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Abstract: Theta-burst stimulation (TBS) is a form of repetitive transcranial magnetic stimulation
(rTMS) developed to induce neuroplasticity. TBS usually consists of 50 Hz bursts at 5 Hz intervals. It
can facilitate motor evoked potentials (MEPs) when applied intermittently, although this effect can
vary between individuals. Here, we sought to determine whether a modified version of intermittent
TBS (iTBS) consisting of 30 Hz bursts repeated at 6 Hz intervals would lead to lasting MEP facilitation.
We also investigated whether recruitment of early and late indirect waves (I-waves) would predict
individual responses to 30 Hz iTBS. Participants (n = 19) underwent single-pulse TMS to assess MEP
amplitude at baseline and variations in MEP latency in response to anterior-posterior, posterior-
anterior, and latero-medial stimulation. Then, 30 Hz iTBS was administered, and MEP amplitude
was reassessed at 5-, 20- and 45-min. Post iTBS, most participants (13/19) exhibited MEP facilitation,
with significant effects detected at 20- and 45-min. Contrary to previous evidence, recruitment of
early I-waves predicted facilitation to 30 Hz iTBS. These observations suggest that 30 Hz/6 Hz iTBS
is effective in inducing lasting facilitation in corticospinal excitability and may offer an alternative to
the standard 50 Hz/5 Hz protocol.

Keywords: transcranial magnetic stimulation; motor evoked potentials; theta-burst stimulation;
neuroplasticity

1. Introduction

Theta Burst Stimulation (TBS) is a form of repetitive transcranial magnetic stimulation
(rTMS) introduced in the mid-2000s by Huang et al. [1]. The original TBS protocol was
based on animal studies showing that application of burst at a high rate (50–100 Hz) re-
peated at a low rate in the theta rhythm (4–7 Hz) induced long-term potentiation in the
rodent’s motor cortex or hippocampus [2]. In their study, Huang et al. [1] demonstrated
that a combination of 20 cycles of 50 Hz bursts repeated every 200 ms (i.e., 5 Hz) was
effective in inducing lasting modulation in corticospinal excitability, as reflected in the am-
plitude of motor evoked potentials (MEPs). TBS tends to produce MEP suppression when
delivered continuously for 40 s (600 pulses), whereas facilitation is observed when TBS is
delivered intermittently (2 s ON, 8 s OFF) for 192 s. Following the original publication of
Huang et al. [1], most subsequent TMS studies used the same combination of burst fre-
quency (50 Hz) and inter-burst interval (5 Hz) to investigate TBS effects, this combination
becoming some sort of ‘standard’ in the field [3,4].

While TBS protocols show promise as a therapeutic tool in neurological and psychiatric
disorders [5], notably for symptomatic relief of major depression [6,7], their use in clinical
settings remains limited by the considerable variability of responses both within and
between individuals [8,9]. Among the many factors contributing to this variability, the use
of non-optimal stimulation parameters (e.g., intensity, bursts, and inter-bursts frequency)
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has been pointed out as a contributing factor [3]. As stressed earlier, most investigators
have relied on the 50 Hz/5 Hz standard to investigate TBS effects without considering
whether such a pattern might be optimal. Only a minority of investigators have considered
modifications to the ‘standard’ to determine whether altering TBS parameters could lead to
more robust aftereffects. In this respect, Goldsworthy et al. [10], based on observations by
Nyffeler et al. [11] regarding the effects of 30 Hz TBS on the oculomotor system, propose
a modification to the original TBS protocol described by Huang et al. [1]. In their report,
Goldsworthy et al. [10] showed that TBS delivered using a combination of 30 Hz bursts
repeated at 6 Hz in the continuous mode evoked longer-lasting MEP suppression than
50 Hz/5 Hz protocol. Subsequent studies have provided further evidence regarding the
effectiveness of the 30 Hz bursts in modulating corticospinal excitability [12–14]. However,
much of this evidence has come from studies using the continuous mode, leaving the
question of whether similar effects could be obtained with the intermittent mode. To our
knowledge, only two studies reported on the effect of 30 Hz iTBS. Wu et al. [14] showed
that 600 pulses of iTBS consisting of 30 Hz bursts repeated at 5 Hz intervals were effective
in inducing MEP facilitation up to 10 min in healthy adults, while Pedapati et al. [15]
made similar observations in children using the same iTBS parameters but for 300 pulses.
Thus, while there is still limited data regarding the effects of 30 Hz bursts, the modified
iTBS seems to be effective as the standard in modulating corticospinal excitability. In a
recent systematic review of TBS effects, Chung et al. [3] concluded that, although there was
evidence to suggest that 30 Hz TBS might produce more persistent and larger effects than
50 Hz TBS, more studies were required to validate its reliability.

