
Research Article
ADivide-and-ConquerBatAlgorithmwithDirection ofMeanBest
Position forOptimization of CuttingParameters inCNCTurnings

Xingwang Huang,1 Zongbao He,1 Yong Chen,1 and Shutong Xie 1,2

1School of Computer Engineering, Jimei University, Xiamen 361021, China
2Digital Fujian Big Data Modeling and Intelligent Computing Institute, Jimei University, Xiamen 361021, China

Correspondence should be addressed to Shutong Xie; shutong@jmu.edu.cn

Received 2 November 2021; Revised 4 January 2022; Accepted 13 January 2022; Published 23 February 2022

Academic Editor: Diego Oliva

Copyright © 2022 Xingwang Huang et al. +is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Optimization of machining parameters is an important problem in the modern manufacturing world due to production efficiency
and economics. +is problem is well known to be complex and is regarded as a strongly nondeterministic polynomial (NP)-hard
problem. To reduce the production cost of work-pieces in computer numerical control (CNC) machining, a novel optimization
algorithm based on a combination of the bat algorithm and a divide-and-conquer strategy is proposed. First, the basic bat
algorithm (BA) is modified with the aim to avoid finding the local optimal solution. In addition, a Gaussian quantum bat
algorithm with direction of mean best position is developed. Second, in order to reduce the complexity of the optimization
problem, the whole optimization problem is divided into several subproblems by using a divide-and-conquer strategy according
to the characteristic of multipass turning operations. Finally, under a large number of machining constraints, the cutting pa-
rameters of the two stages of roughing and finishing are simultaneously optimized. Simulation results show that the proposed
algorithm can find better combinations of the machining parameters than other algorithms proposed previously to further reduce
the production cost. In addition, the outcome of our work presents a novel way to solve the complex optimization problem of
machining parameters with a combination of traditional mathematical methods and swarm intelligence algorithms.

1. Introduction

In the manufacturing field, computer numerical control
(CNC) machining refers to the computerized digital control
of automated machine tools used to process rough material
into semifinished or finished parts; it is one of the most
common technologies. +e main purpose of CNC ma-
chining is to save machining costs and improve machining
efficiency and machining quality. Machining costs can be
saved by selecting reasonable machining parameters, which
introduces an optimization problem, i.e., selecting the op-
timal machining parameters to achieve the goal of reducing
machining costs under the given machining constraints.
Earlier research on the optimization of machining param-
eters mainly used traditional mathematical processing
methods such as dynamic programming, sequential un-
constrained minimization technique (SUMT), and linear or

nonlinear programming. However, in general, the optimi-
zation problems of machining parameters are nonlinear and
complicated problems with multiple constraints. +erefore,
it is difficult to obtain satisfactory optimization solutions
using traditional methods [1, 2]. In recent years, many
scholars have applied swarm intelligence algorithms to the
optimization problems of machining parameters in the field
of computer integrated manufacturing. By using swarm
intelligence algorithms to search for approximate optimal
solutions of the problem, some research results have been
achieved [3–16].

However, most previous studies were devoted to com-
bining swarm intelligence algorithms with various local
improvement algorithms [3–11, 17] (e.g., population di-
versification, local greedy search, and the use of heuristics as
local search) in the hope of obtaining better results. How-
ever, because they did not fully consider the characteristics
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of the turning problem with multiple machining processes,
the results obtained by the algorithms were similar, and it
was difficult to significantly reduce the machining cost. To
address this bottleneck, this paper proposes a novel opti-
mization algorithm by fully considering the characteristics
of the turning problem while effectively exploiting the global
optimization performance of the swarm intelligence algo-
rithm. By combining the improved bat algorithm with the
divide-and-conquer strategy, the performance of the opti-
mization algorithm is substantially improved. +e final
optimization algorithm is able to find better results.

+e rest of this paper is organized as follows. Section 2
represents the related works, especially the intelligent al-
gorithms for optimization problems in CNC turning. Sec-
tion 3 describes the mathematical model for the
optimization of machining parameters in CNC turnings.
Section 4 first introduces the bat algorithm, then proposes
the Gaussian quantum bat algorithm with direction of mean
best position (GQMBA), and finally elaborates on the idea of
the combination of GQMBA and the divide-and-conquer
strategy for solving the machining parameter optimization
problems. In Section 5, simulation experiments are con-
ducted, and different algorithms are compared. Finally, the
concluding comments and some future research directions
are presented in the last section.

