE ρ ARE

0.1 44.9 0.05 22.5 0.02 9.4 1 44.9 1 22.5 1 9.4
0.08 6.5 0.04 5.4 0.01 2.3 0.8 5.7 0.8 4.7 0.8 3.4
0.06 3.6 0.03 3.3 0.005 1.8 0.5 2.5 0.5 2.3 0.5 2.0
0.04 2.5 0.02 2.4 0.002 1.6 0.2 1.9 0.2 1.8 0.2 1.6
0.02 2.0 0.01 1.9 0.001 1.6 0.05 1.9 0.05 1.8 0.05 1.6

Results are averaged over 1000 bootstrap replicates.

study and obtain 1000 bootstrap replicates. For the kth bootstrap replicate, we obtain

τk =
[
(
∑I

i=1 DT
1i�

−1
1i D1i)

−1(
∑I

i=1 DT
1i�

−1
1i V 1i�

−1
1i D1i)(

∑I
i=1 DT

1i�
−1
1i D1i)

−1
]

(J+1,J+1)[
(
∑I

i=1 DT
1iV

−1
1i D1i)−1

]
(J+1,J+1)

,

where �1i is a J × J diagonal matrix with the jth element as νij/nij (i.e. working independence covariance
model), and all parameters evaluated at the truth. The ARE is then estimated as

∑1000
k=1 τk/1000. Table 1

presents theARE under different true correlation models. It is evident that the efficiency gain from properly
modeling the correlations is maximum (ARE ≈ 44 when α0 = α1 = 0.1) when the within-period ICC
and between-period ICC are identical, assuming the latter does not exceed the former. The ARE decreases
when the within-period ICC decreases, and also when the between-period ICC deviates from the within-
period ICC. In the scenario where α0 = 0.02 and α1 = 0.001, modeling the correlations is still 60%
more efficient than ignoring the correlation structure in estimating δ. These observations highlight the
importance of correlation specification in SW-CRTs when the cluster-period sizes are highly variable.

4. SIMULATION STUDIES

We conduct two sets of simulation experiments to assess the finite-sample operating characteristics of
the cluster-period GEE for analyzing correlated binary outcomes in cross-sectional SW-CRTs. In the
first simulation experiment, we focus on a limited number of clusters I ∈ {12, 24, 36} with treatment
sequences randomized across J = 5 periods. We assume all clusters receive the control condition during
the first period J = 1, and an equal number of clusters cross over to intervention at each wave. We use
the Qaqish (2003) method to generate correlated individual-level binary outcomes. The true marginal
mean model is given by (1.1), where g is a logit link and the effect size δ = log(0.5). We assume
the baseline prevalence of the outcome is 35% and a gently decreasing time trend with βj − βj+1 =
0.1 × (0.5)j for j ≥ 1. Both the nested exchangeable and the exponential decay correlation structures
are considered in simulating the data. When the true correlation is nested exchangeable, we consider
(α0, α1) ∈ {(0.03, 0.015), (0.1, 0.05)}, representing small to moderate within-period and between-period
correlations previously reported (Martin and others, 2016). When the true correlation is exponential decay,
we consider (α0, ρ) ∈ {(0.03, 0.8), (0.1, 0.5)} in accordance with values assumed in previous simulations
for cohort stepped wedge designs (Li, 2020). In this first simulation experiment, we consider relatively
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large but more variable cluster-period sizes, randomly drawn from DiscreteUniform(50, 150). Here, the
maximum total number of observations in each cluster is allowed to be 750, and the individual-level GEE
described in Li and others (2018) becomes computationally burdensome to fit due to (i) the enumeration
of a maximum of

(750
2

) = 280 875 pairwise residual cross-products in each cluster and (ii) numerical
inversion of a large correlation matrix in each modified Fisher-scoring update. We therefore only consider
analyzing the simulated data via the cluster-period GEE with the correct specification of the marginal mean
and induced correlation structure. We simulate 3000 data replicates, and study the percent relative bias
and coverage probability in estimating the marginal intervention effect and correlation parameters. The
comparisons are made between the uncorrected estimating equations (UEE), namely equation (2.5), and
the matrix-adjusted estimating equations (MAEE), namely equation (2.5) but now with the bias-adjusted
cross-products S̃ i.

