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Editorial on the Research Topic

Fluid Therapy in Animals: Physiologic Principles and Contemporary Fluid

Resuscitation Considerations

INTRODUCTION

What an oversight! Fluids are drugs (1), so why has one of the most administered, and
arguably beneficial, therapies employed in veterinary medicine been so inadequately investigated?
Intravenous fluids (i.e., drug) can produce positive or negative effects dependent upon their dose
and the circumstances (i.e., context) that exist when they are administered (2, 3). Improved
understanding of the physiologic principles that determine the effects and consequences of fluid
therapy in healthy and diseased animals is essential to good clinical practice (4–86). Notably, most
of the “evidence” investigating fluid therapy in animals has been obtained from studies that are
not randomized, properly controlled, blinded, adequately powered, or fail to identify predefined
primary or secondary outcomes (73, 75, 87, 88). As a result, much of themedical literature provides,
“little reliable information on the effectiveness of fluid resuscitation” in diverse clinical scenarios
(2, 3, 89–93). Future studies must address these limitations since “fluid therapy might be more
difficult than you think” (94), “nothing is more dangerous than conscientious foolishness” (95) and
“solely the dose determines that a thing is not a poison” (96). For example, the pharmacokinetics of
fluids administered to cats, dogs, horses, or cattle are largely unknown and generally not considered
when designing fluid therapy trials although it has been addressed in the human medical literature
for more than 20 years (31, 97–100).

This issue of Frontiers in Veterinary Science provides: (1) A review of the terms used to
define or describe fluid therapy (Chow); (2) An update on body fluid compartments and the
physiological concepts that guide fluid therapy (Stewart; Woodcock and Michel; Smart and
Hughes; Cooper and Silverstein); (3) A discussion of fluid kinetics and its relevance to fluid
administration in cats (Yiew, Bateman, Hahn, Bersenas, Muir; Yiew, Bateman, Hahn, Bersenas);
(4) Contemporary recommendations for the administration of IV fluid regimens in small and large
animals (Rudloff and Hopper; Crabtree and Epstein; Adamik and Yozova); (5) The effects of IV
fluids on the coagulation system (Boyd et al.); (6) A discussion of fluid administration in animals
with naturally occurring disorders and diseases (e.g., food deprivation, dehydration, sepsis, renal,
pulmonary, trauma, hemorrhage, traumatic brain injury; Freeman; Dias et al.; Montealegre and
Lyons; Constable et al.; Hall and Drobatz; Pigot and Rudloff; Langston and Gordon; Adamantos)
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including refractory hypotension (Valverde) and
cardiopulmonary resuscitation (Fletcher and Boller); (7)
The consequences of fluid overload (Hansen); (8) A description
of dynamic fluid therapy monitoring techniques (Boysen and
Gommeren); (9) An introduction to fluids of the future (Edwards
and Hoareau); and (10) Alternative methods for fluid delivery
(Gholami et al.). The information and citations contained within
this collection serve as a rich resource for the design of future
studies investigating the safety and efficacy of intravenous fluid
therapy in animals.

BODY FLUID COMPARTMENTS

Water (i.e., total body water: TBW) is responsible for ∼60–
70% of body weight (BW) and is the primary component of
all body fluids (101). The two main body fluid compartments
are the intracellular fluid (ICF) and extracellular fluid (ECF).
Approximately two-thirds (≈40%) of TBW is intracellular fluid
(ICF) and one-third (≈20%) extracellular fluid (ECF). The
ECF is comprised of four sub-compartments, the intravascular
fluid volume (i.e., plasma volume: PV; 4–5% BW), the fluid
that surrounds cells (i.e., interstitial fluid volume: IFV; ≈15–
18% BW), lymph, and fluids contained within epithelial lined
spaces (transcellular fluids) [Stewart; (101–104)]. Severe obesity
can increase the relative percentage of the ECF by up to
50% of TBW (≈ 30% BW) (105). The intravascular volume
(i.e., blood volume: BV) is comprised of the red cell volume
(RBCV; 6–8% BW) and plasma volume (PV) (106, 107). If
the packed red blood cell volume (PCV) is known BV can be
determined (i.e., BV = PV × 100/100-PCV) (106). Transcellular
fluids are infrequently considered when determining water and
solute requirements in simple stomached animals but become
important in horses and ruminants (108). Determination of
the body’s fluid compartments is technically challenging, time
consuming, and often inaccurate (109–111). Substances used for
this purpose (i.e., “dilutional tracer technique”) must be non-
toxic, easily detectable and sustain a steady state concentration
within the compartment (112–114).

