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Spatially intermixed objects 
of different categories are parsed 
automatically
Vladislav A. Khvostov, Anton O. Lukashevich & Igor S. Utochkin*

Our visual system is able to separate spatially intermixed objects into different categorical groups 
(e.g., berries and leaves) using the shape of feature distribution: Determining whether all objects 
belong to one or several categories depends on whether the distribution has one or several peaks. 
Despite the apparent ease of rapid categorization, it is a very computationally demanding task, given 
severely limited “bottlenecks” of attention and working memory capable of processing only a few 
objects at a time. Here, we tested whether this rapid categorical parsing is automatic or requires 
attention. We used the visual mismatch negativity (vMMN) ERP component known as a marker of 
automatic sensory discrimination. 20 volunteers (16 female, mean age—22.7) participated in our 
study. Loading participants’ attention with a central task, we observed a substantial vMMN response 
to unattended background changes of categories defined by certain length-orientation conjunctions. 
Importantly, this occurred in conditions where the distributions of these features had several peaks 
and, hence, supported categorical separation. These results suggest that spatially intermixed objects 
are parsed into distinct categories automatically and give new insight into how the visual system can 
bypass the severe processing restrictions and form rich perceptual experience.

Every moment, our visual system deals with many objects in a visual scene. Despite the severe restrictions of 
attentional and working memory capacities1,2 precluding deep simultaneous processing of all objects3 the visual 
system has much more information than these limits predict. One possible solution to this contradiction is the 
idea that the visual system extracts ensemble summary statistics from the whole set without holding information 
about each individual item4. It was shown that observers can extract mean5–8 and variance/range9,10 of some 
features for a set of objects. Also, observers can rather accurately estimate an approximate number of objects11,12 
(however the debate whether it is an independent ability is still ongoing13). The broad spectrum of features can 
be compressed into ensemble statistics: size5, orientation9, emotional expression14, animacy15, etc. Ensemble 
summaries can be represented perceptually rather than inferred which is supported by evidence from adaptation 
aftereffects11,16. Ensemble information is extracted rapidly (as quickly as 50–200 ms6,17) and often with no or 
limited conscious access to individuals5,8,18. Recent studies showed that the visual system can represent the whole 
distribution of features19. It suggests that mean, variance, and numerosity are not the only things representing 
ensemble information. Rather, these studies suggest that ensemble representations store quite rich information 
about the whole set of objects that can be useful for many cognitive tasks.

One possible application of knowing the whole distribution is rapid categorization. In everyday perception, 
we often deal with sets of spatially interleaved objects of different types. A typical example is berries and leaves on 
a bush. Here, it makes more sense to split the berries and the leaves into independent groups before calculating 
ensemble summaries across these two sets. Indeed, this is what the visual system does. Not all objects necessarily 
get compressed into a single ensemble percept, one for all. The visual system can easily and rapidly parse a lot of 
interleaved objects into different color subsets and independently calculate ensemble summaries for each group 
separately7,20,21. Orientation can also serve as a cue for parsing into subsets, though not ideally22,23. To be capa-
ble of such independent computations, the visual system has to rapidly “decide” that some elements are similar 
enough to include them in the same pool to process as an ensemble, whereas others are substantially different to 
exclude them from that pool. This “decision” that we term rapid ensemble-based categorization or segmentation 
requires access to more elaborated distributional properties than the grand mean or variance of the entire set.

It was previously suggested that the ensemble-based segmentation of spatially overlapping subsets can be sup-
ported by the shape of an overall feature distribution along one or several visual dimensions24. If the distribution 
has a single peak or is relatively flat (non-segmentable distribution), the visual system would treat all objects as 
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belonging to one category. In contrast, if the distribution has several peaks and long gaps between them (seg-
mentable distribution), this would more likely cause the perception of a set consisting of objects from different 
categories. In our example, the visual system treats berries and leaves as different types of objects because their 
features (e.g., colors, shape) are distributed in a bumpy manner. But we will likely see a single type of objects 
looking at autumn leaves on the ground because their color distribution contains many intermediate shades 
between red and green forming a flat, single-peak distribution. Empirical evidence for this theory comes from 
visual search25 and texture discrimination26.

