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Background: Pancreatic adenocarcinoma (PAAD) is a lethal disease with a poor prognosis. Genes involved 
in acute pancreatitis (AP) or chronic pancreatitis (CP) might be important for PAAD development. This 
study sought to identify potential PAAD diagnosis markers and to establish a PAAD prognosis prediction 
model based on AP- and CP-related genes. 
Methods: The significantly differentially expressed genes in both AP or CP and PAAD were obtained 
by a bioinformatics analysis. A risk-score model for predicting survival was constructed based on The 
Cancer Genome Atlas (TCGA) data and validated using an International Cancer Genome Consortium 
(ICGC) cohort. Protein expression and the effects of the genes in the risk models were validated by 
immunohistochemistry, or Cell Counting Kit-8 (CCK-8) and transwell assays. The study sample data 
included six AP tissue samples and five normal pancreatic tissue samples, six CP tissue samples and six normal 
pancreatic tissue samples from the Gene Expression Omnibus (GEO) expression profiling microarrays 
GSE109227 and GSE41418 data sets, respectively, and fragments per kilobase per million mapped fragments 
(FPKM) data from four normal controls and 150 PAAD cases from TCGA database, and 182 cancer patient 
samples with complete survival prognostic data from the ICGC database.
Results: In total, 508 significantly differentially expressed genes were found in both AP or CP and PAAD. 
Trefoil factor 2 (TFF2), tubulointerstitial nephritis antigen (TINAG), trefoil factor 1 (TFF1), aquaporin 
5 (AQP5), SAM pointed domain containing ETS transcription factor (SPDEF), anterior gradient protein 
2 (AGR2), apolipoprotein B messenger RNA editing enzyme catalytic subunit 1 (APOBEC1), kallikrein-
related peptidase 6 (KLK6), dopa decarboxylase (DDC), mucin 13 (MUC13), claudin 18 (CLDN18), annexin 
A10 (ANXA10), and tetraspanin 1 (TSPAN1) were found to be present in PAAD and had the largest fold 
change. A risk-score model, comprising 19 genes, was constructed for prognostic prediction. A high-
risk score indicated a poor prognosis. TINAG, DDC, SPDEF, and APOBEC1 proteins were increased in 
PAAD, while TINAG and DDC were correlated with the pathologic grade. Decreased TINAG, APOBEC1, 
transmembrane protein 94 (TMEM94), and kelch like family member 36 (KLHL36) expression inhibited 
PAAD cell proliferation, while decreased SPDEF, TMEM94, and KLHL36 expression significantly inhibited 
PAAD cell migration.
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Introduction

The incidence of pancreatic cancer continues to increase 
both in China and abroad (1-3). Pancreatic adenocarcinoma 
(PAAD) is asymptomatic in its early stage, and the prognosis 
of PAAD patients is poor. Currently, there is a lack of 
specific diagnostic biomarkers for PAAD (4,5). Thus, 
advances need to be made in PAAD diagnosis or prognosis 
to improve PAAD patient survival.

It has been continuously demonstrated that long-term 
chronic pancreatitis (CP) is an important risk factor of 
PAAD. Patients with CP have a high risk of developing 
PAAD (6,7). Acinar cells, which secret digestive enzymes, 
are thought to be very important in the inflammation 
of pancreatitis, causing ductal metaplasia, a precursor 
to pancreatic carcinogenesis. Inflammatory molecules 
also promote tumor growth through epithelial and 
mesenchymal secretion. These findings provide evidence 
that anti-inflammation agents could be a preventive and/
or therapeutic agent for PAAD (8-11). Conversely, CP 
can develop from acute pancreatitis (AP). The evolution 
of AP-CP-PAAD is a prominent stage in PAAD onset and 

development, and the co-expression of AP-CP genes may 
serve as potential new diagnostic and prognostic markers 
for early PAAD (12).

Bioinformatics is an emerging discipline that mainly 
includes biology, mathematics, and computer science, 
and is being rapidly developed by the Human Genome 
Project (13,14). The vast amount of biomedical data has 
helped to elucidate the relative biological knowledge and 
convoy biological information more comprehensively and 
effectively. With the continuous accumulation of biological 
data and the launch of strategic planning for precision 
medicine, bioinformatics has become increasingly important 
and crucial to the current development of related fields (15).

In this article, based on the AP-CP-PAAD transformation 
and experimental validation studies using cancer-related 
databases, we investigated and validated new predictors 
for early PAAD diagnosis and prognosis. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-23-1365/rc).