In the present study, our goal was to seek further evidence for the effectiveness of
30 Hz TBS in inducing lasting modulation in corticospinal excitability. More specifically,
we sought to determine whether the modified 30 Hz/6 Hz TBS protocol proposed by
Goldsworthy et al. [10] would lead to lasting MEP facilitation when used in the intermittent
mode. Our investigation also sought to determine whether individual differences in the
recruitment of cortical interneurons in response to TMS would predict responses to 30 Hz
iTBS, as reported by Hamada et al. [16]. To this end, we collected MEPs in response to
anterior-posterior (AP), posterior-anterior (PA), and latero-medial (LM) stimulation to
assess differences in MEP latency as an index of individual susceptibility to recruit early or
late indirect waves (I-waves) in response to TMS.

2. Methods
2.1. Participants

Our initial recruitment targeted 30 participants based on a power analysis using the
standardized mean difference of 0.71 for iTBS aftereffects reported by Chung et al. [3].
However, due to the COVID-19 pandemic restrictions, we could reach only 70% of our target.
Thus, our sample consisted of 21 healthy adults (15 females; mean age, 25.3± 4.8 years; range,
19–40 years). All participants but three were right-handed, as determined with the Edinburg
Hand Inventory. Before testing, participants were screened with a questionnaire to ensure
they had no prior or current health conditions (e.g., multiple sclerosis, history of recent hand
trauma or nerve injuries) that could interfere with our measures and for contraindications
to TMS. The study procedures were approved by the institutional research ethics boards
(Bruyère Protocol # M16-20-009; Ottawa Office of Research Ethics and Integrity, protocol#
H-10-20-6523) and all participants provided written informed consent before participation.
Because of the COVID-19 pandemic, participants were required to wear procedural masks
during testing sessions to comply with mandatory safety procedures, while investigators
were required to wear masks and visual shields.

2.2. Experimental Protocol

Figure 1 shows a schematic of the experimental protocol. Participants first underwent
single-pulse TMS with the coil in the standard orientation (PA) to determine MEP ampli-
tude at Time 0 (Baseline). Then, MEPs were elicited with the coil placed in the different
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orientations (i.e., AP, LM, PA) to assess differences in latency. Afterward, the 30 Hz iTBS
protocol was administered. Within 5 min after iTBS, participants provided reports regard-
ing tolerability and rated pain associated with the stimulation protocol with the visual
analog scale (VAS). Then, MEPs were elicited at three specific time points post-iTBS (i.e., 5-,
20- and 45-min) to assess changes in corticospinal excitability:
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Figure 1. Schematic representation of the experimental protocol. Participants first underwent monophasic single-pulse
TMS to assess corticospinal excitability at baseline. Then, single-pulse TMS was applied to assess latency differences
for MEPS elicited with the coil placed in different orientations: Anterior-Posterior (AP), Posterior-Anterior (PA), and
Latero-Medial (LM). Afterward, participants received the modified 30 Hz/6 Hz intermittent theta-burst protocol (iTBS,
600 pulses, intensity 80% of the active motor threshold (aMT). Changes in corticospinal excitability after iTBS were measured
at specific post-intervention times: 5-, 20- and 45-min. The intensity used to test corticospinal excitability at baseline and
post-iTBS was set at 130% of the resting motor threshold (rMT).

