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Osteoimmunology highlights the two-way communication between bone and immune cells.
T cell protein tyrosine phosphatase (TCPTP), also known as protein-tyrosine phosphatase
non-receptor 2 (PTPN2), is an intracellular protein tyrosine phosphatase (PTP) essential in
regulating immune responses and bone metabolism via dephosphorylating target proteins.
Tcptp knockout in systemic or specific immune cells can seriously damage the immune
function, resulting in bone metabolism disorders. This review provided fresh insights into the
potential role of TCPTP in osteoimmunology. Overall, the regulation of osteoimmunology by
TCPTP is extremely complicated. TCPTP negatively regulates macrophages activation and
inflammatory factors secretion to inhibit bone resorption. TCPTP regulates T lymphocytes
differentiation and T lymphocytes-related cytokines signaling to maintain bone homeostasis.
TCPTP is also expected to regulate bone metabolism by targeting B lymphocytes under
certain time and conditions. This review offers a comprehensive update on the roles of
TCPTP in osteoimmunology, which can be a promising target for the prevention and
treatment of inflammatory bone loss.

Keywords: T cell protein tyrosine phosphatase (TCPTP), Protein tyrosine phosphatase non-receptor 2 (PTPN2),
osteoimmunology, macrophages, T cell, B cell
INTRODUCTION

Inflammatory bone diseases characterized by severe bone loss, such as osteoarthritis, rheumatoid
arthritis, and periodontitis, are a manifestation of imbalance between the skeletal and immune systems
(1–3). Their interactions, known as osteoimmunology, were firstly proposed by Choi and Aaron in
2000, which highlights the two-way communication between bone and immune cells (4). With a
comprehensive and profound acknowledgment of osteoimmunology, targeting regulatory proteins
involved in osteoimmune responses can be a feasible means against inflammatory bone diseases. T-cell
protein tyrosine phosphatase (TCPTP), one of the protein tyrosine phosphatases (PTPs) family, was
identified by Cool et al. using T-cell-based cDNA library screening (5). There is growing evidence that
TCPTP is a critical regulator in immune responses and bone metabolism. Nevertheless, the potential
effect of TCPTP in the field of osteoimmunology is less explored. As a result, we intended to offer a
comprehensive update on the known and potential roles of TCPTP in osteoimmunology in this
review. Our study will lay a theoretical foundation for further basic researches of TCPTP in the field of
osteoimmunology and provide references for treatment strategies of inflammatory bone diseases.
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OSTEOIMMUNOLOGY

During osteoimmune responses, different immune cells and bone
cells interact reciprocally to maintain the homeostasis between
the immune and skeletal systems (Figure 1). The two-way
communication may influence either immune or bone cells via
cytokine activities in the immune-bone interface. The proposal
of screening new targets interfering with osteoimmunology may
Frontiers in Immunology | www.frontiersin.org 2
be feasible for identifying critical targets suppressing immune
hyperactivity in inflammatory bone loss diseases.