In light of the idea of the efficient ensemble representation beyond the bottleneck of attention and working 
memory27, it is a debated question whether ensemble processing in general and ensemble-based categorization 
in particular require no attention: While some behavioral studies suggest efficient ensemble perception when 
attention is occupied by another task8,22 other studies show that at least some distributed attention is required 
for ensemble processing28,29 or, at most, the whole ensemble percept is heavily based on attentional subsampling 
of a few items30. Ensemble-based segmentation occurs rather early (within 100–200-ms) and does not benefit 
from longer presentation26 which is consistent with presumably parallel processing associated with automatic, 
“preattentive” segmentation or categorization. However, the conclusion about preattentive versus attention-
demanding ensemble segmentation based solely on behavioral data is problematic because such tasks explicitly 
require discrimination based on ensemble properties implying that these properties are attended. In this work, we 
addressed this problem and tried to figure out whether the rapid segmentation of intermixed objects is automatic. 
Specifically, our approach was based on probing a neurophysiological correlate of automatic discrimination, 
visual mismatch negativity (vMMN).

The MMN component of the ERP is known as a correlate of automatic change detection in the sensory input31. 
The visual system is capable of generating a mismatch signal while responding to the violations in unattended 
environmental regularities32, both in physical parameters such as color or orientation33 and in high-level features 
including facial expression34 or even in abstract rules35. The common method to probe the vMMN is the oddball 
paradigm, with a central task diverting participant’s attention and a background stimulus stream consisting 
of alternation between standard (frequent) and deviant (rare) stimuli. The typical vMMN is greater negative 
activity in response to the deviant compared to standard stimulus taking place in a 120–250 ms time window 
and topographically distributed in occipital and parietal electrode sites. To our knowledge, approaches to the 
control of attention vary across the field of vMMN research and include demanding central tasks36, attentional 
blink37, and even no concurrent attentional task38. Yet, vMMN as a posterior negativity has been consistently 
found regardless of these manipulations. Recent research on the effect of task difficulty on the vMMN showed 
various, sometimes contradictory results39,40. It appears to be important to keep balance in task difficulty to 
divert attention and prevent the participants exhaustion. We designed our paradigm so that central changes were 
independent of background texture changes, which is an effective way of stimulus organization to dissociate the 
effects of the two types of changes38. Therefore, our method of manipulating attention is in line with existing 
approaches in the vMMN literature.

To answer the question about the automaticity of rapid categorization using vMNN, we presented participants 
textures filled with lines differing in length and orientation while participants’ attention was occupied by another 
task. The distributions of lengths and orientations could be either two-peaks (segmentable) or uniform (non-
segmentable). A deviant event was the change of a length-orientation correlation sign (e.g., standard textures 
contained lines following “the longer–the steeper” rule, whereas deviant textures contained “the longer–the flat-
ter” lines). Importantly, standard and deviant textures had identical distributions of lengths and orientations, so 
that they could not be discriminated based on simple summary statistics such as mean or variance. Rather, the 
discrimination could be based only on more localized subset analysis which necessarily implies rapid categori-
cal parsing: e.g., detecting that ‘categories’ of long-steep and short-flat lines in standard stimuli are replaced by 
‘categories’ of long-flat and short-steep lines in deviant stimuli. The results of the previous behavioral study with 
similar stimulation23 predict that such discrimination will occur only for textures consisting solely of highly 
distinct, segmentable features that can provide clear, non-confusable categories. Thus, the vMMN (if present) in 
our paradigm would most likely reflect an ability to automatically detect the change in the statistics of multiple 
intermixed objects parsed into separate categories.

Method
Participants.  Minimum a priori sample size was set at fifteen participants, based on sample sizes typical for 
many recent vMMN studies using similar designs33,41. To meet potential technical problems, we recorded ERP 
data from 20 (16 female, mean age—22.7 years) neurologically typical students who participated as volunteers. 
All participants had normal or corrected-to-normal vision and gave written informed consent. The protocol was 
approved by the Research Ethics Committee of the Psychology Department, Higher School of Economics and 
followed the Declaration of Helsinki guidelines.