Methods

Data resource

Express ion prof i le  microarrays  (GSE109227 and 
GSE41418) were obtained from the Gene Expression 
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/
gds/) for AP and CP mice, respectively, which are a genome-
wide messenger RNA (mRNA) expression data (16).  
The GSE109227 data set contained six samples of AP 
tissue and five samples of normal pancreatic tissue. The 
GSE41418 data set contained six tissue samples of CP tissue 
and six samples of normal pancreatic tissue. Transcriptome 
sequencing (RNA-sequencing) data and matched clinical 
information data were obtained from The Cancer Genome 
Atlas (TCGA) database (http://cancergenome.nih.gov) for 
four normal controls and 150 PAAD cases with fragments 
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per kilobase per million mapped fragments (FPKM)-style 
data. Non-pancreatic ductal adenocarcinoma patients 
(27 cases) (17) and patients with no survival information 
(one case) were excluded from the survival analysis (18). A 
total of 182 cancer patient samples with complete survival 
prognosis data were screened from the International Cancer 
Genome Consortium (ICGC) database; all the available 
data from the database were used to maximize the power 
and generalizability of the results. The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013).

Differential expression analysis and Venn analysis of 
shared common differentially expressed genes (co-DEGs)

An online differential analysis was performed of the GEO 
database data using GEO2R with the threshold set at 
P<0.05 to identify the significantly differently expression 
genes in AP and CP. The shared co-DEGs in the 
GSE109227 and GSE41418 data sets were also analyzed 
by the online database VENNY 2.1 (https://bioinfogp.cnb.
csic.es/tools/venny/). The list of genes to be analyzed was 
uploaded to the database to display the Venn diagram and 
the list of related shared genes (19).

Analysis of variance and one-way Cox regression analysis

Data on the survival time and survival status of PAAD 
patients were extracted; patients with a survival time of 0 
days (one case) were removed. The survival time and status 
data were combined with the DEG data to form a matrix, 
and a differential analysis was first performed of the co-
DEGs of the TCGA-PAAD data set. The threshold was set 
to P<0.05. Using the “survival” package of R software, a one-
way Cox regression analysis was performed, and a P value 
<0.05 indicated that the DEG was related to the prognosis 
of PAAD patients. After the Venn analysis, the target genes 
were screened for association with both PAAD occurrence 
and prognosis. The “pheatmap” package was used to map a 
heat map of the target genes. A target gene forest map was 
then drawn using the survival package (20,21).

Prognostic risk-score model construction

Least absolute shrinkage and selection operator 
(LASSO) Cox regression analysis
The TCGA-PAAD cohort was analyzed by LASSO 
regression using L1 regularization statistics. Based on 

the results of the one-way Cox regression analysis, the 
prognosis-related genes with P values <0.05 were further 
analyzed using the LASSO regression algorithm of the 
“glmnet” R package, and the prognosis-related genes were 
further screened by a subsequent analysis based on the 
parameter Lambda values (22).

Model construction
Based on the regression coefficients obtained from the 
gene expression and multifactorial Cox regression analysis, 
a linear risk assessment model related to survival was 
constructed, and the coefficient value of each gene was 
obtained using the expression values of the genes in the 
model in each sample, the survival time, and the status data 
analysis results. The following formula was used to calculate 
the risk score for each pancreatic cancer patient in TCGA 
and the ICGC data sets, respectively: risk score = β1 × 
mRNA1EXP + β2 × mRNA2EXP + … + βn × mRNAnEXP. 
The risk model was constructed using 1000-times testing. 
A principal component analysis with t-distribution and 
randomized nearest neighbor embedding (t-SNE) was 
performed using the “Rtsne” R package to analyze the 
differentiation between the high-risk and low-risk groups 
of TCGA and the ICGC data sets, respectively, and the 
results were visualized by the “ggplot2” package of R 
software. Next, to assess whether the model could be used 
as a prognostic factor independent of other clinical features, 
the “survival” package of R software was used to perform 
univariate and multi-variate independent prognostic 
analyses, the results were visualized by drawing forest plots, 
and the “limma” R package was used for the risk difference 
analysis (23,24).

Clinical correlation analysis

The prognostic risk characteristics were analyzed by the 
“ggpubr” package of R software with patient age, gender, 
clinical grade or pathological stage, and the R package was 
used to plot each clinical characteristic. The box plots of 
clinical characteristics and patient risk scores were created 
using the R package.

Experiment-related materials and methods

Primary antibodies
Anti-tubulointerstitial nephritis antigen (TINAG) antibody 
was obtained from Proteintech (Wuhan, China). Anti-
dopa decarboxylase (DDC), kelch like family member 36 
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(KLHL36), apolipoprotein B messenger RNA editing 
enzyme catalytic subunit 1 (APOBEC1), SAM pointed 
domain containing ETS transcription factor (SPDEF) 
antibodies were from Sangon Biotech (Shanghai) Co., Ltd. 

Small-interfering RNA sequences
These sequences were synthesized by GenePharma 
(Shanghai, China) (Table 1).