2.3. Baseline Assessment of Corticospinal Excitability

Corticomotor excitability was assessed with participants seated in a recording chair
with armrests. The right hand rested flat on a small wooden plate with two protruding
rods to delimit the index and thumb finger position. Single-pulse TMS was delivered
to the left hemisphere using a focal coil connected to a Magstim® BiStim2 stimulator
(Magstim Co., Whitland, UK). To assist in coil positioning, participants were fitted with a
Waveguard™ TMS compatible cap (ANT North America Inc., Philadelphia, PA, USA) and
wore a U-shaped neck cushion to minimize head movements. The stimulation targeted
the representation of the right first dorsal interosseus (FDI) muscle. The FDI hot spot
was located by stimulating the approximate area on the left hemisphere at a relatively
high intensity (e.g., 50% stimulator output) until MEPs could be evoked. The intensity
was then decreased, and the area was further explored in 1-cm steps (anterior-posterior,
mediolaterally) while stimulating to pinpoint the location. This site was then marked with
a round 1-cm sticker to ensure consistent coil positioning. MEPs were recorded using
Delsys surface sensors (DE-2.1, Boston, MA, USA). Amplification (gain = 1000) and filtering
(bandwidth, 6–450 Hz) were performed via a Bagnoli™ 4 System (Delsys Inc., Boston, MA,
USA). Electromyographic signals were digitized at a rate of 2 kHz via custom software on
a PC equipped with an acquisition card (PCI-63203; National Instrument Corp., Austin,
TX, USA). Each trial consisted of a 300 ms duration acquisition window with TMS pulses
delivered at 150 ms. Resting and active motor thresholds (rMT, aMT) were determined
using the Motor Threshold Assessment Tool software (MTAT 2.0; Clinical Researcher,
Knoxville, TN, USA), which allows fast and reliable thresholds estimations with a minimal
number of stimuli [17]. The MTAT software relies on the maximum likelihood strategy to
estimate motor thresholds and involves a pre-set stimulation pattern with the assumption
of response failure (MEP absent) for a subthreshold intensity and a success (MEP present)
for a supra-threshold intensity. In this study, MEPs > 50 µV were used to determine
response success for the rMT, whereas MEPs > 200 µV were used to determine response
success for the aMT. At Time 0, baseline corticospinal excitability was assessed by applying
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single pulses with the BiStim2 at an intensity equivalent to 130% rMT with 5–10 s intervals
between pulses.

2.4. Assessment of MEP Latency with Different Coil Orientations

Following the baseline assessment, single-pulse TMS was performed with the coil
placed in three orientations to estimate the recruitment of direct and indirect waves (D-
wave and I-waves) [16]. Before testing, the aMT was determined with the MTAT software
while participants exerted a light static contraction (about 10% of their maximal) of the
right FDI by pushing against the protruding rod with the index finger. The stimulator
intensity was set at 110% aMT for MEPs elicited with the coil positioned in the standard
PA orientation (i.e., the handle pointing 45◦ backward). For the AP orientation (handle
pointing 45◦ forward) and LM orientations (handle pointing downward), the stimulation
intensity was increased to 140% aMT to ensure recruitment of D-wave (LM stimulation)
and late I-waves (AP stimulation). For AP and PA stimulations, 15 MEPs were recorded,
whereas ten were recorded for LM stimulation. These numbers were deemed sufficient to
provide a reliable estimate of the onset latency of MEPs [18]. The order of testing with the
different coil orientations was counterbalanced across participants.

2.5. Modified 30 Hz/6 Hz iTBS Protocol

For iTBS, participants were moved to another chair to allow for the rTMS application.
The 30 Hz iTBS was delivered using a Magstim®Rapid2 stimulator (Magstim Co., Whitland,
UK) connected to a focal high-efficiency coil (D702, Magstim Co.). Before application, the
aMT was reassessed to account for the differences between stimulators and coils (i.e.,
BiStim2 monophasic pulses versus Rapid2 biphasic pulses). Once the aMT was determined,
the stimulator intensity was set at 80% aMT in line with safety recommendations for TBS
applications targeting the motor cortex [19]. The iTBS was delivered over the hand motor
area and consisted of 10 trains of 30 Hz 3-pulse bursts applied at 6 Hz interval and repeated
every 10 s (1.7 ON, 8.3 s OFF) for a total of 20 cycles (600 pulses over 192 s).