Influence of Immune Cells on Bone Cells
Immune cells, such as T lymphocytes (Th1, Th2, Treg, and Th17
cells), B lymphocytes, dendritic cells, and macrophages, actively
regulate the homeostasis of bone metabolism. Th1 cells secrete
interferon-g (IFN-g) that has been found to exert controversial
FIGURE 1 | Diagram of osteoimmunology and potential regulatory sites of TCPTP. Regarding the regulation of bone-related cells by immune cells, some CD4+ T cell
subsets can produce osteoclastogenic cytokines (e.g., TNF-a from Th1 cells and IL−17 from Th17 cells), while other subsets secrete anti-osteoclastogenic cytokines
(e.g., IL−4 from Th2 cells, IL−10 and CTLA4 from Treg cells). IFN-g released by Th1 cells may exert both pro- and anti-osteoclastogenic effects as reported by
previous studies. B cells physiologically inhibit osteoclastogenesis but stimulate osteoclastogenesis through activating the RANK/RANKL axis in the pathological
state. Different stages of dendritic cells exhibit distinct properties in immune responses: immature dendritic cells differentiate into osteoclasts in response to M-CSF,
RANKL, TNF-a, IL-1, and IL-17, while mature ones drive the activation and expansion of Th17 cells. Macrophages are essential to bone loss with the involvement of
TNF-a, IL-1, and IL-6 released by themselves. On the other hand, bone-related cells also provide feedback to immune cells. Osteoblasts secrete G-CSF, IL−1, IL−6,
IL−7, and CXCL12, which are required for HSCs maintenance. In addition, osteoblasts secrete IL-7 to support B lymphopoiesis and regulate DLL4-Notch signaling
pathway to support T lymphopoiesis. Osteocytes are supposed to mobilize HSCs and are involved in myelopoiesis. Osteocyte-derived RANKL participates in
estrogen deficiency-induced bone loss by indirect regulation of B cell development. Osteoclasts are also involved in antigen presentation and T cell activation.
Osteoclasts secrete tolerogenic cytokines (e.g., IL-10, TGF-b) and activate regulatory T cells in physiological conditions, while in pathological conditions, osteoclasts
secrete inflammatory cytokines (e.g., TNFa, IL-1b) and activate TNF-a producing CD4+ T cells. Generally, TCPTP regulates bone metabolism mainly by changing the
biofunction of macrophages, T cells, and B cells. TCPTP, T cell protein tyrosine phosphatase; DC cell, dendritic cell; IL-6, interleukin-6; IL-23, interleukin-23; IL-17,
interleukin-17; TNF-a, tumor necrosis factor-a; RANK, receptor activator of nuclear factor−kB; RANKL, receptor activator of nuclear factor−kB ligand; IL-1,
interleukin-1; IL-4, interleukin-4; IL-10, interleukin-10; CTLA4, cytotoxic T lymphocyte protein 4; OPG, osteoprotegerin; Th17, T helper 17 cells; Th1, T helper 1 cells;
Th2, T helper 2 cells; Treg, regulatory T cells; G-CSF, granulocyte colony-stimulating factor; M-CSF, macrophage colony-stimulating factor; TGF-b, transforming
growth factor b; DLL4, Delta-like protein 4; IL-1b, interleukin-1b; IL-7, interleukin-7; CXCL12, CXC-motif chemokine 12; HSCs, hematopoietic stem cells.
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effects in bone metabolism (6, 7). Sato et al. demonstrated that
Th1 cells generated amounts of IFN-g and mediated
osteoclastogenesis inhibition in vitro (8). However, another
study reported that IFN-g could promote osteoclast maturation
in the late period of osteoclastogenesis (9). Th1 cells are found to
induce orthodontic tooth movement and bone resorption
indirectly by upregulating the tumor necrosis factor-alpha
(TNF-a) secretion and promoting osteoclastogenesis (10, 11).
Th2 cells secrete interleukin-4 (IL-4), interleukin-5 (IL-5), and
interleukin-13 (IL-13) leading to the osteoclastogenesis inhibition
in a signal transducer and activator of transcription 6 (STAT6)-
dependent pathway (12). Cytotoxic T-lymphocyte antigen 4
(CTLA4) secreted by Treg cells can promote apoptosis of
osteoclasts via binding to CD80/CD86 on osteoclast precursors
(13). Besides, Treg cells not only inhibit osteoclastogenesis
directly via suppressing receptor activator of nuclear factor-kB
ligand (RANKL) generation (14) but also suppress osteoclast
differentiation and bone resorption by secreting interleukin-10
(IL-10) and transforming growth factor-b (TGF-b) (15). Th17
cells are one of the osteoclastogenic subsets of T cells that
participate in various inflammatory diseases, such as rheumatoid
arthritis, osteoporosis, inflammatory bowel disease, and
periodontal disease (16–18). In the process of osteoclastogenesis
and bone loss, higher amounts of osteoclastogenic cytokines,
including interleukin-17 (IL-17), interleukin-6 (IL-6), interleukin-
1 (IL-1), and TNF-a, are released from Th17 cells (19, 20). Among
these cytokines, IL-17 stimulates the synthesis of cyclooxygenase-2
dependent prostaglandin E2 and the gene transcription of
osteoclast differentiation factor (ODF) in osteoblasts to induce
osteoclastogenesis (21). B cells inhibit osteoclastogenesis via
secreting osteoprotegerin in the physiological state but stimulate
osteoclastogenesis through activating the receptor activator of
nuclear factor−kB (RANK)/RANKL axis in the pathological state
(22, 23). Human immature dendritic cells differentiate into
osteoclasts in response to macrophage colony-stimulating factor
(M-CSF), RANKL, TNF-a, IL-1, and IL-17 (24–26), while mature
dendritic cells can drive the activation of Th17 cells that produce
IL-17, thereby enhancing osteoclastogenesis (27). Macrophages are
reported to secrete different proinflammatory cytokines (e.g., TNF-
a, IL-1, and IL-6) to enhance bone loss (28).

