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Bayesian variable selection becomes more and more important in statistical analyses, in particular when performing variable
selection in high dimensions. For survival time models and in the presence of genomic data, the state of the art is still quite
unexploited. One of themore recent approaches suggests a Bayesian semiparametric proportional hazardsmodel for right censored
time-to-event data. We extend this model to directly include variable selection, based on a stochastic search procedure within a
Markov chain Monte Carlo sampler for inference. This equips us with an intuitive and flexible approach and provides a way for
integrating additional data sources and further extensions. We make use of the possibility of implementing parallel tempering to
help improve the mixing of the Markov chains. In our examples, we use this Bayesian approach to integrate copy number variation
data into a gene-expression-based survival prediction model. This is achieved by formulating an informed prior based on copy
number variation. We perform a simulation study to investigate the model’s behavior and prediction performance in different
situations before applying it to a dataset of glioblastoma patients and evaluating the biological relevance of the findings.

1. Introduction

In cancer research, we often deal with time-to-event end-
points, and the more advances in technology enable the
systematic collection of different genome-wide data, the
more interest arises in integrative statistical analyses, that is,
using more than one information source to obtain a more
comprehensive understanding of the biology of diseases and
improve the performance of risk prediction models.

Recently, a lot of research has been done in the following
three areas:

(1) Cox proportional hazards models for survival (or
time-to-event) data in high dimensions

(2) For variable selection in high-dimensional problems

(3) For integrative analyses of several data sources

The novelty of our approach is the combination of recent
advances in these three areas in one Bayesian model as
outlined below.(1) To model survival data, Cox (1972) [1] developed
the semiparametric proportional hazards regression model
for taking into account the relation between covariates and
the hazard function. The Cox model has been widely used
and analyzed in low-dimensional settings for this purpose;
see, for example, Harrell Jr. (2001) [2], Klein et al. (2013)
[3], or Ibrahim et al. (2005) [4]. In biological applications
with genomic data, we are, however, often in a high-
dimensional setting, that is, having more variables than
subjects. Therefore, we are in need of a high-dimensional
survival time model. One recent approach in this context
was suggested by Lee et al. (2011) [5], who use a Bayesian
version of the Cox model for right censored survival data,
where high dimensions are handled by regularization of the
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regression coefficient vector imposed by Laplace priors. This
corresponds to the lasso penalty; see Tibshirani (1997) [6]
or Park and Casella (2008) [7], which shrinks regression
coefficients towards zero and thus allows parameter inference
in problems where the number of variables 𝑝 is larger than
number of subjects 𝑛. Since the automatic variable selection
property of lasso is lost in fully Bayesian inference, Lee et al.
(2011) [5] adopted a post hoc approach to identify the most
important variables by thresholding based on the Bayesian
Information Criterion.(2) Since variable selection is a core question in many
statistical applications, it has been subject to a lot of research,
and many approaches exist, especially for linear models.
In low-dimensional settings and for frequentist inference,
the most common procedures are best subset selection
or backward or forward selection (Harrell Jr. (2001) [2],
Hocking, (1976) [8]).There are 2𝑝 differentmodels to evaluate
for best subset selection which becomes infeasible in higher
dimensions (𝑝 > 30). In high dimensions, classical backward
selection cannot be applied since the full model is not identi-
fied, and both backward and forward selection will typically
only explore a very small proportion of all possible models.
In addition, all of these approaches do not incorporate
shrinkage in the estimation procedure. Bayesian approaches
offer a good alternative to stochastically search over thewhole
parameter space, implicitly taking into account the model
uncertainty; see Held et al. (2016) [9] for a recent evaluation
study in the context of Cox regressionmodels. One appealing
approach often used in regression analyses is the stochastic
search variable selection (SSVS) of George and McCulloch
(1993) [10], a flexible and intuitive method which makes use
of data augmentation for the selection task and incorporates
shrinkage.(3) For biological information on amolecular level, many
different data sources exist nowadays, and they often provide
shared information, for example, the amount of expressed
genes being transcribed to different proteins results in differ-
ent functions of the cells or the body. If unexpected or unusual
changes in the expression levels occur, the functionality of the
cells can be disturbed. Cancer is often caused by changes in
theDNA, for example, single-basemutations or copy number
changes in larger genomic regions, which in turn will have
an effect on gene expression. Therefore, including such data
sources jointly into the analyses can lead to more accurate
results. Bayesian approaches offer a handy pipeline to do
so.