Table 2 summarizes the percent relative bias results. Overall, the bias of the intervention effect remains
insensitive to bias corrections of the correlation estimating equations, corroborating the findings of Lu and
others (2007) for individual-level GEE. However, when the true correlation structure is nested exchange-
able, MAEE substantially reduces the negative bias of UEE in estimating α0 and α1. When the true
correlation structure is exponential decay, MAEE similarly reduces the negative bias of UEE in estimat-
ing the within-period correlation α0, but comes at a cost of slightly inflating the negative bias in estimating
the decay parameter ρ, especially when I = 12. This is because α0 and ρ enter the polynomial estimating
equation (2.10) in a multiplicative fashion, while the updates for α0 and α1 under the nested exchangeable
structure are nearly orthogonal. As the number of clusters increase to I = 24 or 36, both MAEE and UEE
have negligible bias in estimating ρ, but MAEE still has notably smaller bias in estimating α0.

STable 2 in the Supplementary material available at Biostatistics online summarizes the coverage
probability for δ. The confidence intervals (CIs) are constructed based on the tI−2 quantiles as this approach
has been shown to provide robust small-sample behavior in previous simulations with individual-level
GEE (Li, 2020; Ford and Westgate, 2020). In addition to the model-based variance and the usual sandwich
variance, we examine three bias-corrected variances introduced in Section 2.1. Based on a binomial model
with 3000 replicates, we consider the empirical coverage between 94.2% and 95.8% as close to nominal.
STable 2 indicates that the CIs for δ constructed with the model-based variance or any of the bias-
corrected variances generally provide close to nominal coverage, while those based on BC0 frequently
lead to under coverage. STable 3 and 4 summarize the coverage probability of the correlation parameters
(interval constructed based on the same tI−2 distribution). Given the limited number of clusters and variable
cluster sizes, the coverage of correlation parameters is frequently below nominal. However, MAEE can
substantially improve the coverage of the correlations parameters. Throughout, the CIs constructed based
on BC2 provide the best coverage for correlations, a finding that echoes Perin and Preisser (2017) with
alternating logistic regressions.

To further investigate the coverage probability of the correlation parameters with a larger number of clus-
ters, we consider a second set of experiments, with the same simulation design except for smaller cluster-
period sizes. Specifically, the cluster-period sizes are randomly drawn from DiscreteUniform(25, 50), and
the number of clusters I is varied from 12 to 120. The coverage results for the intervention effect parameter
δ are largely consistent with those from the first simulation experiment, and are presented in SFigure 1 and
2 in the Supplementary material available at Biostatistics online. However, the results further indicate that
the model-based variance and BC2 may lead to over coverage with I = 12 and I = 24, and that BC1 seems
to have the most robust performance. Next, Figure 2 presents the coverage for the nested exchangeable
correlation structure when α0 = 0.03 and α1 = 0.015. Similar results for α0 = 0.1 and α1 = 0.05 are
in SFigure 3. These figures indicate that MAEE coupled with BC2 leads to higher and closer to nominal
coverage for α0 and α1 compared to UEE. Likewise, MAEE also improves the empirical coverage for α0

and ρ under the exponential decay correlation structure, and the results are presented in SFigure 4 and 5.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa056#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa056#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa056#supplementary-data
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Table 2. Percent relative bias of model parameters as a function of number of clusters I under two different
correlation structures: nested exchangeable (NE) and exponential decay (ED)

Bias δ̂ Bias α̂0 Bias α̂1 or ρ̂

UEE MAEE UEE MAEE UEE MAEE

Correlation structure I = 12

NE(α0, α1)
(0.03, 0.015) 0.5 0.5 −13.9 −0.5 −10.7 −1.5
(0.1, 0.05) 2.2 2.2 −9.9 0.9 −8.7 0.3

ED(α0, ρ)
(0.03, 0.8) 0.2 0.2 −12.6 −0.1 −1.8 −4.0
(0.1, 0.5) 2.8 2.8 −9.5 1.6 −2.1 −3.0

Correlation structure I = 24

NE(α0, α1)
(0.03, 0.015) 0.3 0.3 −6.8 −0.2 −4.6 0.0
(0.1, 0.05) 0.3 0.3 −5.2 0.1 −4.4 0.1