2.6. Post-iTBS Changes in Corticospinal Excitability, Safety and Tolerability

Following the iTBS protocol, participants were quickly returned to the recording chair
for single-pulse TMS. During the time between the end of the iTBS session and the first post-
iTBS time point, participants completed an rTMS adverse events questionnaire to assess
safety and tolerability. Participants were asked to rate on a scale of 0 to 5 (none, minimal,
mild, moderate, marked, severe) if they experienced any of the following symptoms
after the intervention: headache, scalp pain, arm/hand pain, other pain, other sensations
(e.g., tingling, burning), weakness, loss of dexterity, vision/hearing changes, ear ringing,
nausea/vomiting, rash/skin changes, or others. The pain and discomfort associated with
iTBS were also rated using the visual analog scale (VAS). At 5-, 20- and 45-min post iTBS,
MEPs (n = 15) were elicited (130% rMT) to assess changes in corticospinal excitability.

2.7. Analysis of MEP Data

Analysis of MEP characteristics in terms of amplitude and latency was performed
offline by the same investigator (KH) using custom software. MEPs were analyzed by
first superimposing MEP traces recorded at each time point and testing condition. Then,
mean peak-to-peak amplitude (mV) and latency (ms) were determined by visual inspection.
Individual means for latency and amplitude were then reported in the database for further
analysis. As mentioned earlier, individual susceptibility to recruit early and late I-waves in
response to single-pulse TMS was assessed by computing the latency differences between
MEPs recorded with AP stimulation and those recorded with LM or PA stimulation [16].
The latency difference was determined by subtracting the mean AP latency from the LM
latency (i.e., AP-LM, but see below).
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2.8. Analysis of Responses to iTBS

In line with previous studies [9,20], MEP amplitude was normalized to identify
individuals who responded to the modified 30 Hz protocol. Specifically, responders and
non-responders were operationally defined using a cut-off of ±10% from MEPs recorded at
baseline (Time 0). MEP amplitude in mV recorded at each time point post-iTBS (i.e., Time
1, 2, and 3) was averaged to get a grand average. Then, MEP ratios were computed by
expressing the grand average in percent relative to baseline (i.e., MEPgrand avg/MEPbaseline)
x 100). Using the 10% cut-off, individuals showing facilitation (i.e., MEP ratio > 110%) were
considered responders, while those showing either suppression (i.e., MEP ratio < 90%) or
no modulation (i.e., 90% < MEP < 110%) were classified as non-responders.

2.9. Statistical Analysis

D’Agostino-Pearson’s test revealed that amplitude data at specific intervals post-
iTBS were not normally distributed (Time 2, Time 3). As suggested by Nielsen [21],
amplitude data were log-transformed to normalize the distributions. MEP log-amplitude
data were then entered into a one-way repeated measure analysis of variance (ANOVA)
with Time (0,1,2,3) as the repeated factor. Dunnett’s post-test was used for post hoc
comparisons. The influence of biological sex was not considered in this analysis, for
our sample of participants consisted mainly of females (13/19). Also, there is evidence
that sex differences have little influence on neuromodulation induced by non-invasive
brain stimulation protocols [22]. Latency data were normally distributed and did not
need transformation. A one-way repeated measures ANOVA was performed on latency
data to compare differences at the different coil orientations (AP, PA, and LM) using
Tukey’s post-test for post hoc comparisons. Finally, a linear regression analysis was
performed to determine whether latency differences predicted MEP modulation following
iTBS. The level of significance was set at 0.05 for all tests. For ANOVA results, besides F and
p-values, we also report partial eta squared (η2) as an index of the size of the intervention
effect. All statistical tests and graphs were produced using GraphPad Prism version 9.0 for
Windows™ (GraphPad Software, San Diego, CA, USA).