Immunohistochemistry staining
The PAAD tissue microarrays were purchased from 
the Shanghai Core Ultra Biological Co., Ltd. (item no. 
HPanA020PG01), and the number of valid cancer tissue 
cases for the TINAG, DDC, SPDEF, APOBEC1, and 
KLHL36 detection chips was 20. The tissue samples 
were incubated with the anti-APOBEC1 (Shanghai 
Biotechnology Co., Ltd.) and anti-KLHL36 (Shanghai 
Biotechnology Co., Ltd.) polyclonal antibodies. Finally, the 
protein expression levels were scored under the microscope 
by multiple uninformed pathologists. The intensity and area 
of staining were categorized into the following four grades: 
0 (negative), 1 (weakly positive), 2 (moderately positive), 
and 3 (strongly positive).

Cell proliferation assays
The cells under the indicated treatments were inoculated in 
96-well plates (5,000 cells/well). The cells were plastered, 
and incubated for 12, 24, 48, and 72 hours. The old medium 
was discarded and replaced with 100 μL of new medium, 
or Cell Counting Kit-8 (CCK-8) reagent (10 μL/well) was 
added and mixed well. The medium was then transferred to 
the cell incubator for 2 hours. The absorbance of the cells 
was measured at 450 nm with an enzyme marker.

Transwell migration assays
Transwell migration chambers were used. The cells were 
cultured in the upper chamber with complete medium in 
the lower chamber. The chambers were transferred to the 
incubator and removed after 24 hours. The cells were fixed 
and then underwent crystal violet staining. Cell migration 
in each well was observed under an inverted microscope, 
counted, and then statistically analyzed.

Pathway analysis of TINAG, DDC, SPDEF, and 
APOBEC1

The TINAG, DDC, SPDEF, and APOBEC1 genes were 
screened by TCGA-PAAD-RNA-sequencing genomic 

screening through the online website LinkedOmics 
database (https://www.linkedomics.org/login.php) to obtain 
the relevant co-expression gene clusters. The relevant co-
expression gene clusters were then subjected to a Gene 
Set Enrichment Analysis-Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analysis via the online 
WebGestalt database (https://www.webgestalt.org/), and the 
pathway atlas was obtained.

Statistical analysis

All the bioinformatics analyses were performed in R 
software (version 3.6.1). The remaining statistical analyses 
were performed using SPSS software (version 25.0) and 
GraphPad Prism software (version 9.0). The following P 
values were considered statistically significant: *, P<0.05; **, 
P<0.01; ***, P<0.001; ****, P<0.0001.

Results

Co-expression analysis of DEGs in AP and CP

The GSE109227 data set, which contained six mouse AP 
tissue samples and five matched normal control tissue 
samples, was selected first. The DEGs were screened using 
GEO2R and are presented in a volcano plot (Figure 1A). 
A total of 12,007 AP-DEGs were identified in the AP data 
set. Similarly, the GSE41418 data set, which contained six 
mouse CP tissue samples and six matched normal control 
tissue samples, was next selected to screen the DEGs in CP 
(Figure 1B). A total of 7,479 CP-DEGs were identified in 
the CP data set. Next, to identify the DEGs common to 
AP and CP, we analyzed the intersecting genes between the 
AP-DEGs and CP-DEGs (i.e., the co-DEGs) through the 
online database VENNY 2.1. In total, 4,506 co-DEGs were 
identified (Figure 1C). Additionally, 3,453 co-DEGs were 
identified in TCGA data set.

Differential analysis of the co-DEGs in TCGA-PAAD

Among the 3,453 co-DEGs, 508 co-DEGs were found to 
be differentially expressed in PAAD, while 457 co-DEGs 
were correlated with PAAD prognosis. Specifically, trefoil 
factor 2 (TFF2), TINAG, trefoil factor 1 (TFF1), aquaporin 
5 (AQP5), SPDEF, anterior gradient protein 2 (AGR2), 
APOBEC1, kallikrein-related peptidase 6 (KLK6), DDC, 
mucin 13 (MUC13), claudin 18 (CLDN18), annexin A10 
(ANXA10), and tetraspanin 1 (TSPAN1) presented with 
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Table 1 Small RNA interfering sequences

Gene name Company Sequence (5'-3')

