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ABSTRACT
Objectives  Recreational runners show a large 
interindividual variation in spatiotemporal characteristics. 
This research focused on slow runners and intended: (1) to 
document the variance in duty factor (DF) between runners 
in a real-life running setting and (2) examine whether 
the interindividual variation in DF and stride frequency 
(SF) relates to differences in external loading parameters 
between runners.
Methods  Spatiotemporal characteristics of 23 slow 
runners (ie, <2.6 m/s) were determined during a 5.2 km 
running event. To relate the interindividual variation in DF 
and SF to differences in external forces between runners 
(maximal vertical ground reaction force (FzMax), peak 
braking force (PBF) and vertical instantaneous loading 
rate (VILR)), 14 of them were invited to the lab. They ran 
at 1.9 m/s on a treadmill while ground reaction forces 
were recorded. A multiple linear regression analysis 
was conducted to investigate the effect of DF and SF on 
external force measures.
Results  DF between slow runners varied from 42.50% 
to 56.49% in a recreational running event. DF was found 
to be a significant predictor of FzMax (R²=0.755) and PBF 
(R²=0.430). SF only improved the model for PBF, but to 
a smaller extent than DF (R² change=0.191). For VILR, 
neither DF nor SF were significant predictors.
Conclusion  External forces are lower in recreational 
runners that run with higher DFs and slightly lower SFs. 
These findings may be important for injury prevention 
purposes, especially directed to recreational runners that 
are more prone to overuse injuries.

INTRODUCTION
The amount of slow runners has recently 
increased substantially.1 2 Nowadays, the 
slowest 25% of all runners runs with a speed 
below 9.4 km/hour or 2.6 m/s.3 This is well 
below the speeds investigated in most biome-
chanics research,4 thereby ignoring a large 
subpopulation of the running community: the 
slow recreational runner.5 6 The mechanical 
behaviour of running can be described as that 
of a spring-mass system, in which a massless 
spring connects the movement of the body 
centre of mass with external forces acting on 

the system.7 This results in a bouncing gait 
with flight phases and ground contact phases. 
However, recent findings8–11 show that at 
slow speeds not everyone runs with flight 
phases, which is also known as ‘grounded 
running’.8 12 Despite the absence of flight 
phases, other features of grounded running 
are in agreement with spring-mass behaviour, 
justifying its classification as a running gait.12 
The observation of running patterns both 
with and without flight phases, occurring 
at the same slow speed, indicate substantial 
differences in spatiotemporal characteristics 
between recreational runners.

Recreational running is associated with a 
reduced risk of chronic diseases and all-cause 
mortality, even when it is performed just once 
a week at slow paces.13 However, maintaining 
a certain continuation in one’s running 
programme is necessary to achieve this active 
and healthy lifestyle. Unfortunately, due to 
high incidence rates of running-related inju-
ries (RRI), runners interrupt their running 
programme or even abandon running as a 
leisure activity,14 which prevents them from 
enjoying the health benefits of running. 
These injuries occur as a mechanical fatigue 
phenomenon if a repetitive load exceeds the 

What are the new findings?

►► Recreational slow runners show a large, natural, 
interindividual variation in duty factor, although run-
ning at similar speeds.

►► At the same speed, runners who run with higher 
duty factors experience lower external forces, that 
is, maximal vertical ground reaction force and peak 
braking force, compared with runners who run with 
lower duty factors.

►► Duty factor is proposed as a modifiable load-tuning 
strategy in order to reduce the external forces act-
ing on the musculoskeletal system that might aid in 
the prevention of overuse injuries in a (slow) running 
population.
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musculoskeletal capacity of a runner.15 Moreover, the risk 
of RRI rises more sharply when the magnitude of the 
loading is increased compared with an increase in the 
amount of steps taken,16 emphasising the detrimental 
effect of too high a loading on the musculoskeletal 
system. Although internal forces contribute most to 
the experienced loading,17 18 external ground reaction 
forces (GRFs) can be used as operational measures as 
they reflect these internal forces during level running 
(FzMax: maximal vertical GRF,17–20) or because they are 
directly identified as risk factors of RRI (peak braking 
force (PBF)21 22 and vertical instantaneous loading 
rate (VILR)23–27). These external force measures relate 
mechanically to a runners’ running style (eg, refs 28 29). 
As such, the spatiotemporal profile of a runner deter-
mines to a certain extent the magnitude of the external 
forces and therefore the potential risk of RRI. This ratio-
nale underpins the relevance of investigating the effect of 
the interindividual variation in spatiotemporal character-
istics on differences in external forces between runners.