Contemporary evidence suggests that the PV is comprised of
circulating and non-circulating (15–25% of PV) components, the
latter being located within an endothelial surface or glycocalyx
layer (GLX) and the channels between vascular epithelial cells
(115, 116). TheGLX interacts freely with plasma proteins and acts
as an surface layer “gatekeeper” for larger molecules selectively
reducing plasma solute distribution volume dependent upon
their molecular weight (MW), shape (i.e., effective molecular
radius), electrical charge, and concentration (11–14, 117).
Crystalloids have a shorter intravascular retention time than
colloids (100, 118–121).

BLOOD DISTRIBUTION

Blood volume is distributed between the pulmonary (18–20%)
and systemic (78–80%) circulations dependent upon their (e.g.,
brain, heart, lung, and gut) oxygen requirements (VO2). Veins

are ∼30 times more compliant than arteries, contain up to five
times more adrenergic receptors than arteries and normally serve
as blood reservoirs (122). Some investigators have described
the blood volume contained within the systemic veins as either
unstressed or stressed (123, 124). The unstressed volume (Vu;
≈70% BV) is equivalent to the blood volume required to fill the
veins without increasing the transmural pressure above zero
mmHg and the stressed volume (Vs; ≈30% BV) as the volume
of blood required to increase the transmural pressure to values
above zero (123). Under normal circumstances Vu is believed to
serve as a reserve volume that can be mobilized by increasing
sympathetic activity (i.e., alpha 1 receptors) thereby increasing
vs. (i.e., “effective” BV) (125, 126). The mean circulatory filling
pressure (MCFP) is defined as the mean vascular pressure that
exists in the systemic circulation after the heart is stopped
and is argued to be determinant of venous return and cardiac
output (127, 128). A growing number of vascular physiologists
however consider this interpretation to be abstract and erroneous
opting to believe that cardiac contraction is the independent
variable that drives blood flow and determines cardiac
output (129–136).

WATER BALANCE

Water balance (i.e., water intake and output) is governed by
a variety of neural and neuroendocrine high-gain homeostatic
feedback mechanisms that include, osmoreceptors, osmotically
stimulated thirst receptors, hormones [e.g., renin-angiotensin-
aldosterone system (RAAS), angiotensin-converting enzyme-2
(ACE2)/angiotensin 1–7 (Ang 1–7), vasopressin (antidiuretic
hormone: ADH), erythropoietin (EPO), atrial natriuretic peptide
(ANP)] and membrane water channels (i.e., aquaporins),
especially those located in the renal tubules (137–144). The
kidney is responsible for regulating fluid, electrolyte balance
and blood volume (145–147). The kidney also produces and
secrets erythropoietin (e.g., low Hb, PaO2, flow) signaling bone
marrow to produce more red blood cells. Activated atrial stretch
receptors secrete ANP producing vasodilation and increases
in glomerular filtration, salt and water excretion, and vascular
permeability, thereby regulating PV and lowering arterial blood
pressure (ABP) (141, 148). Therefore, the kidney is regarded
as a key determinant of both PV and BV. Negatively charged
glycosaminoglycans (GAGs) located in the interstitial spaces and
lymphatics of the skin also function as non-renal regulators of
sodium ion concentration and ECF volume (7, 8) serving as
indirect controllers of arterial blood pressure (ABP) by shifting
fluid from the interstitial to the intravascular space (7, 8, 149).