Stimuli and procedure.  The experiment was run using Presentation software (Version 18.0, Neurobehav-
ioral Systems, Inc., Berkeley, CA, www.neuro​bs.com). Participants sat 90 cm from the monitor: one pixel was 
equal to 0.02° of visual angle from this distance. To provide textures for which the MMN were recorded, we 
generated sets of 64 white lines randomly fit in an 8 × 8-cell square grid subtending 8.62° × 8.62° area. All lines 
had a constant width of 0.06° and varied in length and orientation. Lengths varied between 0.33° and 1.11° with 
an increment step of 0.05° yielding 16 unique length values. Orientation varied between 11° and 86° with steps 
of 5° (also 16 unique orientation values). A small black cross (0.45 cd/m2) with either longer vertical or longer 
horizontal hand (0.33° and 0.16°) was placed in the center of the texture and used both for gaze fixation and 
for the central attention-engaging central task. The distributions of lengths and orientations among textural 
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elements (lines) were manipulated in terms of their shape to provide different degrees of “segmentability”. In 
each of the dimensions, the distribution could be either “segmentable” (two-peaks distribution consisting of 
only extreme values presented in equal proportions) or “non-segmentable” (uniform distribution consisting of 
extremes and all transition steps in equal proportions). Given the orthogonal manipulation of segmentability in 
length and orientation, we had four segmentability conditions: “both” (length and orientation are segmentable), 
“orientation” (only orientation is segmentable), “length” (only length is segmentable), and “none” (none of the 
features are segmentable). Figure 1A illustrates these four conditions. Importantly, lengths and orientations were 
strictly correlated within each display but the sign of this correlation was different across displays. If a correlation 
was r = − 1 then the longer the line, the steeper it was (Fig. 1A, top row). If a correlation was r = 1 then the longer 
the line, the flatter it was (Fig. 1A, bottom row). All displays differed from each other in the spatial distribution 
of elements, so that no individual length-orientation conjunction repeated at the same position many times 
in a row. Therefore, the sign of correlation was the only determinant of statistical differences between textures 
within each segmentability condition, whereas the feature distributions stayed constant and individual elements 
randomly changed their locations.

The experiment had a within-subject blocked design. Each block consisted of a series of standard and devi-
ant stimuli belonging to the same segmentability condition and differing only in the sign of length-orientation 
correlation. Each stimulus was presented for 200 ms followed by a non-jittered interstimulus interval of 400 ms. 
Participants were instructed to fixate a central cross and track its changes over time (central oddball task). They 
had to press a “D” button on a keyboard whenever the cross changed its orientation from vertical to horizontal 
(Fig. 1B). This central task was used to divert attention from textures. Central changes could occur only in stand-
ard trials. Oddball events for the cross and for the background textures were assigned to random, uncorrelated 
temporal positions in a block.

Each participant was exposed to eight blocks of trials (4 segmentability conditions × 2 length-orientation 
correlations in a deviant vs. standard stimulus). The order of blocks was randomized across participants. The 
probabilities of the central and background oddball events in each block were 7.5% and 10% respectively (note, 
these two events could not happen in the same trial). The overall number of trials per block was 700 (630 standard 
and 70 deviant stimuli).

EEG recording.  EEG was recorded using the ActiCHamp amplifier with 64-channel active AgCl electrodes 
(actiCHamp Plus, Brain Products GmbH, Gilching, Germany) placed on the scalp according to the modified 

Figure 1.   Methods. (A) Example stimuli used in the four segmentability conditions of the experiment with 
two possible length-orientation correlations (r’s). (B) The time course of a typical trial in the experiment 
(“both” condition). Participants were instructed to press the “D” button whenever the central cross changed 
its orientation. In the oddball trials, the background texture changed the length-orientation correlation to the 
opposite. The central cross size is magnified for illustrational purposes.
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10–20 system. Both mastoid electrodes were used as reference. A ground electrode was placed on the partici-
pant’s forehead. The horizontal electrooculogram was recorded with a bipolar configuration between electrodes 
positioned lateral to the outer canthi of the two eyes. Vertical eye movements were monitored with a bipolar 
montage between electrodes placed above and below the right eye. Recording was performed with an on-line 
50 Hz notch filter. After recording, the data was resampled to 500 Hz rate and re-referenced to the grand aver-
age. Off-line filters with a high cut-off at 0.1 Hz and low cut-off at 35 Hz were applied. EEG preprocessing was 
performed using BrainVisionAnalyzer software (BrainVision Analyzer, Brain Products GmbH, Gilching, Ger-
many).