Influence of Bone Cells on Immune Cells
Bone-related cells (e.g., osteoblasts, osteocytes, osteoclasts) could
also regulate the immune system. In this process, numerous
cytokines (e.g., granulocyte colony-stimulating factor [G−CSF],
IL−1, IL−6, IL−7, and CXC-motif chemokine 12 [CXCL12]) are
secreted from osteoblasts for hematopoietic stem cell (HSC)
maintenance, lymphoid progenitor cell maintenance, as well as
the balance of T cell or B cell generation (29–31). Zhu et al.
reported that osteoblasts support all stages of B lymphopoiesis
via locally secreting interleukin-7 (IL-7) and stromal cell derived
factor-1 (SDF-1) (32, 33). Osteoblasts-specific knockout of
osteocalcin results in a marked reduction in mature T cells
through disrupting the delta-like protein 4-notch signaling
(34). Osteocytes are supposed to mobilize hematopoietic stem
cells (HSCs) and might also be involved in myelopoiesis. In mice
with targeted ablation of osteocytes, the mobilization of HSCs
Frontiers in Immunology | www.frontiersin.org 3
was suppressed in bone marrow (35). Besides, deficiency of the G
−protein subunit GSa in osteocytes results in increased G−CSF
production and dramatic expansion of myeloid lineage cells (36).
RANKL generated by osteocytes participates in estrogen
deficiency-induced bone loss by regulating B cell development
indirectly (37). Several studies reported that osteoclasts could
promote the mobilization of hematopoietic progenitor cells (38),
while others revealed that they were dispensable for HSC
maintenance and mobilization (39). Osteoclasts are also involved
in antigen presentation and T cell activation. In the physiological
conditions, osteoclasts secrete tolerogenic cytokines (such as IL-10
and TGF-b) and activate CD4+ and CD8+ regulatory T cells, while
in the pathological conditions, osteoclasts activate TNF-a
producing CD4+ T cells via unleashing myriads of inflammatory
cytokines (e.g., TNF-a and IL-1) (26, 40, 41).
TCPTP

Overview of TCPTP
TCPTP is a tyrosine-specific phosphatase that is firstly identified
by Cool et al. (5). There are two splice variants of TCPTP: TC45
(45 kDa) which is located in nuclear and TC48 (48 kDa) which is
located in the endoplasmic reticulum (42). TC45 is a widely
expressed form in various species, including humans and mice,
and TC48 is human-specific. In most species, TC45 shuttles
between the nucleus and cytoplasm in response to cytokine
stimulation (43).

TCPTP regulates diverse signaling pathways related to
glucose metabolism, inflammation control, cancer progress,
and other biological processes via dephosphorylation of
distinct substrates (44–50). Experiments in vitro and in vivo
have confirmed that TCPTP could regulate several cytokine
signaling pathways by inhibiting Janus activated kinase (JAK)/
signal transducer and activator of transcription (STAT)
predominantly (51–54). The direct substrates have been
recognized as JAK1, JAK3, STAT1, STAT3, and STAT5 (55–
59). Some members of the tyrosine kinase receptor (RTK) family,
comprising insulin receptors (IRs) (60, 61), epidermal growth
factor receptors (EGFRs) (62, 63), vascular endothelial growth
factor receptors (VEGFRs) (64), platelet-derived growth factor
receptors (PDGFRs) (65, 66) and colony-stimulating factor-1
receptors (CSF-1Rs) are also the specific dephosphorylating
substrates of TCPTP (67).

TCPTP and Immunomodulation
Growing evidence has indicated that TCPTP is a key player in
regulating innate and acquired immune responses. GWA studies
found single nucleotide polymorphisms (SNPs) of TCPTP are
associated with the onset of several inflammatory diseases and
autoimmunology disorders, such as inflammatory bowel disease
(68, 69), ocular Behcet’s disease (70), rheumatoid arthritis (53), and
juvenile inflammatory arthritis (71). Tcptp knockout in the systemic
or specific cells can seriously jeopardize immune reactions.