BLOOD FLOW AND TISSUE PERFUSION

The heart and vasculature deliver blood to and from the systemic
and pulmonary circulations and, in conjunction with interstitial
compliance and the lymphatic system, are responsible for
ensuring the continuous circulation of fluid throughout the body
(5, 5, 150–156). Three categories of capillaries are involved in the
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exchange of fluid, gases (O2, CO2), and solutes (e.g., albumin)
(155, 157). Non-fenestrated or continuous capillaries nourish
the tissues of the nervous system, muscle, connective tissue,
skin, lung, and fat. Fenestrated (i.e., contain “pores”) capillaries
perfuse the kidneys, intestinal mucosa, synovial linings, exocrine
glands and sinusoidal or discontinuous capillaries with large
intercellular breaks (i.e., pores) filter blood in the liver, spleen,
and bone marrow (11). All three are coated to a greater
or lesser extent by the semi-permeable negatively charged
GLX [(11–13); [Yiew, Bateman, Hahn, Bersenas; Rudloff and
Hopper; Crabtree and Epstein; Adamik and Yozova; (155, 158)].
Plasma filtration among the different types of capillaries is
determined by hydrostatic (mmHg) and osmotic (mOsm/L)
pressures, the number and size or their fenestrations [i.e.,
“pores”]), capillary surface area, the thickness of the GLX,
the pre- to postcapillary vascular tone (i.e., resistance ratio),
and tissue compliance (3, 159–162). Capillaries in the renal
glomeruli are fenestrated (pore: 30–60 nm) but have a smaller
effective pore size (pore: ≤15 nm) due to the influence of
the GLX on the filtration of larger (>40–50 kDa) molecules
(163, 164). Non-fenestrated capillaries (e.g., central nervous
system blood brain barrier;≤1–2 nm) with numerous endothelial
transport vesicles enable transcytosis (i.e., transcellular transport
of macromolecules). They are less permeable to fluid and
electrolyte exchange than fenestrated capillaries, although water
and small solutes pass through endothelial intercellular clefts
in accordance with hydrostatic pressure differences (157). Non-
fenestrated “continuous” capillaries (e.g., skin, lungs, and the
blood-brain barrier) have a comparatively small effective pore
size (pore: 3–5 nm) that inhibits the trans-vascular flux of fluid
and most solutes (160, 163–165).

The GLX constitutes ∼2% of the PV and functions as
two layers: a less permeable, dense branch-like inner layer
composed of heparin sulfate and glycoproteins and a more
permeable porous outer later composed of plasma proteins
and glycosaminoglycans (13, 104, 166). The GLX limits
albumin (i.e., large molecule) and RBC access, leukocyte
contact with the inner layer and endothelial surface (13,
104, 166), participates in cell signaling (i.e., nitric oxide-
induced vasorelaxation), provides anti-coagulant effects and
protects endothelial cells from oxidative stress (107). Small
molecules, such as water, gases, small lipids, and lipid-soluble
molecules diffuse freely through the GLX through endothelial
intercellular clefts or by facilitated diffusion (158). Larger
molecules (i.e., colloids) negligibly penetrate the GLX and
distribute in a smaller intravascular volume than crystalloids
which readily distribute throughout the entire intravascular
space. Recent studies suggest that crystalloid-to-colloid ratios
should range from 0.7 to 1.4:1 in contrast to older ratios
(i.e., 1:3) (167–175) and that crystalloid-to-blood ratios > 1:1
produce perivascular edema, pulmonary parenchymal stiffness
(176), impaired coagulation [Boyd et al.; (177, 178)], increased
blood loss (44), and increased vasopressor requirements (43).
Disagreements favoring colloids over crystalloids rest more
on their delayed diffusion than on their safety [(44, 50–53);
Boyd et al.; (179)], risk-benefit ratio (Adamik and Yozova)
or cost.