In our approachwe combine the three mentioned tasks in
one model: variable selection in a high-dimensional survival
time model based on an integrative analysis. In particu-
lar, we integrate copy number variation (CNV) data with
gene expression data, aiming to jointly use their respective
advantages to achieve sparse and well interpretable models
and good prediction performance. We combine the variable
selection procedure of George and McCulloch (1993) [10]
with the Cox proportional hazards model of Lee et al. (2011)
[5] and use CNV data for the construction of an informed
prior.We investigate the use of parallel temperingmethods to
improve the mixture of the Markov chains and to circumvent
the manual tuning of hyperprior parameters.

In the following, we describe the details of the model,
including the technical details, the sampler with extensions,
and diagnostics, in Section 2. Afterwards, we describe the
synthetic data as well as the real dataset on glioblastoma; we
state the prior settings needed and chosen for the simulation
study as well as for the real data analysis. Before drawing
conclusions in Section 4, we describe the most important
findings for the application to synthetic and real data, includ-
ing findings regarding the extracted genes for glioblastoma
patients, and discuss the results in Section 3.

2. Materials and Methods

2.1. Model and MCMC Sampling Procedure. Based on the
general semiparametric proportional hazards model 𝜆(𝑡 |𝑥) = ℎ0(𝑡) × exp(𝑥𝛽) introduced by Cox (1972) [1], Lee et
al. (2011) [5] developed a Bayesian version for right censored
survival time data in high dimensions (𝑝 ≫ 𝑛), with 𝑝 being
the number of variables, 𝑛 the number of subjects, 𝑡 the sur-
vival time of a personwith covariable vector𝑥 = (𝑥1, . . . , 𝑥𝑝),𝛽 = (𝛽1, . . . , 𝛽𝑝) the vector of regression parameters, andℎ0(𝑡) the unspecified arbitrary baseline hazard function. Lee
et al. (2011) constructed a grouped likelihood for their model
with a finite partitioning of the time axis, 0 < 𝑠0 < 𝑠1 <𝑠2 < ⋅ ⋅ ⋅ < 𝑠𝐽 with 𝑠𝐽 > 𝑡𝑟, ∀𝑟 = 1, . . . , 𝑛, in this case
choosing the breaks as the points at which at least one event
occurred and defining the last interval so that the last event
lies in the middle of it, leading to the grouped data likelihood
introduced by Burridge (1981) [11]

𝐿 (D | 𝛽, ℎ) ∝ 𝐽∏
𝑗=1

(exp(−ℎ𝑗 × ∑
𝜄∈(R𝑗−D𝑗)

exp (𝑥𝜄𝛽))

× ∏
𝜉∈D𝑗

[1 − exp {−ℎ𝑗 × exp (𝑥𝜉𝛽)}])
ℎ𝑗 ∼ 𝐺(𝛼0𝑗 − 𝛼0𝑗−1 , 𝑐0) , 𝑗 = 1, . . . , 𝐽.

(1)

Here, D = {(𝑥,R𝑗,D𝑗) : 𝑗 = 1, . . . , 𝐽} denotes the observed
data, where R𝑗 and D𝑗 are the risk sets and the event sets
corresponding to the 𝑗th interval. 𝐺(⋅) describes a Gamma
distribution with shape 𝛼0𝑗 − 𝛼0𝑗−1 and scale 𝑐0, where 𝛼0𝑗 =𝑐0×𝐻∗(𝑠𝑗), 𝑗 = 1, . . . , 𝐽, and𝐻∗(𝑡) is amonotonously increas-
ing function with 𝐻∗(0) = 0. 𝐻∗(0) represents an initial
estimate for the cumulative baseline hazard function 𝐻0(𝑡).
The constant 𝑐0 > 0 specifies how strong the believe in the
initial estimate for this cumulative baseline hazard function
is. Mostly, a known parametric function for 𝐻∗(𝑡) is used,
for example, theWeibull distribution, which then leads to the
following form:

𝐻∗ (𝑡) = 𝜂0 × 𝑡𝜅0 . (2)

The hyperparameters (𝜂0, 𝜅0) have to be carefully chosen,
though, to avoid convergence problems within the MCMC
sampling [5].

The implicit shrinkage of the model and the variable
selection will be done through the stochastic search variable
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selection procedure of George and McCulloch (1993) [10].
Assuming equal variances for the regression coefficients
of variables which are included in the model, the prior
distribution for 𝛽𝑖 conditioned on 𝛾𝑖, 𝑖 = 1, . . . , 𝑝 is as follows:

𝛽𝑖 | 𝛾𝑖 ∼ (1 − 𝛾𝑖) × 𝑁 (0, 𝜏2) + 𝛾𝑖 × 𝑁(0, 𝑐2𝑏 × 𝜏2) , (3)

where the variance parameter 𝜏2 > 0 is small, 𝑐2𝑏 > 1, and𝛾 represents an indicator vector, analogous to the concept of
data augmentation (Tanner and Wong, 1987 [12]), giving the
state of the respective variable of being in the model or not.