In our previous work, we instructed physically fit 
subjects to perform grounded running at 2.1 m/s.12 
They accomplished this by increasing their duty factor 
(DF: ratio of contact time on stride time) with 9.7% on 
average, while SF did not change. This resulted in a reduc-
tion of external force measures up to 34%. As such, this 
study demonstrated that inflicting changes in the spatio-
temporal profile of a runner, in this case by increasing 
DF, influences the experienced external forces. However, 
these runners deliberately altered their gait pattern by 
adopting a running pattern they were not familiar with. 
Therefore, we focused in the current study on habitual 
slow runners and investigated whether the natural interin-
dividual variation in DF relates to differences in external 
forces between runners. In addition to DF, SF was added 
to the analyses as the variation in SF between runners30 
could also inflict differences in the experienced external 
forces.20 28 By examining this relationship, we might get a 
better understanding of how running style influences the 
loading acting on the musculoskeletal system of runners, 
with the aim of reducing the risk of RRI in an injury-
prone target population.

The purpose of this research is to document the 
variance in DF between slow recreational runners in a 
real-life running setting (AIM 1) and examine whether 
the natural, interindividual variation in DF and SF relates 
to differences in external loading parameters between 
runners (ie, FzMax, PBF and VILR – AIM 2). We hypoth-
esise that runners who run with higher DFs experience 
lower external forces compared with runners who run 
with lower DFs.

METHODS
AIM 1 was investigated by performing an observation 
study during a recreational 5.20 km running event. To 
investigate AIM 2, we invited 14 slow runners from this 
event to our lab for a biomechanical gait analysis. All 
subjects signed an informed consent.

Observation study: data collection
In total, 198 runners participated in a 5.20 km running 
event, ran on a flat track. One hundred and three runners 
gave permission to be tracked during the race and were as 
such included in this study. Before the start of the event, 
anthropometric measures were taken and a question-
naire that inquired for personal data and running habits 
was filled in. Two observation posts were positioned on 
a straight concrete road at 0.91 km and 4.66 km in the 
race to obtain detailed spatiotemporal characteristics. At 
each observation post, a high-speed camera was placed 
0.25 m above the ground, enabling sagittal recordings of 
at least two consecutive foot contacts of each runner. The 
high-speed cameras at the 0.91 km and 4.66 km observa-
tion post had a capture frequency of 100 Hz and 125 Hz 
and a resolution of 1920×1080 and 1280×1024, respec-
tively. Two GoPro cameras (capture frequency: 100 Hz; 
resolution: 1020×780) were placed 15 m before and after 
the high-speed camera to determine the instantaneous 
running speed at each observation point.

Observation study: data analysis
The average race speed was calculated by dividing the 
distance of the race by the time necessary to finish the 
race. The instantaneous speed at both observation points 
was calculated by dividing the distance between two 
GoPros by the time necessary to run from one camera to 
the other. Runners whose average race speed and instan-
taneous speed at both observation points were equal/
below to 2.6 m/s were categorised as slow runners and 
were included in further data analysis (n=23; online 
supplemental file 1).3 Anthropometric data and running 
habits of all slow runners are presented in table  1 and 
figure 1, respectively.

High-speed recordings were used to determine 
initial foot and toe-off events. Based on these events, 
the following spatiotemporal variables were calculated: 
contact time (time between initial foot contact and toe-off 
of the same foot), stride time (time between two succes-
sive initial foot contacts of the same foot), SF (inverse of 
stride time), stride length (instantaneous running speed 
divided by SF) and DF (ratio of contact time on stride 
time). A DF >50% indicates the absence of a flight phase. 

Table 1  Anthropometrics of the slow runners participating 
in the running event (n=23)

Slow runners

Gender 17% M; 83% F

Age (years) 45.30±10.28

Height (m) 1.71±0.09

Weight (kg) 72.96±11.64

BMI (kg/m2) 25.02±3.52

% BMI >25 kg/m2 52.17%

Slow runners are runners with an average race speed and 
instantaneous running speed both <2.6 m/s.
BMI, body mass index; F, female; M, male.
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As other runners sometimes obscured the camera view, 
it was not always possible to calculate spatiotemporal 
characteristics for all runners (at 0.91 km: n=20 and at 
4.66 km: n=23).