2. Related Works

Optimization of turning parameters is an important issue in
the manufacturing field. Early studies used traditional
mathematical methods to find optimized machining pa-
rameters. Metaheuristic algorithms are also used to solve
optimization problems of machining parameters. Chen and
Tsai first proposed a mathematical model for the optimi-
zation problem of machining parameters in turnings and
then combined Hooke-Jeeves pattern search (PS) into the
simulated annealing (SA) algorithm to form a hybrid op-
timization algorithm (SA/PS) to solve the optimization
problem [3]. Onwubolu and Kumalo [4] proposed a genetic
algorithm (GA) to optimize the machining parameters in
turnings but did not consider the constraint that the number
of rough passes must be an integer. Chen and Chen [5]
pointed out this shortcoming in the research of Onwubolu
and Kumalo [4]. However, the optimization results obtained
by the GA corrected by Chen and Chen were not better than
those obtained by SA/PS. Additionally, based on a GA,
Sankar [6] used a modified genetic algorithm (MGA) to
search for optimized cutting parameters in turnings. +e
improved MGA used a specific crossover operator and three
different mutation operators to enhance the diversity of the
population and prevent the algorithm from converging to a
local optimal solution. In addition to SA and GA, some
studies applied other intelligent algorithms to the optimi-
zation problem of machining parameters. Vijayakumar [7],
Wang [8], and Xie and Guo [16] developed new heuristic
algorithms to overcome optimization problems based on the
ant colony optimization (ACO) algorithm. In addition, the
particle swarm optimization algorithm (PSO) is also one of
the most widely used swarm intelligence methods [18].

Srinivas et al. proposed a PSO algorithm where the inertia
coefficient decreased linearly with every iteration to solve the
cutting parameter optimization problem [9]. Yildiz [10] and
Costa et al. [12] also contributed different solutions based on
the PSO algorithm to the problem. After comprehensive
analysis of the previous research methods and results, Raja
and Baskar [11] applied three optimization algorithms
(SA, GA, and PSO) to three different machining parameter
optimization models (single-pass turning, multipass turn-
ing, and surface grinding) to conduct experiments and
compare the results of various types of intelligent optimi-
zation algorithms to the machining parameter optimization
problem.+e results showed that the optimization effect and
computational efficiency of PSO are better than those of SA
and GA. Scatter search (SS) is one of the optimization al-
gorithms developed in the field of metaheuristics. Chen [19]
focused on the application of the scatter search method in
solving the optimization problem in turnings. By comparing
it with other algorithms, the experimental results showed
that the SS obtained superior machining parameters than
some of the metaheuristic methods.

In recent years, in addition to the abovementioned
classical intelligent algorithms, some new swarm intelligent
algorithms have been proposed by researchers. Xu et al.
proposed an improved flower pollination algorithm (FPA)
and compared the obtained results with those of related
studies [20]. Mellal and Williams used the cuckoo optimi-
zation algorithm (COA), one of the advanced bioinspired
optimization algorithms, to minimize the unit production
cost [21]. +e experimental results showed that the COA
algorithm is very competitive compared with other algo-
rithms. Due to the successful application of swarm intelli-
gence algorithms for optimization problems, Sofuoğlu et al.
used three heuristic algorithms, GA, PSO and COA, to solve
three different problems, which were more efficient and
effective than other algorithms [22]. Similarly, Yildiz de-
veloped a new hybrid optimization algorithm to minimize
the production cost by adding the Taguchi method that
actively acted on the differential evolution algorithm to form
a hybrid Taguchi-differential evolution algorithm (HRDE)
[23]. +e results showed that the hybrid algorithm was more
effective than evolutionary algorithms presented in many
related studies. In another work by Yildiz, he proposed a
similar hybrid optimization method to determine the op-
timal machining parameters [24]. +is method combined
the differential evolution algorithm and receptor editing
algorithm (DERE). +e goal of the mathematical model was
to determine the optimal machining parameters to reduce
the unit production cost. +e method has been experi-
mentally proven to be an effective technique for optimizing
machining parameters. Furthermore, in 2013, Yildiz pro-
posed a parameter optimization method based on the ar-
tificial bee colony (ABC) algorithm [25] and a hybrid robust
teaching-learning-based optimization algorithm (HRTLBO)
based on the combination of guided learning optimization
and the Taguchi method [26]. Compared with other
methods, these proposed algorithms perform well, and
better solutions can be found with them. Belloufi et al.
provided specific application examples to illustrate the
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effectiveness of the proposed firefly algorithm (FA) for
parameter optimization in multipass turnings [27].