As in Lee et al. (2011) [5], we compared three possible
samplers to update the full conditional distribution 𝑃(𝛽𝑖 |𝛽−𝑖, 𝛾, ℎ,D), (𝛽−𝑖 = (𝛽1, . . . , 𝛽𝑖−1, 𝛽𝑖+1, . . . , 𝛽𝑝) and 𝑖 = 1, . . . ,𝑝): the Adaptive Rejection Sampling algorithm proposed by
Gilks (1992) [13], as well as the Adaptive RejectionMetropolis
Sampler from Gilks et al. (1995) [14] and the special random
walk Metropolis-Hastings (RW-MH) method with adaptive
jumping rules proposed by Lee et al. (2011) [5].We also found
the adaptive random walk Metropolis-Hastings sampler to
performbest in our applications, which are high-dimensional
with more variables than samples and 𝑝 > 100. We therefore
only report the results for the adaptive RW-MH sampler.𝛾𝑖 are assumed to be independent Bernoulli (𝜋𝑖) a priori;
that is, 𝑃(𝛾𝑖 = 1) = 𝜋𝑖 and 𝑃(𝛾𝑖 = 0) = 1 − 𝜋𝑖. The conditional
distributions 𝑃(𝛾𝑖𝑡𝑖 = 1 | 𝛽𝑖𝑡, 𝜎𝑖𝑡, 𝛾𝑖𝑡−𝑖) with 𝛾𝑖𝑡−𝑖 = (𝛾𝑖𝑡1 , . . . , 𝛾𝑖𝑡𝑖−1,𝛾𝑖𝑡𝑖+1, . . . , 𝛾𝑖𝑡𝑝 ) for the MCMC sampler are determined by

𝑃 (𝛾𝑖𝑡𝑖 = 1 | 𝛽𝑖𝑡, 𝜎𝑖𝑡, 𝛾𝑖𝑡−𝑖) = 𝑃 (𝛾𝑖𝑡𝑖 = 1 | 𝛽𝑖𝑡𝑖 ) = 𝑎𝑎 + 𝑏 ,
𝑖 = 1, . . . , 𝑝, (4)

where

𝑎 = 𝑓 (𝛽𝑖𝑡𝑖 | 𝛾𝑖𝑡𝑖 = 1) × 𝜋𝑖,
𝑏 = 𝑓 (𝛽𝑖𝑡𝑖 | 𝛾𝑖𝑡𝑖 = 0) × (1 − 𝜋𝑖) , (5)

with𝑓(⋅ | 𝛾𝑖𝑡𝑖 = 1)being the density of the normal distribution𝑁(0, 𝑐2𝑏 × 𝜏2) and 𝑓(⋅ | 𝛾𝑖𝑡𝑖 = 0) corresponding to𝑁(0, 𝜏2).
According to Ibrahim et al. (2005) [4], the full conditional

distribution 𝑃(ℎ𝑗 | ℎ−𝑗, 𝛽, 𝛾,D), with ℎ−𝑖 = (ℎ1, . . . , ℎ𝑗−1,ℎ𝑗+1, . . . , ℎ𝐽), can be well approximated by a gamma distri-
bution

ℎ𝑗 | ℎ−𝑗, 𝛽, 𝛾,D
approx.∼ 𝐺(𝛼0𝑗 − 𝛼0𝑗−1 + 𝑑𝑗, 𝑐0 + ∑

𝜄∈(R−D)

exp (𝑥𝜄𝛽)) , (6)

𝑗 = 1, . . . , 𝐽, where 𝑑𝑗 represents the number of censorings in
interval 𝐼𝑗.

Finally, we use a Gibbs sampler to update 𝛽, 𝛾, andℎ iteratively according to the full conditional distributions
described above.

2.2. Extension of MCMC Sampling Procedure. For multi-
modal posterior distributions, some problems may occur

during the MCMC sampling, because the areas in the
model space with higher posterior probability might be
separated by a low-probability region, which the MCMC
sampler might not manage to overcome. Therefore, there
is a risk that important values cannot be sampled, because
the MCMC sampler never visits the relevant region in the
model space. Parallel tempering [15, 16] can alleviate this
problem. Even in unimodal situations, parallel tempering can
help by broadening the area of the sampling. This is done
through the parallel generation of V + 1 different MCMC
chains with their own stationary distributions, where at
regular intervals (after a predetermined number of MCMC
iterations) a swapping of states (i.e., of the current values
of all parameters in the model) of two neighboring chains
is proposed. The distributions of all chains have the same
basic form as the original, but are more flat. This is achieved
by raising the original density function to the power T−1

(T ≥ 1) with values between 0 and 1, with 0 (for T → ∞)
corresponding to a complete flattening of the distribution
and 1 corresponding to the desired target. This can improve
the sampling performance in two ways: (a) the flattened
probability distribution covers more of the parameter space
with sufficiently large probability to be reached by the sampler
in a given number of iterations, and (b) the “hills” and
“valleys” of a multimodal probability density will be less
steep, thus reducing the likelihood that the sampler might
get stuck in local optima (which in turn will improve its
mixing performance). For historical reasons, the parameter
T is usually referred to as a temperature parameter.