Lab study: data collection
A subsample of 14 slow runners that participated in the 
event was invited to the lab for a gait analysis on treadmill 
(2 ♂, 12 ♀; age: 42.80±11.94 years; height: 1.68±0.12 m; 
weight: 67.61±10.12 kg; BMI: 24.02±3.54 kg/m2). Prior to 
the experiment, subjects performed a habituation period 
of at least 10 min to get acquainted with treadmill running. 
Then, their preferred running speed was determined 
(similar to ref 31), which was lower in the lab compared 
with the event (lab: 1.93±0.27 m/s, event: 2.27±0.18 m/s; 
p<0.001). This is probably due to differences in percep-
tion between treadmill running and overground running 
and the race character of the event.32 Subjects ran at 
different speeds (1.6, 1.8, 1.9, 2.0 and 2.2 m/s). All condi-
tions were presented in randomised order and lasted 
1.5 min. Recordings of GRFs and high-speed videos were 
taken during the last 30 s of each condition and were 
sampled at 1000 Hz and 300 Hz, respectively. Data of the 
1.9 m/s speed increment is presented as this resembles 
most closely the average preferred running speed in the 

lab (1.93 m/s). Data of other speed steps are presented 
online in the online supplemental file 2.

Lab study: data analysis
DF was calculated similar to the observation study. GRFs 
were low-pass filtered using a fourth-order bypass Butter-
worth filter at 40 Hz to calculate VILR and FzMax and 
at 6 Hz to calculate PBF. FzMax was calculated as the 
maximum of the vertical GRF, VILR as the maximum 
of the first derivative of the vertical GRF during the first 
100 ms and PBF as the minimum of the anteroposterior 
component of the GRF, all during stance. To calculate 
subject averages, all metrics were first averaged over 
consecutive stance phases of the same leg and then aver-
aged between left and right.

Statistics
To rule out possible differences in DF between obser-
vation points due to, for example, fatigue, an intraclass 
correlation coefficient (ICC) was calculated, and a paired 
samples t-test was performed. Good or excellent ICCs 
(ICC >0.75,33) in combination with a non-significant 
paired samples t-test allow us to present data from both 
observation points. For the lab analysis, we checked if the 
interindividual variation in DF and SF (independent vari-
ables) could predict the differences in the external force 
measures FzMax, PBF and VILR (dependent variables) 
between runners. Other spatiotemporal variables were 
excluded from analysis due to multicollinearity with DF 
or SF. A multiple linear regression analysis using a step-
wise selection procedure was conducted separately for 
FzMax, PBF and VILR (significance level: p<0.05).

RESULTS
Aim 1: variation in duty factor between slow runners
DF at the 0.91 km point correlates good (ICC=0.830; 
p<0.001) with DF at the 4.66 km point, and no differences 
were found between observation points (p=0.747). DF 
varied for the slow runners from 42.50% to 55.13% in a 
speed interval of 2.16–2.57 m/s (range: 12.63%) and from 
42.51% to 56.49% in a speed interval of 2.13–2.59 m/s 
(range: 13.98%) at the 0.91 km and 4.66 km observation 
point, respectively (figure 2). Thirty per cent of all slow 
runners ran without flight phases at both observations 
points and are categorised as grounded runners. Detailed 
spatiotemporal characteristics of the slow runners are 
presented in table 2. DFs of all participants (n=103) are 
presented online in online supplemental file 3).

Aim 2: external loading parameters between slow runners
Figure 3 depicts the correlations (univariate R² values 
are also presented) between the independent variables 
DF and SF and the dependent variables FzMax, PBF 
and VILR. DF was found to be a significant predictor 
of FzMax (R²=0.755, p<0.001, B=−0.033 and 95% CI 
−0.045 to −0.021). SF was excluded from the model as 
it did not improve the prediction of FzMax. For PBF, 
DF was found to be the strongest predictor (R²=0.430, 

Figure 1  Training habits (green: running experience (years); 
blue: number of running sessions per week; yellow: running 
volume per week (km), red: average running speed per 
training session (km/hour)) of the slow runners participating 
in the running event (n=23).