TINAG-Homo-115 GenePharma Positive: GGACCGGAUAUAAGAUCUUTT

Trans: AAGAUCUUAUAUCCGGUCCTT

TINAG-Homo-540 GenePharma Positive: GGACAGCAAUGGAAAUGUUTT

Trans: AACAUUUCCAUUGCUGUCCTT

TINAG-Homo-795 GenePharma Positive: GGAUGGACUCAUGGCCCAUTT

Trans: AUGGGCCAUGAGUCCAUCCTT

DDC-Homo-311 GenePharma Positive: GGACAUCAUCAACGACGUUTT

Trans: AACGUCGUUGAUGAUGUCCTT

DDC-Homo-720 GenePharma Positive: GCACACUCCUCAGUGGAAATT

Trans: UUUCCACUGAGGAGUGUGCTT

DDC-Homo-895 GenePharma Positive: GCUCCUUUGACAAUCUCUUTT

Trans: AAGAGAUUGUCAAAGGAGCTT

KLHL36-Homo-191 GenePharma Positive: GCCAUACAAGAUCAGCGAATT

Trans: UUCGCUGAUCUUGUAUGGCTT

KLHL36-Homo-358 GenePharma Positive: GCGACUACUUCAACUCCAUTT

Trans: AUGGAGUUGAAGUAGUCGCTT

KLHL36-Homo-1235 GenePharma Positive: GGAUGCGGCCUCCAAUCUUTT

Trans: AAGAUUGGAGGCCGCAUCCTT

APOBEC1-Homo-99 GenePharma Positive: GGAGUUUGACGUCUUCUAUTT

Trans: AUAGAAGACGUCAAACUCCTT

APOBEC1-Homo-142 GenePharma Positive: GCCUGUCUGCUCUACGAAATT

Trans: UUUCGUAGAGCAGACAGGCTT

APOBEC1-Homo-318 GenePharma Positive: GGAAUGCUCCCAGGCUAUUTT

Trans: AAUAGCCUGGGAGCAUUCCTT

SPDEF-Homo-839 GenePharma Positive: GCCUGCAAGCUGCUCAACATT

Trans: UGUUGAGCAGCUUGCAGGCTT

SPDEF-Homo-1227 GenePharma Positive: GCCGCUUCAUUAGGUGGCUTT

Trans: AGCCACCUAAUGAAGCGGCTT

TMEM94-Homo-1337 GenePharma Positive: GCUGUCUCCUCUCAGGAAATT

Trans: UUUCCUGAGAGGAGACAGCTT

TMEM94-Homo-1506 GenePharma Positive: GCCCAGAGACUGUACUGUUTT

Trans: AACAGUACAGUCUCUGGGCTT

TMEM94-Homo-1980 GenePharma Positive: GCCUCAAUGUGCUGCUGAATT

Trans: UUCAGCAGCACAUUGAGGCTT
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the largest fold expression changes in PAAD (i.e., a log fold 
change >3) (Table 2). The two groups of genes were then 
subjected to Venn analysis. We found that 116 genes (which 
we refer to as target gene clusters) were closely associated 
with both PAAD development and prognosis (Figure 2A). 
The expression of the target gene clusters in PAAD is 
shown in a heat map (Figure 2B). A forest plot of these 
genes in PAAD is also presented. In total, 28 up-regulated 
genes and 88 down-regulated genes were found (Figure 2C).

Risk-score model construction

PAAD patient data downloaded from TCGA or the ICGC 
databases were used as training and validation sets. A 
LASSO regression analysis was conducted on the above 116 
target gene groups, and the following 19 key prognosis-
related genes were identified: enoyl-CoA hydratase and 
3-hydroxyacyl CoA dehydrogenase (EHHADH), MET 
Proto-Oncogene, Receptor Tyrosine Kinase (MET), DNA 
methyltransferase 3 alpha (DNMT3A), Rho GTPase 
activating protein 17 (ARHGAP17), tubulin tyrosine ligase 

(TTL), EGFR pathway substrate 8, signaling adaptor 
(EPS8), BCL11 transcription factor A (BCL11A), KLHL36, 
differentially expressed in FDCP 8 homolog (DEF8), RELB 
proto-oncogene, NF-kB subunit (RELB), crystallin alpha 
B (CRYAB), transmembrane protein 94 (TMEM94), cell 
division cycle 20 (CDC20), solute carrier family 16 member 
14 (SLC16A14), cyclin B2 (CCNB2), nectin cell adhesion 
molecule 3 (NECTIN3), anillin, actin binding protein 
(ANLN), amyloid beta precursor protein binding family 
A member 1 (APBA1), and DNA topoisomerase II alpha 
(TOP2A) (Figure 3A,3B and Table 3). The following risk-
score equation based on the expression of the 19 key genes 
was formulated: 0.08945 × EHHADH + 0.24165 × MET 
+ (−0.12536) × DNMT3A + (−0.54232) × ARHGAP17 + 
(−0.1063) × TTL + 0.244083 × EPS8 + (−0.03683) × BCL11A 
+ (−0.46656) × KLHL36 + (−0.00994) × DEF8 + (−0.29732) 
× RELB + (−0.0521) × CRYAB + (−0.4635) × TMEM94 + 
0.118142 × CDC20 + (−0.03301) × SLC16A14 + 0.170268 
× CCNB2 + 0.001 × NECTIN3 + 0.075642 × ANLN + 
(−0.62613) × APBA1 + 0.096801 × TOP2A.