At regular intervals (in our applications after every tenth
MCMC iteration), two neighboring chains are selected ran-
domly, and the Metropolis-Hastings acceptance probability
is calculated based on the target distributions and the current
states of the chains to determine whether a swap of the states
between these two chains is accepted.

Let 𝑓(𝜃ch1) and 𝑔(𝜃ch2) be the respective target distri-
butions of the selected chains with current parameter states𝜃ch1 and 𝜃ch2 . The acceptance probability of swapping states is
given by min{1, 𝛼} with

𝛼 = 𝑓 (𝜃ch2) × 𝑔 (𝜃ch1)𝑓 (𝜃ch1) × 𝑔 (𝜃ch2) . (7)

Within the Metropolis update, this will be compared with
a uniform random variable 𝑈 in the interval [0, 1], where𝑈 < min{1, 𝛼} means that the swap will be accepted. The
probability of a chain to swap to another state therefore only
depends on the current states of the compared chains [17].

In this manuscript, we use log-linear temperature scales
Tch, (ch = 0, . . . , 5).The original, untempered chain is hence
given by ch = 0. The distributions of the tempered versions
are determined so that the standard deviation of the normal
mixture prior of𝛽 | 𝛾 (equation (3)) will be broadened, which
is achieved by multiplying the parameter 𝜏 in the prior with
Tch (ch = 0, . . . , 5).

It is recommended to choose the temperatures so that the
acceptance rate lies between 20% and 50%, since different
studies have shown that rates in this range deliver the most
satisfactory results (e.g., [16, 18, 19]).
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2.3. Prior Settings. For the application of the Bayesianmodel,
several prior specifications are needed. We start with the
hyperparameters 𝜂0 and 𝜅0, which are chosen so that𝐻∗(𝑡) in
(2) is similar to the Nelson-Aalen estimator of the cumulative
hazard function, which is therefore used to provide an
initial guess for 𝐻0(𝑡). For this we determine the scale
parameters for the Weibull distribution from the estimated
survival model of the event times of the training data without
covariable information. For the update of the cumulated
baseline hazard 𝐻0(𝑡) within the iterations of the MCMC
chains, the hyperparameter 𝑐0, which describes the level of
certainty associated with 𝐻∗, has to be specified. We follow
the suggestion by Lee et al. (2011) [5] to set 𝑐0 = 2. We
have previously performed a sensitivity analysis to investigate
the influence of the choice of 𝑐0 (Zucknick et al., 2015 [20]),
where we found that while there was a notable influence on
the posterior estimates of the baseline hazard ℎ, the posterior
distributions of 𝛽 were nearly unchanged.

The parameters 𝜏 and 𝑐𝑏 of the normal mixture distribu-
tion of 𝛽 in (3) conditioned on 𝛾 in (4), that is, 𝑃(𝛽 | 𝛾), will
be set to 𝑐𝑏 = 20 and 𝜏 = 0.0375. This implies that we obtain
a standard deviation of 𝑐𝑏 × 𝜏 = 0.75 for 𝑃(𝛽𝑖 | 𝛾𝑖 = 1) and a
corresponding 95% probability interval of [−1.96, 1.96].

The specifications of the prior probabilities for the selec-
tion of the variables are described in Section 2.5, separately
for the simulation scenarios and for the glioblastoma data
application.

2.4. Posterior Estimation and Prediction. We report the poste-
rior distributions of 𝛽 and 𝛾 in terms of their posterior means
and standard deviations. In order to select the most relevant
variables, we choose an inclusion criterion in an automated
data dependent way, which respects the prior model setup
instead of choosing one cutoff for all cases. This is done by
first calculating the mean model size 𝑝𝑚 (by rounding the
average of selected variables per iteration). Then we choose𝑝𝑚 variables with the highest selection probability.

We used the empty model, with 𝛽𝑖 = 0 for all 𝑖 = 1, . . . , 𝑝,
as starting values of the MCMC chains.

The results of the simulation study are based on single
MCMC chains with 100,000 iterations each, after removal of
20,000 iterations (“burn-in”).The results for the glioblastoma
data application are based on a combined analysis of five
Markov chains, each of length 90,000 after removal of 10,000
initial iterations (“burn-in”). For the parallel tempering (only
applied to the simulated data), we included four chains with
30,000 iterations each and log-linear temperature scales.