Figure 2  Variation in DF at the 0.91 km point (left graph: 
n=20) and at the 4.66 km point (right graph: n=23) for the 
slow runners in a recreational running event. Boxplot with 
mean DF (line in blue), SD and minimal and maximal values 
are indicated next to the data points. DF, duty factor.
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p=0.015, B=0.003 and 95% CI 0.001 to 0.005). Adding 
SF significantly improved the model (R² change=0.191, 
p=0.049, B=−0.190 and 95% CI −0.378 to −0.001) but 
to a lesser extent than DF. For VILR, neither DF nor 
SF could be entered into the model (p>0.05). Similar 
results were found at other speed steps (online supple-
mental file 2).

DISCUSSION
This is the first study that documents the variation in 
DF between runners in a real-life running event and 
demonstrates the effect of this variation on differences 
in external forces between runners. Runners with 
higher DFs exhibit lower FzMax and PBF, but not VILR, 
compared with runners with lower DFs, when running at 
the same slow speed.

Main findings
In this study, 22% of all participants were categorised as 
slow runners, which stresses the high prevalence of slow 
paces in a recreational running community. At similar 
speeds, slow runners show a large interindividual varia-
tion in DF, with higher DFs relating to lower FzMax and 
PBF compared with lower DFs. DF was found to be the 
strongest predictor of FzMax and PBF, while the variation 
in SF only predicted PBF to a lesser extent. This concurs 
with findings of Morin and colleagues,28 stating that SF 
is an indirect factor influencing external forces through 
its effect on contact time, and thus DF, which is consid-
ered to be a major determinant of spring-mass dynamics 
of human running. Despite the between-subject char-
acter of this study, in which interindividual differences 
in, for example, anthropometrics and running style 
might alter the relationship between DF and external 
forces, DF shows a clear inverse relationship with FzMax 
and PBF. Surprisingly, DF nor SF could predict VILR 
differences between runners, although our previous 
study demonstrated that intentionally increasing DF 
did decrease VILR. While differences in FzMax and PBF 
can be explained based on spring-mass dynamics,7 28 34 
Bobbert and colleagues35 suggest that VILR is related to 
the rapid deceleration of the mass of the foot and shank 
as it strikes the ground. As demonstrated by the two-mass 
partitioning impulse model by Clark and colleagues,36 37 
lower magnitudes of VILR can be achieved by the combi-
nation of a: (1) less forceful ‘distal’ deceleration of the 
lower limb during the impact phase, for example, due 
to a smaller touchdown velocity of the foot and shank 
and (2) a smaller deceleration of the remaining prox-
imal body parts, typically characterised by a more flat 
centre-of-mass trajectory during the running cycle. This 
adds up when subjects intentionally increase their DF, as 
was demonstrated in our previous study.12 In the current 
study, however, while one could assume that running with 
higher DFs concurs with a more flat centre-of-mass trajec-
tory, interindividual differences in both anthropometrics 
and distal kinematics (although not measured) might 
explain why running with higher DFs, or SFs for that 
matter, does not necessarily result in a less forceful decel-
eration of the lower limbs, and as such does not relate to 
lower VILR in a between-subjects design.

Duty factor: a load-tuning strategy
High forces during running are detrimental to the 
musculoskeletal system, with an increased risk of 
sustaining RRI.15 16 The current results, in combination 
with our previous findings,12 propose DF as a modifiable 
load-tuning strategy. In this study, for example, a runner 
with a DF of 49.40% experiences a 6.59% lower FzMax 
and a 7.32% lower PBF compared with a runner with a 
DF of 45.09%. Furthermore, unlike in the current study, 
intentionally increasing DF did result in lower VILR, due 
to a lower vertical velocity of the foot and consequently 
a less forceful deceleration of the lower limb.12 As small 
increases in DF (4.31% in the previous example) already 

Table 2  Spatiotemporal characteristics of the slow runners 
participating in the running event at the 0.91 km (n=20) and 
4.66 km point (n=23)