ED(α0, ρ)
(0.03, 0.8) 0.2 0.2 −6.4 −0.2 −0.4 −1.4
(0.1, 0.5) 0.6 0.6 −5.3 0.1 −1.5 −1.9

Correlation structure I = 36

NE(α0, α1)
(0.03, 0.015) 0.5 0.5 −5.0 −0.6 −4.2 −1.2
(0.1, 0.05) 1.1 1.1 −3.7 −0.2 −3.8 −0.8

ED(α0, ρ)
(0.03, 0.8) 0.4 0.4 −4.9 −0.8 −0.7 −1.3
(0.1, 0.5) 1.3 1.3 −3.6 0.0 −1.4 −1.7

The cluster-period sizes are randomly drawn from DiscreteUniform(50, 150) and the results are based on 3000 simulations.

5. ANALYSIS OF THE WASHINGTON STATE EPT TRIAL

We apply the cluster-period GEE to analyze cluster-period proportions in the Washington State EPT trial.
The focus of this analysis is on estimating the intervention effect and the intraclass correlation structure with
respect to the Chlamydia outcomes. We consider the marginal model for cluster-period means logit(μij) =
βj + δXij, where βj (j = 1, . . . , 5) is the period effect and exp(δ) is the population-averaged odds ratio. To
model the within-cluster correlations, we consider the simple exchangeable structure, as well as the nested
exchangeable and exponential decay structures. Of note, the simple exchangeable structure is obtained
when we enforce α1 = α0 in the nested exchangeable structure or ρ = 1 in the exponential decay structure.
We do not consider the working independence assumption, because reporting ICCs is considered good
practice per the CONSORT extension and useful for planning future SW-CRTs (Hemming and others,
2018).

Table 3 summarizes the point estimates and bias-corrected standard errors of the marginal mean and
correlation parameters from the analysis of all sentinel women. Informed by the simulation study in Section
4, we report the BC1 standard error estimates for all marginal mean parameters and the BC2 standard error
estimates for all correlation parameters. The estimated odds ratios due to the EPT intervention are 0.868,
0.867, and 0.883, under the simple exchangeable, nested exchangeable and exponential decay correlation
models. All 95% CIs include one. Because the prevalence of Chlamydia is around 6% and is considered
rare, the odds ratio approximates the relative risk. Therefore, interpreting the odds ratio as a relative risk,
we conclude that the EPT intervention results in an approximately 12% reduction in Chlamydial infection
among women aged between 14 and 25. This finding is consistent with that in Golden and others (2015)
based on generalized linear mixed models. We additionally report the intraclass correlation estimates
and their estimated precisions for the Chlamydia outcome on the natural scale of the measurement. The
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Fig. 2. Coverage of 95% confidence intervals for correlation parameters based on the tI−2 quantiles as a function of
number of clusters I under the nested exchangeable (NE) correlation structure when α0 = 0.03 and α1 = 0.015.
The cluster-period sizes are randomly drawn from DiscreteUniform(25, 50). The acceptable bounds according to
simulation error based on 3000 replicates are shown with the dashed horizontal lines.

within-period correlation α̂0 ≈ 0.007, as estimated from both the nested exchangeable and exponential
decay model. Under the nested exchangeable model, the between-period correlation α̂1 ≈ 0.004, which is
approximately one-half of within-period correlation. The standard error of the between-period correlation
is also much smaller than that of the within-period correlation. Under the exponential decay model, the
decay parameter is estimated to be ρ̂ ≈ 0.7, suggesting a moderate degree of between-period correlation
decay over five periods.