We evaluated the mixing and convergence properties
of the Markov chains in several ways. We used graphical
evaluations of running means plots of the individual 𝛽
parameters as well as trace plots for summary measures such
as the 𝐿2-norm of the 𝛽 vector, the model size, and the log
likelihood. Additionally, we calculated the effective sample
sizes ([21]) for each 𝛽𝑖. The R package coda [22] offers a wide
variety of graphics and diagnostic measures to assess both
mixing and diagnostic performance of MCMC chains.

We evaluate the prediction accuracy of themodels chosen
this way by prediction error curves and by computing the
integrated Brier score (IBS) [23, 24] and comparing them

with the reference approach, which is the Kaplan-Meier
estimator without any covariates. The Brier score is a strictly
proper scoring rule, since it takes its minimum when the
true survival probabilities are used as predictions [24, 25].
It therefore measures both discrimination and calibration,
contrary to other common measures of evaluation such as
Harrell’s 𝑐-Index (which only measures discrimination) and
the calibration slope (for measuring calibration); see, for
example, Held et al., 2016 [9].

The implementation of the model and the evaluations
were done in the statistical computing environment R [26]
and are available upon request from the authors.

2.5. Data

2.5.1. Simulated Data. For obtaining simulated data for our
survival time model, we generated two different datasets,
representing a sparse and nonsparse scenario for the true
predictors. For the simulation of the survival data, we used
the procedure described in Zucknick et al. (2015) [20] for the
high-dimensional case. This setup is based on the approach
of Bender et al. (2005) [27] following a Cox-Weibull survival
model with known regression coefficients and any nonzero
baseline hazard rate, taking into account the general relation
between the hazard function and the survival time of the
Coxmodel.We simulated blockwise correlated variables with
a pairwise correlation 𝜌|𝑖−𝑗| between variables 𝑖 and 𝑗, with𝜌 = 0.5 for the variables within the blocks of size𝑚 = 100.

In short, we first simulate the hypothetical survival times𝑇∗𝑙 (𝑙 = 1, . . . , 𝑛) that would be observed without the presence
of censoring,

𝑇∗𝑙 ∼ (− 1𝜂 exp (𝑥𝑙𝛽) log (𝑈𝑙))1/𝜅

with 𝑈𝑙 ∼ 𝑈 (0, 1) ,
(8)

and the censoring times 𝐶∗𝑙 , which are generated to be
uninformative and a mixture of uniform administrative
censoring and exponential loss to follow-up. Note that scale
and shape parameters 𝜂 and 𝜅 are chosen such that the
survival probabilities at 12 and 36 time units are 0.5 and 0.9,
respectively. For more details, we refer to Zucknick et al.
(2015) [20].

Then, for each subject 𝑙 = 1, . . . , 𝑛 the individual observed
time to event or censoring 𝑡𝑙 and the corresponding survival
status 𝛿𝑙 are defined as

𝑡𝑙 = min (𝑇∗𝑙 , 𝐶∗𝑙 ) ,
𝛿𝑙 = {{{

1, 𝑇∗𝑙 ≤ 𝐶∗𝑙0, 𝑇∗𝑙 > 𝐶∗𝑙 .
(9)

For both scenarios, we generate a training dataset for
model fitting and a test dataset to evaluate the prediction
performance of the finalmodels.The generated datasets com-
prise 𝑝 = 500 genomic variables and 𝑛 = 200 subjects. In the
sparse setting, we have true effects of the prognostic variables
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Table 1: Simulation study: posterior selection probabilities for 𝑘true = 6 true variables of the sparse setting.
Prior setting Variable index

1 2 3 4 5 6
Uninformative 1.000 1.000 1.000 0.760 0.061 0.023
Correct informative 1.000 1.000 1.000 0.986 0.379 0.233
Incorrect informative 1.000 1.000 1.000 0.722 0.073 0.026

of 𝛽 = (0.75, −0.75, 0.5, −0.5, 0.25, −0.25, 0, . . . , 0), analogous
to the setup of Zucknick et al. (2015) [20]. Therefore, the
first 𝑘true = 6 variables are simulated to be related to the
response (called “predictors” throughout the manuscript).
For the nonsparse setting we randomly generated 𝑘true = 122
variables in the range of (−0.8, −0.2) ∪ (0.2, 0.8) and equally
distributed for the negative and positive part. Therefore, in
this setting, the first 𝑘true = 122 variables of the dataset
represent the true predictors. See Tables 1 and 2 for an
overview of all simulation scenarios.