Mice null for Tcptp (Tcptp−/−) showed a smaller body size,
decreased mobility, severe anemia, and diarrhea followed by
February 2021 | Volume 12 | Article 620333
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death at three to 5 weeks of age (72). From the perspective of
histology, Tcptp−/− mice showed mononuclear cell infiltration in
the salivary gland and gastric mucosa at 1 week of age (72).
Dramatic increases in TNF-a and inducible nitric oxide synthase
(iNOS) were also detected at 3 weeks of age in Tcptp−/−mice (73).

Loss of PTPN2 in T cells (TCPTP-CD4Cre) not only led to
increased intestinal inflammation risk but also resulted in T-
lymphocyte infiltration in the liver, kidney, and skin (74, 75).
This may be caused by the enhanced induction of Th1 cells, Th17
cells, and effector and memory CD8+ T cells, but the impaired
induction of Tregs after T cell-specific knockout of Tcptp.
Myeloid cell-specific loss of TCPTP (TCPTP-LysMCre) also
enhanced susceptibility to colitis and serum IL-1b levels in
mice (76). Spalinger et al. reported that TCPTP loss in
macrophages compromises epithelial cell-macrophage
interactions and reduces epithelial barrier integrity (77).
Furthermore, TCPTP knockdown in THP-1 cells elevated the
IFN-g-induced secretion of the proinflammatory cytokines IL-6
(78). TCPTP silencing in rheumatoid arthritis synovial
fibroblasts could also increase IL-6 production (53).

TCPTP and Hematopoiesis
Although ubiquitously expressed, TCPTP is pronouncedly
expressed in hematopoietic tissues and plays a significant role
in the development of hematopoietic lineages (5).

TCPTP and Hematopoiesis: Stem Cells
Hematopoietic stem cells (HSCs) are one of the adult stem cells
and can differentiate into various mature blood cells (79).
Compared with the control group, Tcptp knockout resulted in
a nine-fold increase of the HSC number in the bone marrow (80).
Lymphoid and myeloid precursors were also more abundant in
Tcptp−/− mice compared with the wide type controls (45).
Bourdeau et al. also demonstrated that this effect could be
reproduced by TCPTP inhibiting agents and interleukin-18
(IL-18) signaling pathway involved in this process (80). The
above results implicated that TCPTP plays an important role in
the regulation of HSC proliferation.

TCPTP and Hematopoiesis: Myeloid Cells
Tcptp−/− mice exhibited increased splenic macrophage
populations and yielded four times of the macrophage colony-
forming unit (CFU-M) number (67). TCPTP is also involved in
myeloid progenitor development. Tcptp−/− mice had 4 times of
the granulocyte/macrophage precursors (GMPs) compared with
wildtype mice and CSF-1/CSF-1R signaling may involve in this
process (67).

Tcptp−/− mice were reported to suffer from severe anemia
which could contribute to their early lethality. You-Ten et al.
reported a failure to initiate hematopoietic function in the bone
marrow of Tcptp−/− animals after 2–3 weeks (72). What’s more,
the deficiency of bone marrow stromal cell numbers, the
impairment of remaining stromal cells, and the inadequate
cytokines production by the bone marrow microenvironment
could be the possible explanations for the defective hematopoiesis
in Tcptp−/− mice (72).
Frontiers in Immunology | www.frontiersin.org 4
TCPTP and Hematopoiesis: Lymphocytes
Tcptp−/−mice exhibited specific defects of B cell lymphopoiesis in
the bone marrow, however, T cell development in the thymus
was not significantly affected (72). The defects of B cell
lymphopoiesis were characterized by fewer pre-B cell colonies
and impaired transition to the immature B-cell stage (81).
Bourdeau et al. have found that bone marrow stromal cells
from Tcptp−/− mice could secrete higher levels of IFN-g
resulting in a 2-fold reduction in the mitotic index on IL-7
stimulation of Tcptp−/− pre-B cells (81).

TCPTP and Bone Metabolism
Recent studies using gene knockout mice have emphasized the
importance of TCPTP in bone metabolism. Tcptp−/− BALB/c
mice showed significantly reduced femoral length and width, as
reflected by the large volume of unabsorbed cartilage at the
epiphysis by 14 days of age (82); however the latter was no
longer evident at 21 days of age (82). Besides, Tcptp−/− mice have
a higher incidence of synovitis in the knee joint (83). Loh et al.
found that the runted body of neuronal cell-specific Tcptp knockout
mice is associated with decreased circulating growth hormone (84).
However, the precise mechanisms that underlie the bone
development in Tcptp−/− mice still need further investigation.