Ocular artifacts were rejected using the ocular correction ICA algorithm.

Data analysis.  Behavioral data was analyzed in terms of the central task accuracy. We calculated the per-
centage of correct answers for reporting the change in the central cross. Both misses (a participant did not press 
the button, but the cross was changed) and false alarms (a participant pressed the button, but the cross was not 
changed) were taken into account as errors.

For ERP-analysis, we extracted 700-ms length epochs including 200 ms of the pre-stimulus baseline period. 
The baseline was corrected among all segments. Trials with central change were excluded from the analysis. The 
epochs were averaged separately for the standard and deviant trials within each segmentability condition regard-
less of the sign of length-orientation correlation. We aimed to average 140 randomly predefined standard and 
140 deviant epochs per condition uniformly distributed across each block. After preprocessing procedures, the 
average epochs number per condition per participant was 130 (SD = 11.9). To avoid the problem of averaging the 
amplitudes between positive and negative parts of the ERP curve, we obtained the difference wave by subtracting 
the response to standard from the response to deviant stimulus (Fig. 2A). Visual inspection of topographical 
scalp potential distribution of difference waves showed a negativity within 100–400 ms time window in following 
electrode sites over posterior region: O1, Oz, O2, P1, Pz, P2, P3, P4, P5, P6, P7, P8, POz, PO3, PO4, PO7, PO8 
(Fig. 2B). Difference waves in these sites were combined and used for all analyses below (Fig. 2C).

To specify the precise time window for the statistical analysis of the vMMN, we used a series of point-by-
point one-sample t-tests (left tailed), comparing the amplitudes of the difference wave’ in the four segmentability 
conditions against zero within the 100–400 ms time interval42. Only significant negative deviations in at least 
12 consecutive data points (24 ms) were considered to indicate the presence of the vMMN. The corresponding 
time points were included in the final time window. After determining the time window, we calculated the mean 

Figure 2.   Electrophysiological results of the experiment: (A) grand average waveforms with difference waves in 
posterior electrode sites in each of the segmentability conditions. (B) The scalp distribution of the event-related 
potential in different segmentability conditions split by temporal windows. (C) Grand averages of the difference 
waves as a function of the stimulus condition. Created using: BrainVision Analyzer, Brain Products GmbH, 
Gilching, Germany.
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amplitude of the difference wave over this time period and compared it against zero to determine the presence 
of the vMMN in each segmentability condition. We also ran a one-way repeated-measures ANOVA for these 
values to compare the vMMN differences between the conditions.

The statistical analysis was run using standard significance tests and Bayes factors. In the Bayesian statisti-
cal inference, the Bayes factor (BF10) is the odds showing the relative likelihood of the H1 against the H0 given 
the data. The Bayes factors were calculated in JASP statistical software (JASP 0.11.0.1; JASP, Amsterdam, the 
Netherlands). Jeffreys’s scale43, with Kass and Raftery’s adjustment44, was used to interpret the Bayes factors.

Results
Data of five participants were excluded from analysis due to the prevalence of alpha rhythm and technical issues. 
Therefore, the data from fifteen participants were analyzed. All data including raw EEG can be found at https​
://osf.io/tymv7​/.

Behavioral data.  The percentages of correct answers in the central task were very high (> 92%) in all seg-
mentability conditions. Presumably, most of the errors were caused by a short time window to respond (i.e., a 
participant noticed a central change but pressed the button too late, when the next trial has already started). This 
led to a recognizable pattern in the data: a trial with the change is marked as a miss and a next trial is marked as a 
false alarm. Overall, we found no effect of segmentability on the error rate (F(3,42) = 1.859, p = 0.145, ηp

2 = 0.119, 
BF10 = 0.564). Mauchly’s test indicated that the assumption of sphericity had not been violated (χ2 = 6.81, 
p = 0.236). From the visual search literature, we know that the low frequency of a target event (central oddball 
change in our case) makes the detection task harder45. Therefore, based on such good performance rates, we 
conclude that our participants were attentionally engaged in the central task in all texture segmentability condi-
tions. This lets us conclude that observers’ attention was mostly diverted from the background textures, which is 
important for the interpretation of the MMN.