3. Results
3.1. Baseline Measures of Excitability and Latency Differences

Of 21 participants, 19 (13 females) completed the protocol without issues. Two female
participants had to be excluded after experiencing minor adverse reactions (i.e., lightheaded,
nauseous) to single-pulse TMS. At baseline, the average rMT was 44.1 ± 8.8%, and the mean
MEP amplitude was 1.1 ± 0.8 mV. The average aMT, as determined with the BiStim2

stimulator, was 33.0 ± 5.7%. Figure 2a shows the distribution of latency values measured
with the different coil orientations. As expected, participants exhibited shorter MEP
latencies in response to LM stimulation when compared to either PA or AP stimulation
(respective mean, 19.8, 20.8, 23.0 ms). The ANOVA confirmed that latencies differed
significantly at the different coil orientations (F2,36= 22.3, p < 0.001, η2 = 0.55). Post-
hoc comparisons indicated that latencies measured with LM and PA stimulation were
significantly shorter than those measured with AP stimulation (Tukey’s post-test, p < 0.001).
However, there was no difference between LM and PA stimulation (p = 0.19) (Figure 2a).
The latter finding reflected the fact that some participants (n = 4) exhibited a shorter latency
with PA than with LM stimulation. In those cases, the PA latency was used to compute the
differences. The frequency distribution of latency differences (i.e., AP-LM/PA) computed
across all participants is shown in Figure 2b. As evident in the figure, participants exhibited
a relatively wide range of latency differences (1–7.5 ms) with a median difference at 3.5 ms.
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correspond to the quartile.

3.2. Tolerability and MEP Modulation in Response to iTBS

Only mild adverse events were reported in association with the iTBS protocol. About
three-quarters of the participants (14/19) experienced mild side-effects (ratings 1–3/5),
mainly during the application in the form of scalp sensitivity (7/19), headache (6/19), and
tingling or burning sensations (7/19). Most participants reported little to no pain (mean
VAS score, 1.1 ± 1.5 cm), although one participant did report significant pain (VAS score,
6 cm). This elevated VAS score was likely related to the intensity used for iTBS in this
participant who exhibited an unusually high aMT (67%).

Regarding MEP modulation, the distribution of individual MEP log-amplitude mea-
sured at each time point before and after iTBS is shown in Figure 3. It can be seen that
MEPs tended to be enhanced post-iTBS with greater enhancement at 20 and 45 min. The
ANOVA confirmed that Time (F3,54 = 4.3, p = 0.009, η2 = 0.19) had a significant effect on
MEP amplitude with post-hoc comparisons pointing to significant differences from baseline
(Time 0) at 20- and 45-min post (Dunnett’s post-test, p = 0.01 and p = 0.007, respectively).
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3.3. Variability of Individual Responses

Although many participants exhibited the expected MEP facilitation post-iTBS, some
variability was observed. This variability can be appreciated by inspecting Figure 4a, where
individual changes in normalized MEP amplitude relative to baseline are shown across
the different time points post iTBS. Of 19 participants, 68% (n = 13) were classified as
responders (range, 112–388%), while the remaining 32% (n = 6) were classified as non-
responders showing either suppression (n = 3, range, 65–73%) or no modulation (n = 3,
range, 96–104%). Typical examples of MEP modulation in responders and non-responders
following iTBS are shown in Figure 4b.

3.4. Latency Differences as Predictors of Responses to iTBS

Figure 5a shows the relationship between individual latency differences and corre-
sponding normalized MEP amplitude in response to iTBS. This relationship was inverse,
with large latency differences associated with no modulation or depression, while small
ones were associated with facilitation. The linear regression analysis revealed that latency
differences were significant predictors of responses to iTBS, accounting for 24% of the
variance in MEP amplitude (r2 = 0.24, p = 0.03). To further examine the inverse nature
of the association, participants were regrouped based on the median latency difference
into an ‘early I-waves’ (n = 11, Difference < 3.5 ms) and a ‘late I-waves’ (n = 8, Difference
> 3.5 ms) group [23,24]. As shown in Figure 4b, the early I-waves group tended to show
larger MEP facilitation on average when compared to the late I-waves group. However,
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the difference was not significant when compared with the Mann-Whitney test (U = 32,
p = 0.31), given the variability and the small number of observations in each group.
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4. Discussion