Insulin signaling in osteoblast inhibits the expression of
osteoprotegerin (OPG), an osteoclastogenesis inhibitory factor
(85). TCPTP expressed in osteoblasts regulates insulin receptor
phosphorylation, thus activating insulin signaling (86). A classical
coculture assay revealed that osteoblasts lacking TCPTP induced
more tartrate-resistant acid phosphatase (TRAP) positive osteoclasts
than wild-type osteoblasts did (86). Accordingly, osteoclast activity
was increased in osteoblasts-specific Tcptp−/−mice which was proved
by increased serum levels of CTx, a marker of bone resorption (86).
TCPTP IN OSTEOIMMUNOLOGY

As shown in Figure 1, TCPTP could influence bone metabolism
by regulating the biofunction of macrophages, T cells, and B cells.
Besides, TCPTP in osteoblasts and bone marrow stem cells also
regulates bone metabolism. The potential roles of TCPTP in
osteoimmunology are discussed below.

TCPTP and Macrophages in
Osteoimmunology
Macrophages, a significant component of the non-specific
immunity, are crucial regulators in bone metabolism and can
be regulated by TCPTP (77, 87, 88). The potential influences of
TCPTP on osteoimmunology through macrophages can be
expounded from four aspects. Firstly, TCPTP negatively
regulates macrophages development (45). Tcptp−/− animals
exhibited significantly impaired bone marrow microenvironment
(including impairment of erythropoiesis, the decline of pre-B and
mature B cells, and reduced stromal cells) and increased
macrophage numbers (89). Secondly, TCPTP participates in the
process of macrophage polarization. M1 and M2 macrophages, the
two major phenotypes of macrophages, are pro-inflammatory and
February 2021 | Volume 12 | Article 620333
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anti-inflammatory respectively. A previous study reported that the
increased M1/M2 ratio finally promoted osteoclastogenesis (90),
and TCPTP could reverse diabetes-mediated high M1/M2
polarization in mice (91). This can be attributed to the fact that
macrophages from Tcptp−/− mice are inherently hypersensitive to
lipopolysaccharide and IFN-g stimulation, which are two main
cytokines that induce M1 differentiation (73, 92). Thirdly, the
colony-stimulating factor 1 (CSF-1)/colony-stimulating factor 1
receptor (CSF-1R) signaling has been proven to be downregulated
by TCPTP in macrophages. After CSF-1 stimulation, tyrosine
phosphorylation of the CSF-1R markedly increased, and the
activation of extracellular regulated protein kinases (ERK) was
enhanced in Tcptp−/− macrophages (67). Zhang et al. ascertained
that TCPTP inhibited alveolar bone resorption in diabetic
periodontitis via dephosphorylating CSF-1R at the Y807 site,
thereby prohibiting osteoclast differentiation (93). Fourthly, the
dephosphorylating of c-Jun N-terminal kinase (JNK) in
macrophages is another means how TCPTP protects against
inflammatory response and bone loss caused by inflammasome-
mediated interleukin-1b secretion (76). These studies suggest that
TCPTP may be a potential treatment target against inflammatory
bone loss induced by macrophage-related disorders, for example,
periodontitis and synovitis (Figure 2A).

TCPTP and T Cells in Osteoimmunology
Undoubtedly, T cells play a critical role in bone homeostasis,
wherein the effects of TCPTP on T cell function cannot be
neglected (Figure 2C). TCPTP negatively regulates T cell
activation (94, 95). Tcptp−/− T cells show enhanced cell activity
via the reduction of T cell receptor (TCR) threshold and
hyperphosphorylation of the activated tyrosine residue of Lck
(75). Furthermore, TCPTP regulates T cell differentiation (91, 96,
97). TCPTP regulated the activation and differentiation of T cells
in colonic inflammation (96). Wiede et al. showed that TCPTP
attenuates the activity of the STAT5 signaling to regulate ab
TCR versus gd TCR T cell development (97). Li et al. reported
that TCPTP overexpression reversed the high Th1/Treg and
Th17/Treg ratios in epididymal white adipose tissue of diabetic
mice (91). Spalinger et al. showed that Tcptp−/− CD4+ T cell
reinfusion led to a nearly 3-fold increase in the frequency of Th1
cells, a 2-fold increase in the frequency of Th17 cells, and by
contrast, a 3-fold decrease in the frequency of Tregs in colitis
animal models (74). In addition, the inhibition of the
interleukin-2 (IL-2)/IL-2 receptor pathway mediated by JAK1,
JAK3, and STAT5 dephosphorylation was found to be the
mechanism of how TCPTP drives Treg differentiation possibly
(98). As illustrated above, various cytokines (e.g., IFN-g and IL-6
from Th1 cells) released from stimulated T cells bridge the two-
way communications in osteoimmune responses. These two
cytokines, which are closely associated with osteoimmunology,
can be regulated by TCPTP. Therefore, the interactions between
the two cytokines and TCPTP in bone metabolism were
discussed in detail below.