Prior Inclusion Probabilities. To evaluate the impact of prior
information we investigate three different scenarios for the
simulated data. First, we choose an uninformative selection
prior (in short: uninformative prior) as 𝜋 = (𝑘/𝑝, . . . , 𝑘/𝑝),
where 𝑘 is the a priori expected number of predictors being
set to 𝑘 = 20 here. With this we can assess the model’s
behavior if no prior knowledge is present. Second,mimicking
the influence of correct prior information we set the prior
probability of the true variables to 0.8 and the others to 0.1.
Finally, to see what happens if our prior knowledge does
not represent the truth, we specify a third prior, setting the
prior probabilities of 𝑘true randomly selected variables of
the nonpredictors to 0.8 and the remaining variables, which
include the true ones, to 0.1.

2.5.2. Application to a Glioblastoma Study. To evaluate our
model in a real application, we used a dataset of glioblas-
toma multiforme (GBM) patients, retrieved fromThe Cancer
Genome Atlas (TCGA) database [28]. Glioblastoma is the
most common and fast-growing brain tumor in adults. It
shows a very poor prognosis with a median overall survival
time of less than 15 months after diagnosis and a two-year
survival rate of about 30% [29]. Therefore, a more detailed
understanding of the molecular behavior of glioblastoma
tumors is sorely needed. Recent publications studying the
genomic profile of glioblastoma include the original publica-
tion from the TCGA network (McLendon et al., 2008 [30])
and the follow-up article by Brennan et al. (2013) [31], as well
as Sturm et al. (2012) [32].

We extracted the data from two sources: from the GBM
dataset of the TCGA Pancancer dataset https://www
.synapse.org/#!Synapse:syn1710678 [33] and from
the derivative DREAM challenge TCGA Pancancer Survival
Prediction project (https://www.synapse.org/#!Synape:
syn1710282) [34]. Our final dataset comprises 210 subjects,
for which we matched the patient survival data and gene

expression data (from the DREAM challenge dataset) with
their respective CNV data retrieved from the PanCan12
dataset. For the analysis, we selected the 𝑝 = 1,000 genes
(selected among all genes located on autosomal chromo-
somes with available annotation information) with the
highest variability in their gene expression values across
patients, and we matched the copy number variation data
to these genes. These 1,000 genes together make up 30% of
the total variation in the dataset. The choice of selecting the
genes with the largest variance is based on the assumption
that genes which do not vary much between subjects will not
be helpful in discriminating between patients with poor and
good survival prognosis, respectively.

We randomly split the data with ratio 2 : 1 into a training
set with 𝑛 = 140 patients for model fitting and a test set with70 subjects, which we use for the evaluation of the prediction
performance of the final models.

Prior Inclusion Probabilities. We choose the uninformative
prior as 𝜋 = (𝑘/𝑝, . . . , 𝑘/𝑝) with 𝑘 = 20. In the informative
case, we define the prior inclusion probability𝜋𝑖 (𝑖 = 1, . . . , 𝑝)
proportional to the standard deviation 𝜎CNV

𝑖 of the copy
number variation data for the associated genomic region
across patients times 𝑘. The prior for gene variable of index 𝑖
is then defined as 𝜋𝑖 = 𝑘× (𝜎CNV

𝑖 /∑𝑝𝑗=1 𝜎CNV
𝑗 ) to obtain again𝑘 as the a priori expected number of selected variables. The

empirical distribution of 𝜎CNV
𝑖 (𝑖 = 1, . . . , 𝑝) is right-skewed

with median 0.36, interquartile range (0.28, 0.45), and range(0.16, 1.45).
3. Results and Discussion

3.1. Simulation Study. In the simulation study, we use the
synthetic data generated as described in Section 2.5.1.

3.1.1. Sparse Setting. First, we look at the sparse scenario
where we generated 𝑘true = 6 true predictors, which corre-
spond to the first 𝑘 variables in our setting. For all three prior
settings, we observe that variables with an absolute effect
of at least 0.5 will generally be selected by the model
(Table 1), though the posterior estimates generally show an
overestimation of the true values.

In Figures 1, 2, and 3, we can see that the true predictors
with higher absolute effects of at least 0.5 are always selected,
even for the setting where the prior probabilities are wrongly
stated (compare Figure 3). The true predictors with smaller
absolute effect sizes are less often selected, which is not

https://www.synapse.org/
https://www.synapse.org/
https://www.synapse.org/
https://www.synapse.org/
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Figure 1: Sparse simulated data, uninformative prior: posterior mean estimates of 𝛽 (a, b) and of selection probabilities (c, d) of all variables
(a, c) and of the first 50 variables (b, d). Estimates are shown as black circles, selected variables as green triangles, and the true predictors as
orange squares.

Table 2: Simulation study (sparse and nonsparse scenario): variable selection results (selection of 𝑝𝑚 variables, where 𝑝𝑚 is the mean model
size as described in Section 2.4).