3. Mathematical Model for Optimizing
Machining Parameters in CNC Turnings

To optimize the machining parameters in multipass turnings,
the mathematical model proposed in the literature [3, 20] takes
a large number of actual machining constraints into account
and is closer to real-worldmachining. Since themodel has been
cited in many studies, the optimization model is used in this
paper. +e cutting parameters to be optimized include rough
cutting speed Vr, rough feeding rate fr, rough depth of cut dr,
the number of rough cuts n, finish cutting speed Vs, finish
feeding rate fs, and finish depth of cut ds. +e unit production
cost (UC) consists of the following four components:

(1) Machining cost during real cutting time CM

(2) Machine idle cost for setup operations and tool
idling motion CI

(3) Cost of tool replacement CR

(4) Tool cost CT

+us, the UC can be expressed as follows:

UC � CM + CI + CR + CT,
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where k0 is the sum of worker cost and management cost per
unit time ($/min).D and L are the diameter and length of the
work-piece (mm), respectively. dt is the depth of material to
be removed (mm). h1, h2 are the constants related to tool idle
time and tool-in/out time, respectively. tc, te are the prep-
aration time for loading and unloading time (min) and time
required to exchange a tool (min), respectively. Tp is the tool
life (min). kt is the cutting edge cost ($/edge).

+e number of the rough cut is as follows:

n �
dt − ds

dr

, n ∈ z
+
. (2)

+e objective of the model is to minimize the UC (Vr, Vs,
fr, fs, dr, ds, n) under many machining constraints on rough
and finish turnings. +e constraints are summarized as
follows [3–8]:

(1) +e upper and lower constraints of Vr, Vs, fr, fs, dr,
and ds

(2) Tool life constraints

(3) Cutting force, cutting power, and surface roughness
constraint

(4) Stable cutting region constraint; chip-tool interface
temperature constraint

(5) Constraints on the interconnection between
roughing and finishing parameters

4. Optimization Algorithm Based on the Bat
Algorithm and the Divide-and-
Conquer Strategy

4.1. Overview of the Bat Algorithm. +e bat algorithm (BA)
[28] is a swarm intelligence search algorithm proposed to
simulate the echolocation mechanism of bats when foraging.
It achieves the localization of search targets by continuously
adjusting the frequency and loudness of sound waves. It uses
frequency tuning to increase the population diversity and
uses automatic scaling to maintain a balance between global
and local searches. +e frequency, velocity, and position of
the i-th bat in the bat population are represented as follows:

fi � fmin + fmax − fmin( 􏼁β,

v
t
i � v

t−1
i + v

t
i − gb

t
􏼐 􏼑fi ,

x
t
i � x

t−1
i + v

t
i .

(3)

Here, fi denotes the ultrasound frequency emitted by the
i-th bat. fmax and fmin denote the upper and lower bounds of
ultrasound frequency, respectively. β denotes a random
number generated by a uniform distribution within the
range of [0,1]. vt

t and vt−1
t denote the velocity of the i-th bat

during the t-th and (t−1)-th iterations, respectively. xit and
xit−1 denote the position value of the i-th bat during the t-th
and (t−1)-th iterations, respectively. +e above expressions
ensure the global search capability of the algorithm.

In the local search phase, BA uses a randomwalk strategy
to generate feasible solutions at candidate locations. +is
strategy can be given by the following equation:

xnew � xold + εAt
. (4)

where ε is the random number generated by the uniform
distribution on the range [−1, 1] that determines the di-
rection of the new candidate feasible solution and ‾At de-
notes the average acoustic loudness of all bats in the t-th
iteration.

During the foraging process, as the bat approaches the
foraging target, the bat will gradually adjust the loudness A
and emission rate r of the ultrasound, making the loudness
gradually decrease and the emission rate gradually increase
to achieve more accurate positioning. +e process is shown
in the following equations:

A
t
i � αA

t−1
i . (5)

r
t
i � r

0
i [1 − exp(−ct)]. (6)

In formula (6), r0i denotes the initial pulse emission rate
of the i-th bat, and both α and c are constants between (0, 1).
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4.2. Overview of the Quantum-Behaved Bat Algorithm with
Mean Best Position Directed. Due to the lack of population
diversity in the original BA, there is the problem of falling into
local optima during the search. By analyzing the flight tra-
jectory of bats, Zhu et al. proposed the quantum-behaved bat
algorithm with mean best position directed (QMBA) [29]. +e
quantum computing mutation operator introduced by the
algorithm can enhance population diversity and avoid pre-
mature convergence. At the same time, its average optimal
position introduced in the local search phase can improve the
convergence speed in the later stage of the search. +e QMBA
still retains the main body of the BA, which controls the global
search and local search based on the ultrasonic loudness and
the sending rate. +e difference lies in its improved position
update formula and local search strategy.

+e position update formula in QMBA introduces a
mechanism for adaptively adjusting the step size according
to the distance. Its strategy for updating the position is
expressed as follows:

x
t
i d �

x
t−1
i d + gbd − x

t−1
i d􏼐 􏼑η, δd >TH

x
t−1
i d + ϵ, δd ≤TH

⎧⎪⎨

⎪⎩
, (7)

where η is the random number generated through the
uniform distribution probability function between [0,1]. δd
represents the distance between the d-th dimensional value
of the current global optimum position and the d-th di-
mensional value of the i-th bat, which is mathematically
expressed as follows:

δd � gbd − x
t−1
i d

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (8)

When δd is less than a given threshold TH, the i-th bat
can fly for food at will; when the value of δd is greater than a
given threshold TH, the i-th bat flies toward the current
global optimal position. +is strategy ensures the global
search ability of the bat population to fly toward food.