As an exploratory analysis, we adapt the correlation information criteria (CIC; Hin and Wang, 2009)
for the cluster-period GEE and compare the fit of the correlation structures. Specifically, we define
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Table 3. Parameter estimates of marginal mean and correlation parameters from the overall analysis of
Washington State EPT Trial using MAEE

Simple exchangeable Nested exchangeable Exponential decay

Marginal mean
β1 (period 1) −2.443 (0.091) −2.446 (0.095) −2.437 (0.095)
β2 (period 2) −2.454 (0.091) −2.439 (0.083) −2.444 (0.089)
β3 (period 3) −2.535 (0.094) −2.495 (0.100) −2.508 (0.100)
β4 (period 4) −2.609 (0.106) −2.606 (0.115) −2.613 (0.115)
β5 (period 5) −2.537 (0.145) −2.535 (0.128) −2.552 (0.131)
δ (treatment) −0.141 (0.092) −0.142 (0.090) −0.124 (0.087)

Intraclass correlation
α0 0.0051 (0.0016) 0.0072 (0.0039) 0.0070 (0.0039)
α1 — 0.0038 (0.0015) —
ρ — — 0.7157 (0.2962)

Correlation selection criteria
CICcp 16.12 16.53 16.10

Standard error of the marginal mean parameters are based on BC1 and standard error of the intraclass correlation parameters are
based on BC2. All standard error estimates are reported in the parenthesis.

CICcp = trace

[(
I∑

i=1

DT
1i�

−1
1i D1i

)
��11�

∣∣∣ θ=θ̂(Ri),α=α̂(Ri)

]
, (5.11)

where �1i is a J ×J working independence covariance, ��11� is the bias-corrected sandwich variance of
the marginal mean (BC1), and all parameters are evaluated at the estimates under the assumed correlation
structure. According to Theorem 1, as I → ∞, the limit of (5.11) is identical to the limit of the usual
CIC defined for individual-level GEE in Hin and Wang (2009) under the marginal mean model (1.1),
providing some justification for using this metric. From Table 3, while the smallest CICcp corresponds to
and favors the exponential decay correlation, the CICcp of the simple exchangeable correlation structure is
only larger by a small amount. Future simulation studies are needed to better assess the operating charac-
teristics of CICcp for selecting the optimal correlation structures based on cluster-period GEE analysis of
SW-CRTs.

To explore treatment effect among subgroups, we perform the cluster-period GEE analyses for adoles-
cent girls (aged between 14 and 19) and adult women (aged greater than 19), and present the results in
STable 5 and 6. From STable 5, the intervention leads to a more pronounced reduction of Chlamydia infec-
tion among adolescent girls compared to the overall analysis. Under the nested exchangeable correlation
model, the intervention effect in odds ratio is estimated as 0.780, and its 95% CI (0.625, 0.972) excludes
one. In other words, the EPT intervention results in 22% reduction in Chlamydia infection among adoles-
cents. Given that adolescents are at high risk for acquiring sexually transmitted diseases and that research
on effectiveness of EPT among this population is limited (Gannon-Loew and others, 2017), our subgroup
analysis may provide new evidence. For brevity, the comparison between correlation structures among the
adolescent population and the analysis of the adult women subgroup are presented in the Supplementary
material Appendix E available at Biostatistics online.
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6. DISCUSSION

In the analysis of SW-CRTs with binary outcomes, statistical methods are seldom used to simultaneously
obtain point and interval estimates for the intervention effect and the ICCs. An exception is the paired
estimating equations approach studied in Li and others (2018). However, that approach is computationally
infeasible with large cluster sizes, which are typically seen in cross-sectional SW-CRTs. To address
this limitation, we propose a simple and efficient estimating equations approach based on cluster-period
means, which resolves the computational burden of the approach based on individual-level observations. In
practice, one could first attempt an individual-level GEE analysis with an appropriate correlation structure.
However, if that procedure becomes computationally intensive, the proposed cluster-period GEE provides
a valid workaround. Because standard software could only provide valid intervention effect estimates
with cluster-period means in SW-CRTs, we have developed an R package geeCRT to implement both the
individual-level GEE studied in Li and others (2018) and the cluster-period GEE proposed in this article.

Although individual-level analysis has usually been considered more efficient than cluster-level anal-
ysis in CRTs, we have shown in Theorem 1 that the cluster-period GEE and individual-level GEE are
asymptotically equally efficient in estimating the treatment effect parameter in cross-sectional SW-CRTs.
The full efficiency of the cluster-period analysis depends on the induced correlation structure, defined in
Sections 2.1 and 2.2. On the other hand, cluster-period analysis of SW-CRTs assuming working indepen-
dence suffers from statistical inefficiency (Thompson and others, 2018). The numerical study in Section
3 emphasizes the necessity of carefully characterizing the induced cluster-period correlation when per-
forming a cluster-period analysis. Finally, the proposed approach enables fast estimation and inference for
the correlation parameters, which aligns with the current recommendation in the CONSORT extension to
SW-CRTs (Hemming and others, 2018). The estimating equations method also produces standard errors
of the estimated correlations, which can be used to construct interval estimates to further improve planning
of future trials.