In the present study, we sought further evidence regarding the effectiveness of a
modified 30 Hz/6 Hz TBS protocol in the intermittent mode to induce lasting modulation
facilitation of MEPs. Our results showed that the modified iTBS protocol effectively facili-
tated MEPs for up to 45 min post-stimulation. Further to this, our analysis of responders
showed that these effects were relatively consistent, with more than two-thirds of the par-
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ticipants exhibiting the MEP facilitation. Our regression analysis also revealed that small
latency differences were associated with facilitation, a finding contrasting with previous
reports. In the following discussion, we will address the significance of these findings for
the applications of iTBS protocols in experimental and clinical settings.

4.1. Corticospinal Excitability and Latency Differences at Baseline

At baseline, our group of participants exhibited the expected variations in rMT and
MEP amplitude for adults in their age range (19–40 years). More specifically, both the
average rMT (mean, 43%) and MEP amplitude (mean, 1.1 mV) were in line with previous
reports on the reliability of measures of corticomotor excitability [18,23]. The range of la-
tencies measured in our participants in response to stimulation at different coil orientations
was comparable to that reported in previous studies [25,26]. The observation that some
participants (4/19) exhibited a shorter latency with PA stimulation than with LM stimula-
tion may have reflected individual differences at the anatomical or physiological level in
the ability of TMS pulses to recruit D-wave or I1 wave [27]. At any rate, the observed range
of latency differences (1–7.5 ms) corresponded with that reported by Hamada et al. [16].

4.2. Tolerability, MEP Modulation and Variability of Responses to 30 Hz iTBS

Regarding tolerability, the 30 Hz iTBS protocol was well tolerated by our group of
participants, and, more importantly, no serious adverse events were reported. While two
participants had to be excluded, these exclusions were related to vaso-vagal reactions after
experiencing single pulse stimulation, which is uncommon but can happen in susceptible
individuals [28]. We surmised that these reactions were partly attributable to the pandemic
context and that participants had to wear masks during testing. Concerning the iTBS
protocol, while many participants (74%) reported adverse events, these were generally
mild and consisted of the expected side effects of rTMS applications (i.e., headache, scalp
pain, and craniofacial discomfort). The overall level of pain perceived in association with
the iTBS session was lower (mean, 1-cm) than that reported by Malm et al. [29] following
50 Hz/Hz iTBS in a group of clinically depressed patients (median VAS of 4 cm). However,
in this study, iTBS targeted the prefrontal cortex for a total of 2400 pulses and at 90% rMT,
which may have accounted for the higher pain ratings. In the present study, only one
participant did report a high level of pain. As mentioned, this report was linked to high
intensity of stimulation during iTBS, confirming that intensity is the main factor driving
pain and discomfort during rTMS interventions.