In the local search process, QMBA no longer uses the
random walk search strategy but decides the selection of the
mutation strategy based on the mutation probability pm.

+e first mutation strategy is to use the quantum
computing mutation operator, which is expressed as follows:

x
t
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t
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􏼌􏼌􏼌􏼌
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⎩ ,

(9)

where both U and rand are the random numbers generated
by the uniform distribution probability function between
[0,1]. μ is an adaptive linearly decreasing weighting factor
that can be expressed as follows:

μ � μmax −
t μmax − μmin( 􏼁

tmax
. (10)

where μmax and μmin denote the initial and final values of μ,
respectively.

mbest represents the average of the current optimal
position of all bats during the t-th iteration, i.e., the average

optimal position, which can be obtained from the following
equation:

mbest �
1
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where Pit denotes the current optimal position of the i-th bat,
M denotes the population size, andD denotes the dimension
of the problem.

+e second mutation strategy, which also introduces the
average optimal position into the mutation operator, is
expressed as follows:

x
t
i � x

t−1
i + mbest − x

t−1
i􏼐 􏼑ϕ, (12)

where ϕ denotes the random number generated by a uni-
form distribution between [0,1].

Both mutation strategies introduce the average optimal
position to guide the local search, which can improve the
accuracy of the search and speed up the convergence of the
algorithm due to the use of statistical information of bat
positions.

4.3.GaussianQuantumBatAlgorithmwithDirection ofMean
Best Position. +e QMBA algorithm improves the global
search capability and accuracy of the algorithm by intro-
ducing the mechanism of the distance adaptive adjustment
step, quantum computing mutation operator, and average
optimal position-oriented mechanism on the basis of BA.
However, the probability density functions used to generate
the random numbers in QMBA are all uniformly distrib-
uted. Several works [30, 31] have shown that long-tailed
distributions such as Gaussian distributions are able to
perform more accurate searches in the region near the
previous generation of individuals, improving the local
search capability while providing larger search steps and
random walk distances. Expanding the search space can
improve the ability of the algorithm to jump out of the local
optimum. Based on the above findings, this paper proposes
the Gaussian quantum bat algorithm with direction of mean
best position (GQMBA) for quantum behavior bats using a
Gaussian distribution [32].

In GQMBA, random numbers are no longer generated
by the uniformly distributed probability density function. To
meet the requirements of the quantum computing mutation
operator for random numbers in QMBA, we use the absolute
value of the Gaussian distribution probability density
function, in which the mean is zero and the variance is one
instead (i.e., normal distribution). +e one-dimensional
probability density function of abs(N(0, 1)) is expressed as
follows:

q(x) �
2
���
2π

√ exp −
x
2

2
􏼠 􏼡, x≥ 0, (13)

GQMBA modifies the three formulas in QMBA ac-
cordingly. First, the parameter η in (14) is changed to be
generated with a Gaussian distribution, and (7) is modified
in GQMBA as follows:
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where G� abs(N(0,1)).
Similarly, substituting for the parameter U in (9), the

modified quantum computing mutation operator is
expressed as follows:
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Since q(0)� 0, G� abs(N(0,1)) satisfies the domain of
definition of the function ln().

Finally, the random number ϕ in (12) is replaced with
(16) as follows:

x
t
i � x

t−1
i + mbest − x

t−1
i􏼐 􏼑G . (16)

+e pseudocode of GQMBA is given by Figure 1, in
which Np denotes the total number of bats.

Our first significant contribution is that the Gaussian
distribution is introduced in QMBA to generate random
numbers. +e theoretical analysis above shows that the
strategy can enhance the ability of the algorithm to jump out
of the local optimum and avoid premature convergence.
+erefore, it is applied to the optimization problem of the
cutting parameter in this paper.

4.4. Divide-and-Conquer Strategy for the Optimization
Problem inMultipassTurnings. To improve the performance
of the algorithm, the idea of the divide-and-conquer strategy
is used to decompose the original problem into several
subproblems, which can reduce the complexity of the
original optimization problem. For each subproblem, the
number of rough cuts is a fixed value. By conquering the
subproblems one by one, the whole optimization problem
can be solved. In addition, we calculate the theoretical lower
bound on UC for each subproblem. Modified BA is first
used to search for the optimal solution in the case
of the minimum theoretical lower bound on UC, thus
hopefully reducing the enumeration of the subproblems.+e
divide-and-conquer strategy is depicted in Figure 2 and
described as follows:

(1) Divide the optimization problem into m subprob-
lems based on the number of possible combinations
of rough cuts.