Risk scores were calculated for each PAAD patient in 
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Table 2 Genes with the largest fold expression changes in PAAD cases compared with controls among co-DEGs

Gene Control PAAD logFC P value

TFF2 6.83664 267.8866 5.292191 0.002974

TINAG 0.033313 1.003763 4.913173 0.005472

TFF1 40.79442 802.0375 4.297226 0.007221

AQP5 2.230661 41.41324 4.214549 0.002468

SPDEF 1.084305 18.34634 4.08065 0.001386

AGR2 13.91381 211.2185 3.924146 0.001386

APOBEC1 0.426995 6.257341 3.873257 0.008128

KLK6 2.854156 40.6557 3.832321 0.009135

DDC 0.24065 2.951894 3.616632 0.007471

MUC13 5.292654 60.24678 3.508821 0.002562

CLDN18 11.69363 126.2321 3.432284 0.021434

ANXA10 7.037711 67.75781 3.267209 0.016284

TSPAN1 17.2421 142.9409 3.051412 0.002204

PAAD, pancreatic adenocarcinoma; co-DEGs, common differentially expressed genes; FC, fold change. 

both TCGA and the ICGC data sets, and the patients were 
divided into high- and low-risk groups. The study found a 
significant difference in overall survival between the high- 
and low-risk groups for TCGA-PAAD (Figure 3A-3C). 
The high-risk group had a worse prognosis and shorter 
survival time than the low-risk group. The univariate 
and multifactor independent prognostic analyses showed 
that the N stage and risk-score value were independent 
risk factors for PAAD prognostic (Figure 3D). A receiver 
operating characteristic (ROC) curves analysis was 
conducted to further investigate the diagnostic efficiency 
of the risk-score model in TCGA data set. The areas under 
the curve (AUCs) for 1-, 2- and 3-year survival were 0.871, 
0.8, and 0.782, respectively, indicating that the model was 
good at predicting PAAD patient survival (Figure 3E).

The risk score was validated in the ICGC-PAAD data 
set. Consistent with TCGA results, the high-risk group had 
a worse prognosis and shorter survival time than the low-
risk group (P<0.05, Figure 3F). A ROC curve analysis was 
conducted to further investigate the diagnostic efficiency 
of the risk-score model in the ICGC data set. The AUCs 
for 1-, 2- and 3-year survival were 0.624, 0.696, and 0.613, 
respectively (Figure 3G). Taken together, the results indicate 
that the risk score can be used to predict PAAD patient 
survival.

Immunohistochemical validation

The expression of the genes related to PAAD occurrence, 
including TINAG, DDC, SPDEF, and APOBEC1, were 
tested in clinic samples. The TINAG, DDC, SPDEF, and 
APOBEC1 proteins increased as the tumor pathological 
grade increased. However, only TINAG and DDC were 
significantly differentially expressed in grades I and II 
(P<0.05) (Figures 4,5). In addition, 19 key genes in the 
prognosis risk model were also tested in the clinic samples. 
As observed in the risk model, KLHL36 was negatively 
associated with a poor prognosis; however, our results 
showed that KLHL36 protein expression was significantly 
more increased in grade II than grade I patients (P<0.05) 
(Figures 4,5).

Effects of SPDEF, TINAG, DDC, APOBEC1, TMEM94, 
and KLHL36 on PAAD cell growth

SPDEF, TINAG, DDC, APOBEC1, TMEM94, and KLHL36 
were knocked down, and the proliferation of PAAD 
cells was investigated by CCK-8 cell assays (Figure 6).  
The results showed that the proliferation of PAAD cells was 
significantly inhibited following the knock down of TINAG, 
APOBEC1, TMEM94, and KLHL36 (at 48 and 72 hours) 
(Figure 6B,6D-6F). However, the knock down of SPDEF 
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co-DEGs Prognostic genes

392 116 341

A B

C

Figure 2 TCGA-PAAD prognostic DEG screening. (A) Venn diagram of prognostic DEGs in pancreatic cancer based on the co-DEGs. 
(B) Heat map of the expression of the target gene groups in PAAD. (C) Forest plot of the target gene groups in PAAD. co-DEGs, common 
differentially expressed genes; N, normal; T, tumor; CI, confidence interval; TCGA, The Cancer Genome Atlas; PAAD, pancreatic 
adenocarcinoma. 
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Figure 3 Construction of risk-score model by LASSO Cox regression analysis. (A) LASSO regression was used to determine the optimal λ 
value. (B) LASSO regression curve. (C) OS survival curves between TCGA high- and low-risk groups. (D) TCGA univariate independent 
prognostic analysis. (E) Risk score predicts TCGA 1-, 2-, and 3-year survival ROC curves. (F) OS survival curve between ICGC high- and 
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and DDC did not affect the proliferation of PAAD cells  

(Figure 6A,6C). These results suggest that TINAG, 

APOBEC1, TMEM94, and KLHL36 inhibit the proliferation 

of PAAD cells.