Our analysis following the modified iTBS protocol showed that MEPs were facilitated
for up to 45 min post-stimulation. The observation that significant facilitation was detected
at 20 and 45-min post-iTBS and not at 5 min is consistent with a recent meta-analysis by
Chung et al. [3]. In analyzing the results of 87 iTBS studies, these authors concluded that
iTBS facilitatory effects on MEPs were more significant at mid-time points (20–30 min) than
early time-points (<5 min) post-intervention. However, these authors also noticed that iTBS
effects were more variable at later time points (i.e., >30 min post), which contrasts with the
strong facilitation we detected at 45 min. On the other hand, another recent quantitative
review by Wischnewski and Schutter [30] concluded that iTBS increases excitability for up
to 60 min, consistent with our current observation. Regarding the magnitude of facilitation,
on average, MEPs were enhanced by about 40% over baseline (mean 143%), an increase
larger than that reported by Wischnewski and Schutter [30] in their quantitative review
of iTBS effects. This observation reinforces our contention that the 30 Hz protocol elicited
strong MEP facilitation. In agreement with this, Pedapati et al. [15] reported similar large
effects (up to a 1.5-fold increase in MEP size) in children and adolescents in response to
300 pulses 30 Hz iTBS. Thus, in line with other recent reports on 30 Hz iTBS, our modified
iTBS protocol seemed highly effective in eliciting lasting MEP facilitation with an overall
increase in corticospinal excitability above the level reported in previous studies using the
50 Hz standard protocol.
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Regarding variability, much like other iTBS reports, not every participant exhibited
the expected facilitation following 30 Hz iTBS. As stated earlier, inter-individual variability
has been a lingering issue in TBS studies for more than a decade now, with a growing
number of studies reporting no change in cortical excitability or an “opposite” effect to
what is expected [31]. To our knowledge, only one recent study has observed a similar rate
of facilitatory responses (i.e., 68%; Guerra et al. [32] following standard iTBS. Most studies
using the standard 50 Hz iTBS protocol have reported much lower response rates, including
McCalley et al. [33], who recently reported only 33% of responders. It may be argued that
high inter-individual response variability will persist regardless of the TBS protocol used in
terms of bursting frequency and inter-burst intervals. For instance, protocols used to induce
LTP and LTD in animal models are far more precise than rTMS protocols in the human
scalp, which are more diffuse, leading to activation of large cortical networks comprised of
a greater variety of cell types. Likewise, in vitro experiments on slices suggested a blurred
line between LTP and LTD, as both responses can be induced using identical stimuli on
different parts of the neuron or under different experimental conditions [34–37]. Thus, the
variability of response to TBS and other rTMS protocols may reflect the natural properties
of cortical networks and underlying physiological mechanisms [38–41]. A detailed under-
standing of these sources of variably could provide a basis for altered response to TBS in
several neurological disorders. It will aid in designing more optimal interventions tailored
to the individual.

4.3. Predictors of Responses to iTBS from Latency Differences

The present study found an inverse relationship between iTBS aftereffects in MEP
modulation and latency differences. Participants with small latency differences tended
to show MEP facilitation, while those with large differences tended to show suppression
or no modulation. Such a relationship contrasts with the positive association reported
by Hamada et al. [16], who found that the larger the latency difference and the greater
likelihood of recruiting late I-waves, the greater the MEP facilitation in response to iTBS.
Before interpreting this apparent contradiction, it is essential to emphasize that not all TBS
studies have found the positive relationship reported by Hamada et al. [16]. For instance,
Hinder et al. [9] found no association between large latency differences (i.e., >4 ms) and
MEP facilitation following 50 Hz iTBS. In fact, in their report, 75% of the participants
exhibiting MEP facilitation following iTBS exhibited small AP-LM latency differences
(<4 ms), which is somewhat in line with the present observation linking MEP facilitation
with small latency differences. More recently, Rocchi et al. [42], in exploring predictors
of responses to cTBS, found no correlations between AP-LM latency difference and cTBS
aftereffects. Thus, not all studies agree with the notion that preferential recruitment of
late I-waves, as reflected in large AP-LM differences, are predictive of positive responses
to iTBS. The inverse relationship we found between AP-LM/PA latency differences and
MEP modulation suggests that preferential recruitment of early I-waves was likely an
important factor in mediating the aftereffects of 30 Hz iTBS. Although speculative, it is
conceivable that for the 30 Hz/6 Hz protocol, the recruitment and modulation of early
I-waves might be more critical than for 50 Hz/5 Hz iTBS. In this respect, it is worth noting
that the superiority of the 30 Hz over the 50 Hz TBS protocol was initially described for
cTBS. Indeed, Goldsworthy et al. [10] showed that the 30 Hz cTBS protocol induced more
significant and longer-lasting depression in MEPs. Given that the inhibitory effects of
cTBS are thought to involve a reduction in the excitability of circuits generating early
I-wave [43], it is tempting to suggest that 30 Hz/6 Hz combination might be more efficient
in modulating early I-waves. Recruitment of early I-waves has also been implicated in
other facilitation-inducing TMS paradigms. For instance, Di Lazzaro et al. [44] showed
that modulation of I1 wave was critical in determining the magnitude of short-interval
intracortical facilitation (SIFC), a form of facilitation observed when two TMS pulses at or
above the threshold are delivered at interstimulus intervals of 1.5, 3 and 4.5 ms. Moreover,
a recent study by Higashihara et al. [26] found that individuals exhibiting small AP-LM
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latency differences (<4 ms) also exhibited significantly higher SICF when compared to
participants with large latency differences (>4 ms). These findings confirm that facilitatory
effects are more likely to be expressed in individuals in whom recruitment of early I-waves
is easily achieved via TMS. Interestingly, in the report of Hamada et al. [16], individuals
who exhibited opposite responses to cTBS (i.e., MEP facilitation instead of depression) were
also those that showed small AP-LM latency differences.