(2) Calculate the theoretical lower bound onUC for each
subproblem UCiL.

(3) Sort theoretical lower bound UCiL for all subprob-
lems in ascending order.UC1L≤UC2L, ..., ≤UCmL are
called the first theoretical lower bound, the second
theoretical lower bound ..., the m-th theoretical
lower bound, and the corresponding numbers of
rough cutsN1,N2, . . .,Nm (Ni is the number of rough
cuts corresponding to UCiL) [16].

(4) Starting from subproblem i, BA is used to solve
subproblem i, and the optimal solution, UCiO, is
obtained.

(5) If all subproblems are enumerated or theUCiO found
is less than the theoretical lower bound of subsequent
subproblems UC(i + 1)L, the method terminates and
the optimal solution is output.

4.5. Ce Framework of the Proposed Algorithm Based on
GQMBA and the Divide-and-Conquer Strategy. By dividing
the complicated multipass turning optimization problem
into simple subproblems, the optimization problem can be
solved by solving these subproblems one by one. +e
framework of the optimization algorithm based on GQMBA
and the divide-and-conquer strategy (referred to as the
GQMBA-DC algorithm) is shown in Figure 3, and the main
steps are as follows:

(1) Divide the optimization problem into n subprob-
lems based on the number of possible combinations
of rough cuts.

(2) Let i� i+ 1; set the number of rough cuts n�Ni; and
start the search in the i-th subproblem.

(3) Initialize the population, develop appropriate
encoding and decoding strategies for each sub-
problem for GQMBA, and set the current iteration
number t� 1.

(4) Initialize the parameters and set the ultrasonic
frequency fi, ultrasonic emission rate ri, and ul-
trasonic loudness Ai.

(5) +e global search and local search are controlled by
continuously adjusting the acoustic frequency and
loudness to update the speed and position to
generate new solutions. For the GQMBA-DC, the
main body of the BA is retained, but the position
update formula and the local search strategy are
different. +e position update formula introduces a
mechanism for adaptively adjusting the step size
according to the distance, while the local search
strategy also introduces the average optimal posi-
tion to guide the local search.

(6) If Ai is greater than the random value rand and the
current solution is the optimal solution, perform
the next step; otherwise, return to step (5).

(7) Accepting the new solution increases ri and de-
creases Ai (as a bat gets closer to the target, the two
values change to achieve more accurate
localization).

(8) Repeat the above steps until the maximum number
of iterations is reached, and the GQMBA stops.

(9) At present, the optimal solution of the i-th sub-
problem is obtained.

(10) If Min(UC1O..., UCiO)≤U(i+1)L or i�m, then exe-
cute the next step. Otherwise, return to step (2) to
start the process of solving the next subproblem.

Computational Intelligence and Neuroscience 5



(11) Select the minimum solution, which is the best optimal
solution, from the obtained optimized solutions. Fi-
nally, output the global optimal solution UCo�

Min(UC1O.. . ., UCiO), and terminate the algorithm.

4.6.Handling ofConstraints. +e processing of constraints is
very important for the swarm intelligence optimization al-
gorithm; constraint processing by adding a penalty function
is one of the common methods in optimization algorithms.
+e penalty function is a kind of constraint function. In the
process of finding the optimal solution of the algorithm, the
objective function is calculated by combining the penalty
function, which can gradually eliminate solutions that do
not satisfy the constraints and retain solutions that satisfy
the constraints.

For the handling of constraints in the optimization al-
gorithm, the bats (individuals) that violate the constraints
are penalized using a penalty function to reduce the value of
the objective. Different levels of penalties are imposed for
different constraint violations. +e more constraints that are
violated, the heavier the penalty will be. +us, by using a
reasonable penalty function, the objective function value can
converge to the direction of the optimal solution. +e
penalty function is expressed as

penalty(X) � 􏽘
k

i�1
ai + hi, where ai �

0, satisfy constraints

1, violate constraints
􏼨 ,

(17)

where k is the number of constraints and hi is a nondi-
mensional constraint violation.