0.91 km point 4.66 km point

Average race speed (m/s) 2.22±0.13

Instantaneous speed (m/s) 2.36±0.14 2.35±0.13

Duty factor (%) 49.46±3.63 49.79±3.41

Contact time (s) 0.36±0.03 0.36±0.03

Stride time (s) 0.75±0.03 0.74±0.04

Stride length (m) 1.75±0.12 1.74±0.11

Stride frequency (strides/s) 1.34±0.06 1.35±0.07

Figure 3  Correlation between FzMax (left), PBF (middle) 
and VILR (right) with DF (top) and SF (bottom) at the average 
preferred slow running speed (1.9 m/s) in n=14 slow runners 
(for PBF, n=13 due to missing data point). Every colour 
represents one subject. Asterisk (*) indicates a significant 
Pearson correlation with p<0.05; double asterisks (**) 
indicate a significant Pearson correlation with p<0.001. DF, 
duty factor; FzMax, maximal vertical ground reaction force; 
PBF, peak braking force; SF, stride frequency; VILR, vertical 
instantaneous loading rate.
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result in clinically relevant decreases in external forces,16 
there is no need to drastically change a runners’ running 
style to achieve these reductions. Other arguments also 
contribute to the potential of using DF as a strategy to 
‘tune’ musculoskeletal loading; running with increased 
DFs: (1) occurs naturally at slow speeds, (2) can be learnt 
based on a simple verbal instruction12 and (3) is easy to 
measure and to provide feedback on. It thus seems an 
easy-to-realise spatiotemporal adaptation that shows the 
potential to reduce external forces in such a way that 
it reduces the risk of RRI, while maintaining a certain 
minimal load necessary to keep, for example, tissue 
remodelling ongoing.38

Mechanisms of running with high duty factors
While the forces on the musculoskeletal structures are 
already low at slow speeds,12 the additional reduction in 
external forces might be one of the reasons why some 
runners prefer to run with higher DFs. Especially indi-
viduals with reduced loading capacities, for example, 
older runners,39 or runners with a higher BMI,40 41 
might benefit from such a running pattern to avoid RRI. 
However, overuse injuries occur due to an imbalance 
between the experienced loading and the individual’s 
loading capacity.15 16 As the latter is difficult to quan-
tify and interindividual differences are large (eg, body 
composition), it is not straightforward to translate differ-
ences in external forces between runners to the aetiology 
of RRI. This study does as such not imply a direct, causal 
relationship, but rather shows a cross-sectional associa-
tion between DF and external forces. Other mechanisms 
may also lead to a running pattern with higher DFs, such 
as reducing the discomfort of independently accelerating 
body parts (eg, excessive breast movements,42) or having 
lower leg extensor muscle force relative to body weight.43 
These mechanisms correspond with the demographics of 
the slow runners in this study, who are mainly overweight 
female runners over 45 years of age, and should receive 
more attention in future research to explain why (slow) 
runners show large interindividual differences in their 
spatiotemporal profile.

Limitations and future studies
A first limitation is the assessment of gait patterns on 
treadmill. We chose to test subjects on treadmill as this 
allowed us to control for speed and to analyse more 
running cycles compared with an overground study. 
Second, including more subjects in our experimental 
design would increase the ecological validity of our study. 
To fully comprehend the effect of DF variation on overall 
musculoskeletal loading, in-depth analyses such as muscu-
loskeletal modelling studies are required. These studies 
should include all internal forces that contribute to the 
applied load and should focus on specific anatomical 
locations with a high prevalence of RRI. To investigate 
the causal relationship between running with higher 
DFs and a lower incidence of RRI, prospective risk factor 

studies or intervention studies with an RCT design are 
imperative.

SUMMARY
A large natural variation in DF is observed between 
runners who run at similar slow speeds. This study shows 
that the variation in DF is related to external forces, with 
runners who run with higher DFs experiencing lower 
FzMax and PBF, but not VILR, compared with runners 
who run with lower DFs. As such, runners experience 
different amounts of loading due to subtle differences 
in their spatiotemporal profile, although running at 
the same slow speed. Based on our current findings, in 
combination with the results from our previous study,12 
we propose running with increased DFs as a strategy to 
decrease the experienced external forces, with the aim 
of reducing the risk of RRI. These findings can be of 
great importance towards injury prevention, especially 
directed to recreational runners that are more prone to 
overuse injuries.
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