Electrophysiological data.  Using the criterion described in Data analysis  section (12 consecutive data 
points of significant negative deviation from zero), we revealed a reliable early negative deviation from the base-
line within a 150–236 ms time window for the “both” condition, within 154–266 ms—for the “length” condi-
tion, and within 188–220—for the “none” condition. These deviations in the “both” and the “length” conditions 
had earlier latencies than that in the “none” condition. For the “orientation” condition, we found no reliable 
deviation from the baseline. Based on this, we defined our time window of interest as 150–266 ms to grasp a 
potential vMMN in all conditions at early stages of visual processing. In addition, we discovered the presence 
of a second negative “component” in some of the conditions, namely, within 294–360 ms for the “both” condi-
tion, 318–362 ms for the “length” condition, and 268–314 ms—for the “orientation” condition. However, such 
components with latency more than 300 ms likely reflect processes involving attention to some degree46. We did 
not include these latencies in our time window of interest because our primary focus is on early, preattentive, 
automatic processing of stimuli.

Mean amplitudes of difference waves were calculated for the time window of 150–266 ms (Fig. 3). Direct com-
parisons against zero (left tailed t-test) showed evidence of the presence of the vMMN for the “both” (t(14) = 3.572, 
p = 0.002, Bonferroni corrected α = 0.012, dz = 0.922, BF10 = 29.768) and the “length” (t(14) = 2.833, p = 0.007, 
dz = 0.732, BF10 = 8.741) conditions. For the “none” condition, we obtained borderline results (t(14) = 2.538, 
p = 0.012, Bonferroni corrected α = 0.012, dz = 0.655, BF10 = 5.45) and the “orientation” condition showed no evi-
dence for the vMMN (t(14) = 1.011, p = 0.165, dz = 0.216, BF10 = 0.667). Repeated-measures ANOVA showed no 
effect of segmentability on the mean amplitude of difference waves (F(1.763, 24.681) = 2.035, p = 0.156, ηp

2 = 0.127, 
BF10 = 0.95). Note that Mauchly’s tests indicated the violation of the assumption of sphericity (χ2(5) = 15.849, 
p = 0.007) so degrees of freedom, F-statistic, and p value were corrected using Greenhouse–Geisser correction.

Figure 3.   The mean amplitude of the difference wave within a 150–266 ms time window as a function 
of segmentability. Error bars denote 95% confidence intervals, with between-subject variance removed in 
accordance with the Cousineau method47.
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The present results show that electrophysiological activity in posterior regions in response to deviant stimuli 
was greater than in response to standard stimuli (within early 150–266 ms time window) for “both” and “length” 
conditions which indicates the presence of the vMMN. At the same time, the other two segmentability conditions 
did not show reliable difference between standard and deviant stimuli. Therefore, we conclude that there was no 
strong evidence for vMMN in these conditions.

Discussion
In this study, we used the vMNN as an indicator of automatic sensory processing for testing whether the categori-
cal parsing of multiple objects based on statistical distributions of their features is automatic. Our main result 
was the finding of the early vMMN in the “both” and the “length” conditions when both feature distributions 
or at least length were segmentable. In contrast, there was no strong evidence for the vMMN in the other two 
conditions. Given our sample and the low-level character of the task, we consider our results broadly generaliz-
able to the population of neurotypical observers.

As a general case, global texture discrimination based on the correlation between the features when the fea-
ture statistics are kept fixed across the textures is a difficult task48,49. Some of the prominent theories suggest that 
global preattentive processing is only capable of detecting large differences in simple feature statistics48,50 and 
that focal attentional processing is required to process more complex feature conjunctions. Our vMMN results 
demonstrated that this is not always the case. We kept the distributions of lengths and orientations the same, 
so no simple feature statistics could be used to discriminate between standard and deviant textures. Therefore, 
our correlation manipulations could be globally detected only as conjunction-based differences. Contrary to 
the predictions of the aforementioned theories, the finding of the vMMN in such a task indicates that there can 
be some early discrimination of length-orientation correlations that occurs when focused attention is engaged 
with another task.