While recruitment of I-waves and individual susceptibility to TMS appears to be
a significant factor in predicting TBS aftereffects, other factors might also be important.
In fact, in our group of participants, differences in latency explained about 25% of the
variance in MEP amplitude modulation, leaving a substantial proportion unexplained.
Pharmacological studies suggest that the LTP-like aftereffects of iTBS [45] are linked with
NMDA receptor-dependent glutamatergic transmission. One theory is that differences
between individuals in baseline levels of glutamate and GABA, hence the balance between
cortical excitation and inhibition, may contribute to varying responsiveness [46,47]. On
this basis, the same NIBS paradigm, whether it be iTBS or other forms of rTMS, may
result in variable responses, such that some individuals reach optimal levels of excitation
while others show little to no effect. In addition, it has been suggested that the variable
responses to TBS could be partly due to genetic factors [48]. Specifically, brain-derived
neurotrophic factor (BDNF) polymorphism has been associated with measures of cortical
plasticity [48–54], including both experience-driven and human cortical plasticity induced
by iTBS [48,55]. Finally, other factors related to age differences, baseline excitability, and
time of day have been identified as potential factors to predict TBS effects [8].

4.4. Study Limitations

This study presents certain limitations. Firstly, while our sample size was acceptable,
a larger sample size would have been preferable, given the reported high variability of indi-
vidual responses to TBS [8]. However, because of the COVID-restrictions, there were many
barriers to recruiting research participants. Along the same line, the fact that our sample
consisted mainly of female participants might have influenced our results since there is
evidence that responses to rTMS interventions can vary across the menstrual cycle [22].
Our study protocol did not account for this possible confound for monitoring the menstrual
cycle would have required hormonal testing, which was not easily available at the time
of testing. Such monitoring is certainly a factor to consider for future studies. Second,
our study protocol did not include a direct comparison with 50 Hz iTBS precluding any
conclusion regarding the superiority of 30 Hz iTBS. While we acknowledge this limitation,
one must consider again that this study was performed in the context of the worldwide
pandemic, with restrictions on laboratory access and the amount of time research par-
ticipants and experimenters were allowed to stay on-site. Also, there is already a large
body of data regarding the effects of the standard 50 Hz TBS protocols on corticospinal
excitability (see Chung et al. [3], for a review). The lack of a sham condition could be seen
as another major limitation. However, our goal was not to test overall efficacy but rather to
investigate the effectiveness of the modified 30 Hz/6 Hz iTBS protocol in inducing lasting
MEP facilitation. Nevertheless, adding a sham condition could provide critical information
regarding the influence of expectations and anticipation on individual responses to the
modified iTBS protocol [33].

4.5. Conclusions

In conclusion, the present study investigated the effects of a modified 30 Hz iTBS
protocol on corticospinal excitability. Our results showed that corticospinal excitability
was increased for up to 45 min post-iTBS. Furthermore, these effects appeared less variable
than those reported for the standard 50 Hz protocol, with more than two-thirds of the
participants showing the expected MEP facilitation. Also, our regression analysis of latency
differences as predictors of iTBS effects pointed to a different mode of action for the
modified TBS protocol with modulation of circuits generating early, as opposed to late
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I-waves, as a preferential mechanism leading to MEP facilitation. Altogether, these results
suggest that the modified 30 Hz/6 Hz iTBS might be a sound alternative to the standard
protocol to induce lasting corticospinal facilitation. This finding may have implications for
the applications of TBS interventions in clinical populations.
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