Our simulations indicate that the cluster-period GEE can estimate the intervention effect with negligible
bias, regardless of bias-corrections to the correlation estimating equations via MAEE. However, MAEE
substantially reduces the bias of the ICC estimates. On the other hand, while the bias-corrected sandwich
variances can provide nominal coverage for δ even when I = 12, inference for ICC parameters appears
more challenging (see Supplementary material Appendix F available at Biostatistics online for a concise
summary of findings). We suggest that 30–40 clusters may be sufficient for the cluster-period MAEE to
provide nominal coverage for α0, which generally agrees with Preisser and others (2008) using individual-
level MAEE. In SW-CRTs, a larger number of clusters may be needed to achieve nominal coverage for
the between-period correlation (α1 or ρ), which differs from findings in Preisser and others (2008) for
parallel CRTs. This difference highlights the requirement for accurate ICC inference can depend on
randomization design (parallel versus stepped wedge). A further reason underlying such a difference is
that we have simulated unequal cluster-period sizes, under which the sandwich variance becomes more
variable (Kauermann and Carroll, 2001). Fortunately, compared to UEE, the use of cluster-period MAEE
can substantially mitigate, if not eliminate, the under-coverage of ICC parameters in small samples.

A reviewer has raised the issue of performing cluster-period analysis using GLMMs in cross-sectional
SW-CRTs. As explained in Supplementary material Appendix G available at Biostatistics online, with
binary outcomes, a rigorous cluster-period analysis using GLMMS may proceed with the cluster-period
totals,

∑nij
k=1 Yijk , which follows a Binomial distribution. The likelihood principle then directly suggests

such cluster-period aggregation leads to the same inference of GLMM parameters. However, the inter-
pretation of the treatment effect parameter in GLMMs is conditional on the latent random effects, and
therefore applies only to each cluster, or, strictly speaking, to the population with the same value of the
unobserved random effects. In contrast, the treatment effect δ is averaged over all clusters, and has been
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argued to bear a more straightforward population-averaged interpretation (Preisser and others, 2003; Li
and others, 2018).

Although the proposed approach is motivated by cross-sectional SW-CRTs, it is equally applicable to
parallel cross-sectional longitudinal cluster randomized trials (L-CRTs). In parallel L-CRTs, the interven-
tion effect is parameterized either by the time-adjusted main effect or the treatment-by-time interaction.
For both estimands, because cluster-period aggregation implies the same marginal mean model, the pro-
posed GEE approach is valid and can be useful. Another direction for future research is to extend the
proposed approach to analyze closed-cohort SW-CRTs (Copas and others, 2015; Li and others, 2018;
Li, 2020) and SW-CRTs with continuous recruitment (Grantham and others, 2019; Hooper and Copas,
2019). These more recent variants of SW-CRTs have more complex intraclass correlation structures and
therefore requires additional considerations in cluster-period analysis.

One potential limitation of the current study is that we have only considered a marginal mean model
without individual-level covariates. Such an unadjusted mean model originates from Hussey and Hughes
(2007) and has been widely applied for planning and analyzing SW-CRTs; see, for example, the recent
review in Li and others (2020). More often than not, the intraclass correlation structures are also defined
with respect to the unadjusted mean models in SW-CRTs (Kasza and others, 2019; Li and others, 2018;
Li, 2020; Li and others, 2020). However, covariate adjustment may potentially improve the efficiency in
estimating the treatment effect. We plan to carry out future work to integrate individual-level covariates
into the cluster-period GEE approach, along the lines of the two-stage framework as in Yasui and others
(2004).

7. SOFTWARE

An R package for our method, geeCRT, is available online at CRAN. Sample R code, together
with a simulated data example is also available from the corresponding author’s GitHub page at
https://github.com/lifanfrank/clusterperiod_GEE.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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