Figure 1: Pseudocode of GQMBA.
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5. Simulation Experiments

During the machining processes, a cut tool is used for both
roughing cuts and finishing cuts. Due to different ma-
chining conditions, the tool wear rates for rough and
finish turnings are usually different. +e tool life equation
can be expressed as follows: Tp � θTr + (1 − θ)Ts. Some
studies use another tool life calculation formula:
Tp �Tr + Ts. +erefore, this paper separately compares the
performance of the algorithms under different tool life
formulations. +e algorithm in this paper is implemented
in the MATLAB programming language. +e parameters
of the BA are set as follows:

Population size: 200
Maximum number of iterations: 400
Initial loudness: A � u(0, 1)
Initial pulse emission rate: r0 � 0.001
Loudness update: α � 0.9
Emission rate update: c � 0.9
+reshold: TH � 0.005

Mutation probability: Pm � 0.01

Machining examples from the literature [3–8] were used
to test the performance of the optimization algorithm with
the specific parameters shown in Table 1. Additionally, two
different machining optimization problems with cutting
depths of 6mm and 8mm were tested.

Divide the optimization
problem into m sub-problems
according to possible number

of rough cuts

Calculate lower bounds UCLn
 for each sub-problem; i= 0

Sort the lower bounds UCLn
in ascending order to

generate
UC1L≤UC2L, ...≤UCmL

, and find the corresponding
number of rough cuts

N1, N2,…,Nm

Use BA to search the optimal
UCiO on the number of rough

cuts n=Ni

UCiO ≤ U(i+1)L

UCO=Min(UC1O,…,UCiO)

No

Yes

i= i + 1

Figure 2: Flow chart of the divide-and-conquer strategy.

Get optimal solution (UCjO)
of j-th sub-problem

Min (UC1O ,…,UCjO)≤
UC(j+1)L
Or j = m

Output best solution UCO
=Min (UC1O ,…,UCjO)

No

Yes

j= j + 1; set the number of rough cuts in j-th
sub-problem

j = 0

Generate new solutions by adjusting frequency
updating velocities and positions

Generate new solution by flying randomly

t = tmax ?

Yes

No

Initialize the population, code/decode
each bat in j-th sub-problem, t=1

rand < Ai And
 new solution < best solution?

Accept new solution, increase ri, reduce Ai

Yes

No

Generate local solution around best solution

t = t + 1

Define pulse frequency fi, pulse rate ri and
the loudness Ai

Start

End

Figure 3: +e framework of the proposed algorithm (GQMBA-
DC) based on GQMBA with a divide-and-conquer strategy.
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+e algorithm was run 100 times independently on a
Windows platform (CPU E3 3.5GHz and 16GB memory).
+e average value of UC was given and compared with the
results obtained by previous algorithms, such as SA/PS [3],
FE-GA [5], MGA [6], ACO [6], and PSO [9]. +e average
UC, standard deviation, number of search points, and
running time for each algorithm are shown in Tables 2-5.
+e best results have been underlined and bolded in Ta-
bles 2-5.

Tables 2–4 show that the average UCs obtained by the
proposed GQMBA-DC are smaller than those given by other
algorithms. +e standard deviations of the results are small,
which in turn indicates that the algorithm is stable. +e
proposed algorithm can find the optimization results within
30 seconds for different tool life formulas and cutting depths,
which shows that the proposed algorithm is an efficient
algorithm. Specifically, as shown in Tables 2 and 3, the results
of both cases of GQMBA-DC outperform PSO [9] when the
tool life equation is Tp �Tr +Ts. As shown in Table 4, when
the tool life equation is Tp � θTr+ (1− θ)Ts, the proposed
GQMBA-DC can save 10% compared with the result given
by the MGA [6]. Compared with other algorithms, such as
SA/PS [3], FE-GA [5], HC [6], NM [6], ACO [6], and DP-FS
[33], GQMBA-DC can further save production costs. Be-
cause the case of dt � 8 cm is not covered in previous lit-
erature, only the results of our algorithm are given in Table 5.
+us, the above experimental results show that the GQMBA-
DC algorithm can effectively solve the optimization problem
of cutting parameters to find optimal machining parameters,
which, in turn, can further reduce the production cost.

From the perspective of the optimal UC value, com-
parisons between the proposed GQMBA-DC and other
algorithms were also conducted. +e comparison of the
optimal UC values in Tables 6–9 shows that the optimal UC
results obtained by the GQMBA-DC are almost always
smaller than the optimal results of UC obtained by other
algorithms without constraint violation. +e best results
have been underlined and bolded in Tables 6–9. Specifically,
the results found by the proposed algorithm are comparable
to those achieved by HPSO [12], FPA [20], and COA [21] for
the tool life equation of Tp �Tr +Ts and dt � 6mm, which is
only one ten-thousandth of the difference, as shown in
Table 6.+e GQMBA-DC can further reduce the production
cost compared with the other algorithms (i.e., HRDE [23],

DERE [24], DE [24], and HRTLBO [26]), as shown in Ta-
ble 6. A similar situation can also be found in Tables 7–9 in
different test examples. In addition, the optimal combina-
tion of cutting parameters (Vr, Vs, fr, fs, dr, ds) for different
cases is also given in Tables 6–9.+e GQMBA-DC algorithm
can find better results than the previously proposed algo-
rithms in terms of both the average UC and the best UC.
+us, it is clear that the proposed GQMBA-DC can perform
significantly better than other algorithms on solution quality
in CNC turnings. +erefore, the algorithm combining the
modified BA with the divide-and-conquer strategy is
effective.