TCPTP and IFN-g
IFN-g is a classical cytokine secreted from Th1 cells. On the one
hand, IFN-g promotes osteoclastogenesis via promoting the
Frontiers in Immunology | www.frontiersin.org 5
fusion of mononucleated pre-osteoclasts in the late period of
osteoclastogenesis directly and stimulating the secretion of
osteoclastic factors (such as RANKL and TNF-a)indirectly (9,
99, 100). By contrast, IFN-g can also intensively suppress
osteoclastogenesis by degrading tumor necrosis factor receptor-
associated factor 6 and inhibiting the RANK/RANKL signaling
pathway (6). TCPTP downregulates the IFN-g signaling through
JAK1, STAT1, and STAT3 dephosphorylation (52, 55, 59, 92).
So, a rational thread of targeting TCPTP to suppress IFN-g
activity is expected to regulate osteoclastogenesis, and this
hypothesis still needs more validations.

TCPTP and IL-6
IL-6 is an inflammatory cytokine that exerts pathological effects on
inflammatory bone loss (101, 102), directly supporting osteoclast
formation, stimulating osteoclast differentiation, and accelerating
bone resorption (103, 104). IL-6 is associated with Th17 cell
differentiation (105), and abnormalities in the IL-6 signaling can
disturb the Th17/Treg balance and influence bone homeostasis
indirectly (106). Concerning the regulation of IL-6 by TCPTP,
TCPTP curbs both IL-6 secretion and signaling. Aradi et al.
confirmed that TCPTP silencing significantly increased IL-6
secretion from synovial fibroblasts in rheumatoid arthritis animals
(53). TCPTP also dephosphorylate STAT3 at the Y705 site, thereby
suppressing IL-6 signaling (107, 108). Besides, TCPTP inhibits the
IL-6-driven pathogenic loss of Foxp3 after Tregs have acquired
RORgt expression through dephosphorylation of STAT3 (109).
Therefore, TCPTP can be expected to inhibit bone resorption
through inhibiting IL-6 generation and IL-6 signaling directly or
reversing IL-6-induced Th17/Treg imbalance indirectly.

TCPTP and B Cells in Osteoimmunology
B lymphocytes play an extremely vital role in both immune
responses and bone metabolism, but the detailed relationship
between B lymphocytes and osteoclastogenesis remains some
points for debate. Physiologically, B cells produce osteoprotegerin
to inhibit osteoclastogenesis but stimulate osteoclastogenesis via the
RANK/RANKL axis in the pathological state (22, 23, 110). Recently,
increasing evidence tended to support that B cell development and
proliferation were crucially affected by TCPTP (Figure 2B). An
impaired transition from pre-B to immature B cell was found in
Tcptp−/− mice (45, 89), which might be associated with the
abnormally increased release of IFN-g and enhanced STAT1
phosphorylation in the pre-B cell compartment (81). With
interleukin-21-induced hyperactivity of the STAT-3 signaling in
Tcptp−/− mice, B cell proliferation was simultaneously boosted
(111). These results ascertain TCPTP as an important regulator
of B cells in bone homeostasis. However, concerning the complexity
of the two-way effect between B lymphocytes and bone homeostasis
or between TCPTP and B lymphocytes, the specific effect and the
mechanisms behind each regulation should be confirmed in
further explorations.