Prior setting Sparse setting Nonsparse setting
#TP #FN #FP #TN #TP #FN #FP #TN

Uninformative 4 2 6 488 13 109 6 372
Correct informative 6 0 5 489 22 100 3 375
Incorrect informative 4 2 6 488 4 118 8 370
#TP = number of true positives, #FN = number of false negatives, #FP = number of false positives, and #TN = number of true negatives.

surprising since with smaller underlying absolute effect sizes
the posterior evidence of being one of the predictors is getting
weaker.

This shows that in general the model is very robust with
regard to wrongly stated prior information (Figure 3) or in
the absence of information (Figure 1). The rate of wrongly
selected variables does not differ much. However, when
having prior information that comes close to the truth, even
the variables with the smaller absolute effect sizes of 0.25 can
be selected by the model, though their posterior selection
probability is smaller than one; see Figure 2.

This is also confirmed by the prediction error curves and
the IBS obtained for the test dataset in Figure 4.Thedifference
in the prediction error curves between settings is not very big,
since the identification of the effects is quite distinct in the
sparse setting.The area between the curves and the integrated
Brier score are the samewith IBS = 0.16 for the uninformative
(a) and incorrect (c) prior and slightly better for the correct
informative prior with an IBS of 0.13 (b).

For the sparse setting, the mixing (i.e., the ability of the
Gibbs sampler to move around in the model space) is very
good and therefore the results are robust and consistent for
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Figure 2: Sparse simulated data, correct informative prior: posterior mean estimates of 𝛽 (a, b) and of selection probabilities (c, d) of all
variables (a, c) and of the first 50 variables (b, d). Estimates are shown as black circles, selected variables as green triangles, and the true
predictors as orange squares.

the different scenarios (see Figures 12–15; the results of the
sparse setting are shown in (a, b) of the figures). Because of
the good initial mixing performance of the single Markov
chains, the incorporation of parallel tempering does not
further improve the mixing performance. Therefore, we only
show the results for the single chain setups. For the parallel
tempering, we obtained an acceptance rate of around 50% for
swapped states of the Markov chains.

The MCMC mixing and convergence performances for
the implementation with and without parallel tempering are
illustrated in Figures 12–15. Figure 12 shows running mean
plots that illustrate the development of the posterior mean
estimates of the regression coefficients 𝛽 with increasing
number of MCMC iterations. This shows how the estimates
stabilize, thereby helping us to assess whether the MCMC
sampler has run long enough.The runningmean plots for the
sparse simulation scenario indicate that the running means
of 𝛽 do not change much after ca. 10000 MCMC iterations.
Figure 13, which shows trace plots for the log likelihood
functions, and Figures 14 and 15, which show trace plots
for the regression coefficients 𝛽, are useful for deciding if
the Markov chains are mixing well enough and to see if the
MCMC sampler gets stuck in local optima. In addition, they

can help with the decision for how long the burn-in period
should be, that is, how many MCMC iterations at the start of
the sampling process cannot be used for posterior estimation,
because the sampler has not yet converged to the target
distribution. All trace plots indicate very good mixing and
show that theMarkov chainsmove very fast (in less than 5000
MCMC iterations) to the best-performing model regions.

3.1.2. Nonsparse Setting. As a second evaluation step, we
constructed a nonsparse scenario, where we generated 𝑘true =122 true predictors, again corresponding to the first 𝑘
variables in the simulation setting. As expected in this case,
the results aremore inconsistent. In the nonsparse setting, the
influence of the prior probabilities can be seen very nicely
in the posterior selection probabilities (Figures 5, 6, and 7
(c, d), resp.). Variables with higher prior probability show a
slight increase in the posterior selection rate. For the case
with correctly specified informative prior probabilities, it can
be seen that more of the true predictors are selected and the
increase is more obvious than in the other cases (see Table 2).
Furthermore, fewer of the nonpredictors are selected. When
incorrect information is used to specify the prior probabilities
(Figure 7), fewer of the true predictors will be selected as well
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Figure 3: Sparse simulated data, incorrect informative prior: posterior mean estimates of 𝛽 (a, b) and of selection probabilities (c, d) of all
variables (a, c) and of the first 50 variables (b, d). Estimates are shown as black circles, selected variables as green triangles, and the true
predictors as orange squares.
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Figure 4: Prediction error curves of the simulated sparse test data up to time unit 80, based on the model containing only the selected
variables with the largest posterior inclusion probabilities.
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Figure 5: Nonsparse simulated data, uninformative prior: posterior mean estimates of 𝛽 (a, b) and of selection probabilities (c, d) of all
variables (a, c) and of the first 150 variables (b, d). Estimates are shown as black circles, selected variables as green triangles, and the true
predictors as orange squares.

as more of the false ones that obtained higher probability
mass in the beginning. In the uninformative prior setting
the model selects about 11% of the true predictors. With
the correct informative prior 18% of the true predictors
are selected and with incorrect informative priors we only
identify 3% correctly (see Table 2). The posterior selection
probabilities are shown in Figures 5, 6, and 7, where there
is a clearer increase in the selection probabilities for the
true predictors and generally smaller probabilities for the
remaining nonpredictor variables (Figure 6).