To overcome the different complex optimization prob-
lems in various fields, we need to carefully consider the
characteristics of the specific problem and use the specific
characteristics (domain knowledge) to design the optimi-
zation algorithm. In our work, for the optimization problem
of machining parameters, since the machining process can
be divided into different numbers of roughing cuts, we
decompose the whole optimization problem of machining
parameters into several simple subproblems according to the
different numbers of roughing cuts. Each subproblem can be
conquered individually, which greatly reduces the space of
the problem solution. At the same time, to avoid enumer-
ating all subproblems and save calculation time, we derived
the theoretical lower bound on UC for each subproblem by

Table 1: Condition parameters for turning examples.

D � 50mm L � 300mm dt � 6mm VrL � 50m/min
frL � 0.1mm/rev drL � 1mm VrU � 500m/min frU � 0.9mm/rev
drU � 3mm VsL � 50m/min fsL � 0.1mm/rev dsL � 1mm
VsU � 500m/min fsU � 0.9mm/rev dsU � 3mm p � 5
q � 1.75 r � 0.75 μ � 0.75 ] � 0.95
η � 0.85 λ � 2 υ � –1 τ � 0.4
ϕ � 0.2 δ � 0.105 R � 1.2mm C0 � 6×1011
TL � 25min TU � 45min FU � 200 kgf PU � 5 kW
SC � 140 QU � 1000 °C SRU � 10 µm h1 � 7×10−4
h2 � 0.3 te � 1.5min/edge tc � 0.75min/piece kt � 2.5 $/edge
k0 � 0.5 $/min k1 � 108 k2 � 132 k3 � 1
k4 � 2.5 k5 � 1

Table 2: Comparison of average UC among different algorithms
(when Tp �Tr + Ts, dt � 6mm).

Algorithm Average
UC ($)

Standard
deviation

Search
points
(pcs)

Running
time (sec)

PSO [9] >2.2721 N/A 2,000 N/A
GQMBA-DC 1.9592 0.00005 80,000 28.4

Table 3: Comparison of average UC among different algorithms
(when Tp �Tr + Ts, dt � 8mm).

Algorithm Average
UC ($)

Standard
deviation

Search
points
(pcs)

Running
time (sec)

PSO [9] >3.306 N/A 2,000 N/A
GQMBA-DC 2.4393 0.00084 80,000 30.4
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using the characteristics of the subproblems. +en, the al-
gorithm first searches the solution space from the sub-
problem with a smaller theoretical lower bound on UC. By
following these steps, the algorithm can quickly find the
optimal solution to the problem.

On the other hand, the performance of the combination
of traditional divide-and-conquer strategy and swarm in-
telligence algorithm is better than the algorithms that only
use traditional mathematical methods or swarm intelligence
algorithms, as proven by the simulation experiments.

Table 4: Comparison of average UC among different algorithms (when Tp � θTr + (1-θ)Ts, dt � 6mm).

Algorithm Average UC ($) Standard deviation Search points (pcs) Running time (sec)
SA/PS [3] 2.2959 0.01624 18,571× 5 27.4
FE-GA [5] 2.3091 N/A 60,000 N/A
HC [6] 2.3017 N/A 100,000 N/A
NM [6] 2.2713 N/A 100,000 N/A
ACO [6] 2.2705 N/A 100,000 N/A
MGA [6] 2.2538 N/A 100,000 N/A
DP-FS [33] 2.2974 7.6×10−4 16074× 9 19.3
GQMBA-DC 2.0280 0.00015 80,000 27.9

Table 5: Comparison of average UC among different algorithms (when Tp � θTr + (1-θ)Ts, dt � 8mm).

Algorithm Average UC ($) Standard deviation Search points (pcs) Running time (sec)
GQMBA-DC 2.5499 0.00043 80,000 29.2

Table 6: Comparison of different algorithms (when Tp �Tr + Ts, dt � 6mm).