TRANSVASCULAR FLUID FLUX

Traditional Theory
The dynamics of fluid flux (Jv) across capillary walls is
historically attributed to Earnest Starling’s observations of fluid
absorption from connective tissue spaces (Starling 1896) (180).
He concluded that capillary hydrostatic pressure was responsible
for transudation of a small amount of fluid into the tissues
(“frictional resistance of the capillary wall”), thereby forming
lymph, and that the colloid osmotic pressure produced by
plasma proteins was responsible for fluid absorption. He also
postulated that the forces moving fluid in and out of the capillary
were almost balanced. Subsequent experiments resulted in
mathematical descriptions of Starling’s hypothesis and suggested
equations wherein Jv (i.e., transvascular fluid flux) is a balance
of intravascular capillary (c) intravascular and interstitial (i)
hydraulic (i.e., hydrostatic pressure: P) and oncotic [π: colloid
osmotic pressure (COP)] forces (Kedem–Katchalski equations)
(181). Capillary hydrostatic pressure (Pc) is a function of the
hydrostatic P from the inflow (arterial: a) to the outflow (venous:
v) end of the capillary and are dependent upon the pre- and post-
capillary resistances (R), assuming blood flow remains constant
(182–186). A decrease in Ra (e.g., arteriolar vasodilation) or an
increase in Rv (venoconstriction) decreases Ra/Rv and increases
both Pc and Jv (3). Under normal circumstances Pc is more
sensitive to changes in Pv than Pa but during intense arterial
vasoconstriction, Pc decreases rapidly (increased Ra/Rv) (3, 185).
Plasma proteins are responsible for generating πc and COP is
the hydrostatic pressure required to prevent fluid movement
into the plasma or, alternatively, the pressure that pulls fluid
across the capillary wall into the plasma. Capillary Pc (i.e.,
hydraulic push) is therefore opposed by capillaryπc [i.e., osmotic
suction: (Pc - πc)] and Pi is opposed by πi (Pi - πi). The
Starling hypothesis asserts that fluid is filtered at the arterial
end of the capillary because Pc predominates over all other
forces, and that fluid is reabsorbed at the venous end of the
capillary because πc (osmotic suction) predominates. Interstitial
forces (Pi, πi) act as modulators of the rate of fluid flux and
therefore the volume of Jv (14, 185). Later studies modified
Starling’s hypothesis to account for transvascular fluid flux rates
per unit pressure (i.e., hydraulic conductance: Lp) and the
macromolecular sieving properties of the microvascular barrier
(Staverman’s reflection coefficient: σ) [(12–14); Woodcock and
Michel; (173, 187)]. Both Lp and σ vary among different types
of capillaries since Lp is dependent upon the number of “pores”
and σ is dependent on effective pore diameter. The σ for most
plasma solutes ranges from 0 to 1 (i.e., 0 = totally permeable;
1 = totally impermeable) (187). The capillary wall osmotic and
σ for water, anions, cations, and smaller soluble substances
like glucose is nearly 0 (freely permeable) (160). Larger plasma
solutes (>30–40 kDa), like albumin (66–69 kDa; diameter
∼3.5 nm), which accounts for 80% of total plasma protein
and commercial semisynthetic colloid solutions (i.e., gelatins,
dextran, and hydroxyethyl starches; COP range 24–60mm Hg)
exhibit σ’s ranging from 0.7 to 1.0 and are almost impermeant to
most the microvascular barrier except the sinusoids of the liver.
The incorporation of Lp and σ into Starlings hypothesis is the
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basis for what is proclaimed as the “Starling equation” that is
still published in most texts [Jv = Lp [(Pc – Pi) – σ (πc – πi)]],
although Starling had little to do with its derivation since the
earliest form of the equation did not appear until 1927 (182).

Contemporary Theory
Recent investigations have led to a revision of the Starling
hypothesis (165) and the Starling equation based upon GLX
COP (πg): Jv = Lp [(Pc – Pi) – σ (πc – πg)] [(11); Woodcock
and Michel; (188–193)]. It is now realized that the interstitial
COP does not directly determine fluid movement across the
microvascular wall, and that the effect of πc on Jv is far less than
originally predicted (11, 189–195). The sieving properties of the
glycocalyx modify Starling’s forces by imposing an obstacle to Jv.
The π difference across non-fenestrated capillaries is influenced
by the πg and πi is far less important in determining Jv than
originally proposed. Notably, πg is negligible compared to πc

such that the osmotic pressure gradient across the glycocalyx
is close to πc rather than the difference between πc and
πi. Fluid that is filtered through the glycocalyx flows rapidly
through narrow inter-endothelial cell breaks, thereby limiting
interstitial protein back diffusion into the sub-glycocalyx space.
The “Revised” Starling equation [(11); Woodcock and Michel;
(189)] has proven to be more consistent with experimental
and clinical observations and suggests that (1) Jv is far less
than originally predicted; (2) Fluid is not normally reabsorbed
from the venous end of the capillary during normal physiologic
conditions (steady state no-reabsorption rule); (3) Tissue lymph
drainage is the primary route for return of interstitial fluid
to the circulation; (4) Interstitial fluid is reabsorbed from the
interstitium when Pc decreases until a new steady state is
established (14); and (5) Crystalloid is almost as effective as a
colloid (Col) administration for treating hypovolemia from blood
loss (11, 173–176). These revisions highlight the importance
of GLX composition and integrity and the number of inter-
endothelial cellular “breaks” (i.e., glycocalyx-junction-break
model) in determining the effectiveness of fluid resuscitation
(195). They do not negate the “importance of transcapillary refill”
as suggested by some (196), but do have important implications
regarding fluid selection, rate, and volume for improving fluid
efficiency and effectiveness in diseased animals [Woodcock and
Michel; (189, 194, 197)].