However, the MMN in our study was modulated by the shape of the feature distributions, as considerable 
MMN were observed only when the feature distributions had clear peaks. We interpret this finding in terms of 
rapid segmentation and categorization. As proposed earlier24, the two-peaks distributions support good seg-
mentability. We suggest that when length and orientation distributions were two-peaks (“both” condition), they 
supported the segmentation into categorical subsets that could be then contrasted across textures (e.g., long-steep 
vs. long-flat). Importantly, this vMMN result matches the previously reported behavioral pattern26 showing that 
participants could perform an explicit texture discrimination task with similar stimuli only when both features 
had a two-peaks distribution. Given this resemblance between the occurrence of the vMMN and the rise of tex-
ture discrimination in the behavioral experiments, we conclude that an early automatic process can contribute 
to the rapid segmentation of categorically distinct sets of objects based on their ensemble statistics. This is also 
in line with a finding that the segmentability effect on discrimination quickly grows within 200 ms and stays 
approximately the same at later durations, that is, it does not benefit from the serial deployment of attention 
(cf.51). Unlike behavioral results, where the segmentability effect was found only for the condition with both 
segmentable distributions, the current study also showed the vMMN in the “length” condition where only one 
distribution was segmentable. At the same time, similar vMMN was not found in the condition where another 
feature, orientation was segmentable alone. One possible explanation is that feature separation in the segmentable 
length distribution was a stronger supporter of preattentive segmentation whereas orientation separation alone 
was insufficient. A more sophisticated explanation can come from the differences in the nature of length and 
orientation as feature dimensions. Length, or size in general is an asymmetrical sensory dimension in a sense 
that bigger elements are usually more salient among small ones than vice versa48,52. Therefore, if long lines were 
well segmented, they could further automatically bias orientation comparison toward a category of long lines 
(picking long lines and detecting a change in their mean orientation). Presumably, this did not occur when only 
orientations were segmentable because orientation is not an asymmetrical feature dimension and, thus, would 
not bias processing to the steep or flat category based on automatically detected saliency. These suggested expla-
nations need thorough testing in the future research.

To recapitulate, our analysis of rapid ensemble-based categorization started with an example of seeing berries 
among leaves on a bush. Our results show that, if a subset of items is distinct (segmentable) from another subset 
then these subsets are differentiated automatically from each other. Previous work on the perception of spatially 
non-overlapping textures has shown that they can be segregated effortlessly and automatically if supported by 
substantial differences in region statistics53–56. For such spatial organization, the ease of segmentation can be 
explained by known properties of low-level visual organization, with retinotopic structure and local interac-
tions, such as lateral inhibition57. Here, we provide evidence that even in poor spatial organization, spatially 
intermixed items of different kinds still can be automatically determined as belonging to different categories. 
Ensemble representation of the overall feature distribution can be a potential basis for such categorization. It 
is important to note that spatial overlap in some cases interferes with individual subset processing, even if the 
subsets are perfectly segmentable20,22,23,26. This may indicate some additional difficulties with the suppression of 
irrelevant subsets and, hence, suggests the role of attention in multi-location selection. However, these selection 
and suppression issues appear not to influence categorization itself that, according to our data, can occur “preat-
tentively”, that is, prior to the selection stage.

In this study, we tested whether the visual system can automatically detect the violation of the statistical 
structure of a texture. Although texture differences were defined in terms of length-orientation correlation, we 
presume that our paradigm was aimed to test mostly rapid ensemble-based categorization rather than correla-
tion perception per se. In support for this claim, our previous behavioral data26 showed that, as a general case, 
people are practically insensitive to even extreme correlation changes: Observers had extremely low sensitivity 
(d′ = 0.0–0.3) even when two texture patches had correlations r = 1 and − 1. However, observers were substantially 
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better at texture discrimination (d′ = 0.7–0.8) when both length and orientation had two-peaks distributions. The 
general insensitivity to correlation changes with the greater (though not perfect) sensitivity to changes in the two-
peaks distributions suggests that observers utilized the shapes of feature distributions rather than correlations.

In conclusion, we presented new neurophysiological evidence that numerous spatially irregular, intermixed 
items can be rapidly parsed into different categories at an early, automatic stage of visual processing. This parsing 
is driven by global ensemble statistics of feature distributions across the entire visual field. Overall, this finding 
contributes to our growing understanding of the role of ensemble perception in building relatively rich visual 
representation beyond the limited-capacity systems27.

Data availability
The data and Supplemental material can be accessed at: https​://osf.io/tymv7​/.
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