Effects of SPDEF, TINAG, DDC, APOBEC1, TMEM94, 
and KLHL36 on PAAD cell migration

To verify the effect of the above genes on PAAD cell 
migration, we performed transwell assays. The results 
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Table 3 Risk-score formula

Gene symbol Description Coefficient

EHHADH Enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase 0.08945

MET MET Proto-Oncogene, Receptor Tyrosine Kinase 0.24165

DNMT3A DNA methyltransferase 3 alpha −0.12536

ARHGAP17 Rho GTPase activating protein 17 −0.54232

TTL Tubulin tyrosine ligase −0.1063

EPS8 EGFR pathway substrate 8, signaling adaptor 0.244083

BCL11A BCL11 transcription factor A −0.03683

KLHL36 Kelch like family member 36 −0.46656

DEF8 Differentially expressed in FDCP 8 homolog −0.00994

RELB RELB proto-oncogene, NF-kB subunit −0.29732

CRYAB Crystallin alpha B −0.0521

TMEM94 Transmembrane protein 94 −0.4635

CDC20 Cell division cycle 20 0.118142

SLC16A14 Solute carrier family 16 member 14 −0.03301

CCNB2 Cyclin B2 0.170268

NECTIN3 Nectin cell adhesion molecule 3 0.001

ANLN Anillin, actin binding protein 0.075642

APBA1 Amyloid beta precursor protein binding family A member 1 −0.62613

TOP2A DNA topoisomerase II alpha 0.096801

showed that the down-regulation of SPDEF, TMEM94, 
and KLHL36 significantly inhibited PAAD cell migration  
(Figure 7). However, the down-regulation of TINAG, 
DDC, and APOBEC1 did not affect the migratory ability of  
PAAD cells.

Pathway analysis for TINAG, DDC, SPDEF, and 
APOBEC1

Based on the above results, TINAG, DDC, SPDEF, 
and APOBEC1 appear to be very important in PAAD 
occurrence. Thus, we analyzed the pathways in which these 
genes were involved. The results showed that in pancreatic 
cancer, the TINAG, DDC, SPDEF, and APOBEC1 genes 
may be involved in the following pathways: neuroactive 
ligand-receptor interactions, cytokine-receptor interactions, 
natural killer cell-mediated cytotoxicity, cancer pathways, 
cancer proteoglycans, the extracellular matrix (ECM)-
receptor interaction, the tumor necrosis factor (TNF) 

signaling pathway, the repressor activator protein 1 
(RAP1) signaling pathway, the Hippo signaling pathway, 
focal adhesion, tight junction, mannose type O-glycan 
biosynthesis, etc. (Figure 8). Meanwhile, we also found 
that some pathways were related to AP/CP, including 
apoptosis, the protein 53 (p53) signaling pathway, the 
phosphatidylinositol 3-kinase (PI3K)-Akt signaling 
pathway, the cell cycle, the cytokine-cytokine receptor 
interaction, glutathione metabolism, the regulation of 
actin cytoskeleton, leukocyte transendothelial migration, 
the metabolism of xenobiotics by cytochrome P450, 
necroptosis, linoleic acid metabolism, glycerophospholipid 
metabolism peroxisome, porphyrin and chlorophyll 
metabolism, and proteasome (Figure 8).

Discussion

In this study, we used data sets from mice with AP or 
CP from the GEO database. AP and CP could be clearly 
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Figure 4 IHC results of indicated proteins in clinic samples with different pathological grades. TINAG, tubulointerstitial nephritis antigen; 
KLHL36, kelch like family member 36; DDC, dopa decarboxylase; APOBEC1, apolipoprotein B messenger RNA editing enzyme catalytic 
subunit 1; SPDEF, SAM pointed domain containing ETS transcription factor; IHC, immunohistochemistry. 
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Figure 6 Effects of the down-regulation of each indicated genes on the proliferation of PAAD cells. *, P<0.05; **, P<0.01; ***, P<0.001. OD, 
optical density; SPDEF, SAM pointed domain containing ETS transcription factor; TINAG, tubulointerstitial nephritis antigen; DDC, dopa 
decarboxylase; APOBEC1, apolipoprotein B messenger RNA editing enzyme catalytic subunit 1; TMEM94, transmembrane protein 94; 
KLHL36, kelch like family member 36; PAAD, pancreatic adenocarcinoma.

determined in mouse that were not so easy in the clinic (25).  
However, the use of mouse models also had some 
disadvantages. Notably, there are differences in gene 
expression between humans and mice in both protein-
coding and non-coding genes (26).

In this study, we found that TFF2, TINAG, TFF1, 
AQP5, SPDEF, AGR2, APOBEC1, KLK6, DDC, MUC13, 

CLDN18, ANXA10, and TSPAN1 may be potential early 
diagnostic markers for PAAD. Among them, TFF2, TFF1, 
AGR2, AQP5, KLK6, MUC13, CLDN18, ANXA10, and 
TSPAN1 have been found to be expressed in PAAD (27-34).  
These genes have been shown to affect the occurrence, 
development, and metastasis of PAAD through multiple 
pathways and regulatory networks (28). Consistent with 
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previous research (27-34), we found that TFF2, TFF1, 
AGR2, AQP5, KLK6, MUC13, CLDN18, ANXA10, and 
TSPAN1 mRNAs were highly expressed in PAAD. Thus, a 
significant portion of our screened target genes were found 
to be associated with PAAD, which provides supporting 
evidence of the feasibility of our analytical approach. 
Notably, the AP-CP-PAAD mechanism plays a key role in 
the development of PAAD.