VOLUME KINETICS

Volume kinetics (VK) determines the volume into which an
administered fluid is distributed (i.e., volume of distribution:
Vd), the volume of plasma that is completely cleared of the
administered fluid per unit time (i.e., clearance: Cl) and the
time it takes for the total amount of administered fluid to
be reduced by one-half of its original volume (i.e., half-life:
t1/2) (31). Intravenous fluids are initially distributed into a
central compartment (Vc) followed by diffusion into a peripheral
compartment (Vt) [(31); Yiew, Bateman, Hahn, Bersenas, Muir;
(179, 198–201)]. The distribution half-time for most crystalloids
is relatively short (<8–10min) implying that distribution is

complete within∼30–50min (4–5 half-lives), a range that closely
coincides with the measured half-lives reported for acetated
(56min) and lactated (50min) Ringer’s solutions in humans
(155). A low Cld from Vc increases the infused fluid’s potency
(i.e., the volume required to expand the plasma volume by
20% in 30min) but also increases hemodilution. The Cld for
colloidal solutions [i.e., hydroxyethyl starches (HES)] is much
lower than crystalloids, suggesting delayed departure from Vc

and prolongation of their volume expanding effects.
Rapid fluid administration rates (>40–60 ml/kg/hr) and large

fluid volumes (>60–80 ml/kg) produce hemodilution, interstitial
fluid accumulation (i.e., edema), and serious rebleeding in
animals with uncontrolled hemorrhage (15, 78, 83, 202,
203). Most anesthetic drugs, particularly inhalant anesthetics
(e.g., propofol, isoflurane), depress cardiorespiratory function,
blunt homeostatic reflexes, promote vasoplegia, [Valverde;
(204–206)] decrease tolerance to acute anemia [i.e., increase
the critical Hb concentration: (Hbcrit)] (207, 208), promote
interstitial fluid accumulation (209) and perioperative fluid
retention (209–212), decrease urine output (212, 213), and
depress the response to fluid administration (204, 214). In
addition, vasoactive drugs are known to alter fluid volume
kinetics (215–219). Stimulation of alpha1- adrenergic receptors
(e.g., norepinephrine; phenylephrine) increases Vd, Cld, the
accumulation of fluid in Vt, and Clr while stimulation of beta-
1 adrenergic receptors (e.g., isoproterenol) increase Vc and
decrease Vd, Cld, and Clr (69, 216, 217, 220). Notably, fluid
accumulation in Vt is more significantly influenced by the rate
of infusion (i.e., ml/kg/min) than by the infused fluid volume;
higher infusion rates produce greater degrees of interstitial
fluid accumulation, hemodilution, coagulation abnormalities,
and organ dysfunction (79, 199, 203, 221, 222).

NEW HORIZONS

New fluids and goal directed fluid therapies (GDFT) continue
to be developed for the treatment of specific naturally occurring
diseases with the goals of improving tissue oxygenation and
perfusion [(9); Edwards and Hoareau; (197, 223–228)], and
reducing adverse events and mortality (229, 230). Damage
control resuscitation (DCR) strategies limit the amount of
crystalloids administered and employ balanced blood product
resuscitation ratios [PRBC’s-plasma-platelets ratio of 1:1:1; Hall
and Drobatz; Boysen and Gommeren; (230–235)]. Isotonic and
hypertonic crystalloid solutions continue to be investigated in
order to rapidly restore hemodynamics, reduce the amount
of fluid administered in order minimize hemodilution, and
tissue edema, and lessen the development of disseminated
intravascular coagulation (58–62, 236, 237). Novel therapies
that mimic natural hemostatic mechanisms (68) or reduce
vascular leakage (238–240) are being developed and solutions
that increase tissue oxygenation (e.g., hemoglobin) and restore
microcirculatory blood flow continue to evolve (241–243).
Future fluids should protect or repair the endothelium
(224, 228, 238, 244, 245). Methods for determining their
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success will be dependent upon the development of validated
dynamic non or minimally invasive hemodynamic monitoring
methodologies [(42); Cooper and Silverstein; Boysen and
Gommeren; (20, 38–41, 235, 246–254)] in addition assessment of
thromboelastographic variables (249), implementation of deep-
learning algorithms (254) and development of bio-responsive
drug delivery systems [Gholami et al.; (255–260)]. It is hoped
that the information contained within this compendium will
inspire readers to employ fluid therapy practices that improve
patient outcome.
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