TCPTP and Bone-Related Cells in
Osteoimmunology
TCPTP that is expressed in osteoblasts and bone marrow
stem cells participates in the regulation of bone metabolism
February 2021 | Volume 12 | Article 620333
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FIGURE 2 | TCPTP-related signaling pathways in macrophages, B cells, and T cells. (A) TCPTP downregulates the IFN-g signaling, the CSF-1/CSF-1R signaling,
and inflammasome activation in macrophages. (B) TCPTP drives B cell maturation via suppressing the IFN-g signaling and prohibits B cell proliferation by
downregulating the IL-21 signaling. (C) TCPTP inhibits IL-6-driven pathogenic loss of Foxp3 after Tregs have acquired RORgt expression through dephosphorylation
of STAT3. TCPTP negatively regulates the IL-2 receptor signaling by JAK1, JAK3, and STAT5 dephosphorylation, which is an important way related to Treg
differentiation. TCPTP inhibits TCR activation and hyperphosphorylation of Lck to inhibit inflammatory reactions and cell differentiation. TCPTP, T cell protein tyrosine
phosphatase; JAK1, Janus activated kinase 1; JAK2, Janus activated kinase 2; JAK3, Janus activated kinase 3; STAT1, signal transducer and activator of
transcription1; STAT3, signal transducer and activator of transcription3; STAT5, signal transducer and activator of transcription5; IFN-g, interferon-g; IFNGR,
interferon-g receptor; CSF-1, colony-stimulating factor 1; CSF-1R, colony-stimulating factor 1 receptor; DAMPs, damage-associated molecular pattern molecules;
TLR, toll-like receptor; JNK, c-Jun N-terminal kinase; IL-21, interleukin-21; IL-21R, interleukin-21R; IL-6, interleukin-6; IL-6R, interleukin-6R; TCR, T cell receptor.
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(Figure 1). Zee et al. demonstrated that TCPTP deficiency in
osteoblasts enhanced the activity of osteoclasts by activating
insulin signaling and inhibiting the expression of OPG in vitro
(86). Our previous study found that TCPTP improved the
osteogenic differentiation ability via ERK dephosphorylation in
rat bone marrow stem cells in high glucose conditions (112).
However, to our knowledge, no specific studies have reported the
impacts of TCPTP in bone-related cells on immune cells which
may be a novel aspect in the future, and the underlying
mechanism also needs further exploration.
THERAPEUTIC ASPECTS FROM “TCPTP
AND OSTEOIMMUNOLOGY”
PERSPECTIVE

TCPTP exerts an anti-inflammatory role in innate and adaptive
immunity (113). As described in Section TCPTP and
Immunomodulation, Tcptp knockout in systemic or specific
immune cells brings about serious immune disorders. TCPTP
deficiency also leads to subchondral bone loss and spontaneous
synovitis mediated by excessive inflammatory cytokines (83).
Loss-of-function variants of TCPTP increase the risk of
rheumatoid arthritis due to Treg cell dysfunction (114).
Therefore, using TCPTP agonists to overexpress or activate
TCPTP seems to be a rational strategy against inflammatory
bone resorption. This proposal can be supported by other studies.
Zhang P. et al. found that TCPTP alleviated inflammatory
responses and bone resorption in periodontal tissues via the JAK/
STAT pathway in human oral keratinocytes and type 2 diabetes
mellitus (T2DM) db/db mice (115). Zhang D.J. et al. demonstrated
that TCPTP inhibited alveolar bone resorption in T2DM C57BL/6
wild-type mice via dephosphorylating CSF1 receptor (93).
Consistently, our previous study series ascertained that TCPTP
improves implant osseointegration in T2DM rats via ERK
dephosphorylation (112). It is obvious that TCPTP could work as
an effective potential target for preventing and treating
inflammatory bone resorption. However, concerning the
ubiquitous distribution and wide regulation of TCPTP related to
glucose metabolism, immunoregulation, oncogenesis, and other
various life processes in a cell or tissue-specific way, designing
specific agents targeting TCPTP in specific cells, tissues or organs is
Frontiers in Immunology | www.frontiersin.org 7
a promising research direction and a novel aspect of
osteoimmunology in the future.
CONCLUSION

TCPTP bridges the two-way communication between immune
cells and bone cells and it could work as a potential target for the
prevention and treatment of inflammatory bone diseases, such as
periodontitis, synovitis, and osteoarthritis. The proposal of
identifying whether TCPTP can be used as an independent
therapeutic target is feasible for the development of TCPTP
agonists binding to a target of interest. This review provides clear
insights into the potential roles of TCPTP in osteoimmunology,
which may pave the way for further bone studies on
osteoimmunological aspects.
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