The associations between TINAG, DDC, SPDEF, and 
APOBEC1 and PAAD had not previously been examined. 
The bioinformatics analysis also found that the fold changes 
of the genes in PAAD were larger than those in AP or CP. 
Together, the immunohistochemistry and cellular assay 
results suggest that TINAG is the potential new early 
diagnostic marker for PAAD.

According to the prognostic risk-score model consisting 
of 19 genes, MET and ANLN were positively associated 
with a poor prognosis in PAAD, while DNMT3A, KLHL36, 
DEF8, and TMEM94 were negatively associated with a 
poor prognosis in PAAD. The hepatocyte growth factor 
(HGF)/MET signaling pathway promotes the motility, 
histomorphogenesis and mesenchymal-epithelial transition 
of epithelial cells in the body (35), and also plays a role in 
the development and progression of many mesenchymal-
derived tumors (36). DNMT3A promotes proliferation by 

activating the signal transducer and activator of transcription 
3 (STAT3) signaling pathway and inhibiting apoptosis in 
PAAD (37). Bioinformatics analysis results have identified 
DEF8 and MET in a risk scoring system for predicting 
the prognosis of patients with resectable PAAD (38).  
The experiments were not validated; however, the reliability 
of this model was confirmed by previous finding. ANLN 
was included in another risk-score model for overall survival 
prediction (39). All these finding support the conclusion 
reached by this study.

A study screening of AAD diagnostic markers from CP-
related genes identified CCNB2, cell division cycle 6 (CDC6), 
cyclin-dependent kinase 1 (CDK1), cell division cycle 28 
(CDC28), and cyclin-dependent kinase regulatory subunit 
2 (CKS2) as key genes involved in the development of CP 
and PAAD (40). Another study conducted a microarray 
(Affymetrix) analysis and identified four DEGs in PAAD 
and CP; that is, 14-3-3sigma, S100 calcium binding protein 
P (S100P), S100 calcium binding protein A6 (S100A6), and 
integrin beta4 (ITGB4) (41). Unlike previous studies, we 
innovatively searched for new key genes associated with 
PAAD initiation, progression and metastasis from the AP-
CP-PAAD perspective, thus potentially identifying key 
genes that play a role in the early stage of pancreatic cancer.

In the process of our research, we found a relationship 
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Figure 8 Pathways analysis for DDC (A), APOBEC1 (B), SPDEF (C), and TINAG (D). FDR, false discovery rate; DDC, dopa decarboxylase; 
APOBEC1, apolipoprotein B messenger RNA editing enzyme catalytic subunit 1; SPDEF, SAM pointed domain containing ETS 
transcription factor; TINAG, tubulointerstitial nephritis antigen. 

−4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5

−4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5

−2.5 −2.0 −1.5 −1.0 −0.5

−2.5 −2.0 −1.5 −1.0 −0.5

−2.5 −2.0 −1.5 −1.0 −0.5

−2.5 −2.0 −1.5 −1.0 −0.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Normalized enrichment score

FDR ≤0.05  

FDR ≤0.05    

Normalized enrichment score

Normalized enrichment score
Normalized enrichment score

FDR ≤0.05      FDR ≤0.05       

DDC
APOBEC1

SPDEF TINAG

Maturity onset diabetes of the young
Insulin secretion

Butanoate metabolism
Retrograde endocannabinoid signaling

Peroxisome
GABAergic synapse

Retinol metabolism

Chemical carcinogenesis

Metabolism of xenobiotics by cytochrome P450

Drug metabolism

Steroid hormone biosynthesis

Drug metabolism_1

Metabolic pathways

Mucin type O-glycan biosynthesis

Linoleic acid metabolism

Glycolysis/Gluconeogenesis

Fructose and mannose metabolism

Tight junction

Porphyrin and chlorophyll metabolism

Pentose and glucuronate interconversions

Necroptosis

Carbon metabolism

Glycerolipid metabolism

Arachidonic acid metabolism

Steroid biosynthesis

Biosynthesis of amino acids

Ascorbate and aldarate metabolism

Glycosphingolipid biosynthesis

Glycerophospholipid metabolism

Alzheimer disease

Fat digestion and absorption

Nitrogen metabolism

Bladder cancer

Huntington disease

Sulfur metabolism

Ether lipid metabolism

Fc gamma R-mediated phagocytosis

Maturity onset diabetes of the young

Proteasome

Non-alcoholic fatty liver disease (NAFLD)