Algorithm
Cutting speed (m/min) Feed rate

(mm/rev) Depth of cut (mm)
UC ($/piece) Constraint violation

Vr Vs Fr fs dr ds
GQMBA-DC 123.3360 169.9697 0.5655 0.2262 3 3 1.9592 0
HPSO [12] 123.3424 169.9783 0.5655 0.2262 3 3 1.9591 0
FPA [20] 123.3431 169.9785 0.5655 0.2262 3 3 1.9591 0
COA [21] 123.1462 169.9876 0.5655 0.2262 3 3 1.959 0
GA [4] 1114.22 164.369 0.7 0.2978 2.9745 2.9863 1.7842 0.5148
ACO [7] 103.05 162.02 0.9 0.24 3 3 1.8450 0.5396
PSO [9] 106.69 155.89 0.897 0.28 2 2 2.2721 0
HRDE [23] – – – – – – 2.0461 –
AIA [23] – – – – – – 2.12 –
DERE [24] – – – – – – 2.046 –
ABC [24] – – – – – – 2.118 –
DE [24] – – – – – – 2.136 –
HABC [25] – – – – – – 2.046 –
HRTLBO [26] – – – – – – 2.046 –
FA [27] 98.4102 162.2882 0.82 0.2582 3 3 1.824 (24)

Table 7: Comparison of different algorithms (when Tp �Tr + Ts, dt � 8mm).

Algorithm
Cutting speed (m/min) Feed rate (mm/

rev) Depth of cut (mm)
UC ($/piece) Constraint violation

Vr Vs fr fs dr ds
GQMBA-DC 119.1460 164.2166 0.6564 0.2625 2.6673 2.6613 2.4384 0
HRDE [23] – – – – – – 2.4791 –
AIA [23] – – – – – – 2.51 –
DERE [24] – – – – – – 2.4793 –
HABC [25] – – – – – – 2.4790 –
ABC [24] – – – – – – 2.503 –
DE [24] – – – – – – 2.512 –
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Table 8: Comparison of different algorithms (when Tp � θTr + (1-θ)Ts, dt � 6mm).

Algorithm
Cutting speed (m/min) Feed rate (mm/rev) Depth of

cut (mm) UC ($/piece) Constraint violation
Vr Vs fr fs dr ds

GQMBA-DC 109.6727 169.9756 0.5655 0.2262 3 3 2.0278 0
SA-PS [3] – – – – – – 2.3135 0.0667
HPSO [9] 109.6655 169.9796 0.5655 0.2262 3 3 2.0351 0
FPA [20] 109.6631 169.9785 0.5655 0.2262 3 3 2.0351 0
COA [21] 117.9322 123.1993 0.5655 0.2262 3 3 2.2390 0

Table 9: Comparison of different algorithms (when Tp � θTr + (1-θ)Ts, dt � 8mm).

Algorithm
Cutting speed (m/min) Feed rate (mm/

rev) Depth of cut (mm)
UC ($/piece) Constraint violation

Vr Vs Fr fs Dr ds
GQMBA-DC 106.0251 164.2238 0.6563 0.2624 2.6670 2.6660 2.5495 0
SA-PS [3] – – – – – – 2.7411 0
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Figure 4: Convergence curve of the proposed GQMBA-DC (when
Tp �Tr +Ts, dt � 6mm).
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Figure 5: Convergence curve of the proposed GQMBA-DC
(Tp �Tr + Ts, dt � 8mm).
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Figure 6: Convergence curve of the proposed GQMBA-DC (when
Tp � θTr + (1-θ)Ts, dt � 6mm).
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Figure 7: Convergence curve of the proposed GQMBA-DC (when
Tp � θTr + (1-θ)Ts, dt � 8mm).
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+e convergence curves of GQMBA-DC for different
mathematical models (tool life equation) and test cases are
shown in Figures 4–7. +e proposed algorithm converges to
the final solution after approximately 150 generations, which
indicates that the algorithm converges quickly to find sat-
isfactory results.

6. Conclusions and Future Work

To solve the nonlinear optimization problem of machining
parameters in CNC turnings, this paper proposes an opti-
mization algorithm combining the bat algorithm and the
divide-and-conquer strategy. First, based on the classical BA,
the Gaussian quantum bat algorithm with direction of mean
best position (GQMBA) is proposed by using a Gaussian
distribution to generate random numbers. Second, the di-
vide-and-conquer strategy is used to divide the complicated
optimization problem into several subproblems and conquer
them one by one. +e simulation results show that the
GQMBA-DC algorithm proposed in this paper has a
stronger search capability than previous algorithms. Spe-
cifically, the proposed algorithm can find a better cutting
parameter set and further reduce the production cost.

Future research can be considered from two aspects.
From the algorithmic point of view, the emerging swarm
intelligence algorithm can also be applied to the optimi-
zation problem, which may be able to find a better com-
bination of machining parameters, thus reducing costs. In
recent years, deep learning methods have been widely ap-
plied in various studies; deep learning methods may be
considered to reconstruct mathematical models in the op-
timization of turning parameters [34]. On the other hand,
from the perspective of newmachining types, to improve the
machining efficiency and quality, there are multiple tools to
realize machining operations simultaneously in modern
CNC turnings.+erefore, research on this type of machining
optimization problem is also of great concern.
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