Retinol metabolism

Chemical carcinogenesis

Metabolism of xenobiotics by cytochrome P450

Drug metabolism

Steroid hormone biosynthesis

Arachidonic acid metabolism

Linoleic acid metabolism

Mucin type O-glycan biosynthesis

Drug metabolism 1

Retinol metabolism

Chemical carcinogenesis

Drug metabolism

Base excision repair

Metabolism of xenobiotics by cytochrome P450

Fructose and mannose metabolism

Proteasome

Steroid hormone biosynthesis

Drug metabolism_1

Mucin type O-glycan biosynthesis

Tight junction

Glycerolipid metabolism

Glycosphingolipid biosynthesis

Metabolic pathways

Linoleic acid metabolism

Ribosome

Oxidative phosphorylation

Glutathione metabolism

Necroptosis

Huntington disease

Glycolysis/Gluconeogenesis

Sulfur metabolism

p53 signaling pathway

Parkinson disease

Bladder cancer

Nitrogen metabolism

Carbon metabolism

Steroid biosynthesis

Glycolysis/Gluconeogenesis

Metabolic pathways

Cytokine-cytokine receptor interaction

Fat digestion and absorption

Glycerolipid metabolism

Pentose and glucuronate interconversions

NOD-like receptor signaling pathway

Ether lipid metabolism

Porphyrin and chlorophyll metabolism

Tight junction

Ascorbate and aldarate metabolism

Nitrogen metabolism

Epstein-Barr virus infection

Necroptosis

TNF signaling pathway

Antigen processing and presentation

Glycosphingolipid biosynthesis

Protein digestion and absorption

Glycerophospholipid metabolism

Fructose and mannose metabolism

Peroxisome

Influenza A

Valine, leucine and isoleucine degradation
Ribosome

Nicotine addiction
Cholinergic synapse

Dopaminergic synapse
Propanoate metabolism

Oxidative phosphorylation
Metabolic pathways

Amphetamine addiction
Type II diabetes mellitus

Neuroactive ligand-receptor interaction
Citrate cycle (TCA cycle)

Thermogenesis
Gastric acid secretion
Pyruvate metabolism

Aldosterone synthesis and secretion
Glycosylphosphatidylinositol (GPI)-anchor biosynthesis

Selenocompound metabolism
Metabolism of xenobiotics by cytochrome P450

Glycerolipid metabolism
Serotonergic synapse

Homologous recombination
Graft-versus-host disease
Glycosphingolipid biosynthesis
Kaposi sarcoma-associated herpesvirus infection
Rap1 signaling pathway
Chronic myeloid leukemia
Endocrine resistance
Measles
Proteasome
Hippo signaling pathway_1
Hypertrophic cardiomyopathy (HCM)
Shigellosis
TNF signaling pathway
Epstein-Barr virus infection
Cytokine-cytokine receptor interaction
Leishmaniasis
Apoptosis
Phagosome
Transcriptional misregulation in cancer
Hepatocellular carcinoma
Glycosaminoglycan biosynthesis
Axon guidance
Natural killer cell mediated cytotoxicity
Cell cycle
Malaria
AGE-RAGE signaling pathway in diabetic complications
Amoebiasis
Regulation of actin cytoskeleton
Leukocyte transendothelial migration
Bacterial invasion of epithelial cells
Prostate cancer
Pathways in cancer
Small cell lung cancer
Hippo signaling pathway
Human T-cell leukemia virus 1 infection
PI3K-Akt signaling pathway
Proteoglycans in cancer
MicroRNAs in cancer
Human papillomavirus infection
Focal adhesion
ECM-receptor interaction

Glutamatergic synapse

Regulation of lipolysis in adipocytes

Mannose type O-glycan biosynthesis

Glycosaminoglycan biosynthesis

GABAergic synapse

Morphine addiction

Nicotine addiction

Dopaminergic synapse

GABAergic synapse

Neuroactive ligand-receptor interaction

Glutamatergic synapse

Morphine addiction
Synaptic vesicle cycle

GABAergic synapse

A B

C D



Zhou et al. AP to CP to PAAD transformation1440

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(3):1425-1442 | https://dx.doi.org/10.21037/tcr-23-1365

between the genes related to AP, CP, and PAAD. In this 
study, we found that TINAG, DDC, SPDEF, and APOBEC1 
showed large fold changes in tumors and can serve as new 
diagnostic markers for PAAD. A risk-score risk model 
can be used as a new tool for PAAD prognosis prediction. 
However, more trials and clinical studies need to be 
conducted.

Conclusions

TINAG, DDC, SPDEF, and APOBEC1 may serve as 
new early diagnostic markers for PAAD. The models 
constructed, which include EHHADH, MET, DNMT3A, 
ARHGAP17, TTL, EPS8, BCL11A, KLHL36, DEF8, 
RELB, CRYAB, TMEM94, CDC20, SLC16A14, CCNB2, 
NECTIN3, ANLN, APBA1, and TOP2A, may serve as 
potential diagnostic criteria for PAAD and indicators for the 
prognostic assessment of PAAD.
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