Additionally, we can see the impact of prior information
more clearly from the prediction error curves obtained for the
test data (Figure 8)where the prediction error is lowest for the
correct informative prior with an IBS of 0.223 (a) compared
to an IBS of 0.233 (b) for the uninformative prior and 0.239
(c) for the incorrect informative prior information case.

Again, we compared the results for the MCMC sam-
plers with and without parallel tempering (see (c, d) of
Figures 12–15). Since the nonsparse simulation scenario is
more complex than the sparse scenario, we anticipated that
the simple MCMC sampler (without parallel tempering)
might need more iterations to move into the regions of the
model space with the best-performing models or that the
sampler might have problems with poor mixing. Indeed,

we observe somewhat slower convergence (up to ca. 5000
MCMC iterations according to the trace plots in Figures
13–15). Therefore, parallel tempering can potentially be more
useful in the nonsparse simulation scenario. However, we
find that parallel tempering does not improve the mixing
performance of the Markov chains sufficiently to justify the
increase in computation time.

3.2. Glioblastoma. Figure 9 summarizes the posterior esti-
mates for 𝛽 and 𝛾 for the glioblastoma application. Again,
parallel tempering did not improve the Markov chain mixing
sufficiently to outweigh the increased computational burden.
Therefore, we performed the full MCMC runs only without
parallel tempering.

The posterior selection probabilities are quite different for
the models with the informative and uninformative selection
priors, respectively, as only 3 variables among the𝑝𝑚 variables
with the largest marginal posterior selection probabilities for
both priors; see also Figure 10. These are the genes with gene
symbols ACMSD (on chromosome 2), SP8 (chromosome 7),
and PXDNL (chromosome 8).

On average, across all MCMC iterations, the models
contained 𝑝𝑚 = 10 variables (uninformative prior) and𝑝𝑚 = 9 variables (informative prior), respectively. Therefore,
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Figure 6: Nonsparse simulated data, correct informative prior: posterior mean estimates of 𝛽 (a, b) and of selection probabilities (c, d) of
all variables (a, c) and of the first 150 variables (b, d). Estimates are shown as black circles, selected variables as green triangles, and the true
predictors as orange squares.

for our top models, we select 𝑝𝑚 variables with the largest
posterior selection probabilities.The corresponding variables
are highlighted in Figure 9 and their gene names are shown.
Table 3 gives an overview over the top genes including
the gene symbols, full names, and the posterior selection
probabilities.

ACMSD can prevent the accumulation of the neuronal
excitotoxin quinolinate, which has been implicated in the
pathogenesis of several neurodegenerative disorders (https:
//www.ncbi.nlm.nih.gov/gene/130013, updated 19-
Jan-2017). This agrees with our finding of a negative
regression coefficient estimate for ACMSD, since negative
coefficients indicate a reduction in the hazard rate with an
increase in gene expression. Not much is known about the
roles of SP8 (https://www.ncbi.nlm.nih.gov/gene/
221833, updated 6-Dec-2016) and PXDNL (https://www
.ncbi.nlm.nih.gov/gene/137902, updated 6-Dec-2016)
in human cancers or neurological diseases, but genetic
variants in SP8 have been associated with psychotic disorders
in recent genome-wide association studies in Han Chinese
and Japanese populations [35, 36]. While some of the
remaining genes are involved in neurological processes or
neural development (CALB2, CDH10, ENPP5, and FLRT2),
others have been associated with cancer (AKR1B10, CALB2,

CDH10, and CYB5R2), but only CYB5R2 has specifically
been identified as a potential (epigenetic) marker for
glioblastoma prognosis [37].

The prediction performance of the top models is evalu-
ated in terms of the prediction error curves and integrated
Brier scores (IBS) on the test dataset; see Figure 11. While the
IBS for the model with the uninformative selection prior is
not better than the IBS of the reference model (IBS = 0.163),
we see a good improvement in the prediction performance for
the model with the informative selection prior (IBS = 0.157),
and the (test set) prediction error curve for the informative
selection prior is lower than the reference prediction error
curve, in particular after ca 12 months.

For sampling diagnostics, we refer to Figure 16. It shows
the trace plots for the log likelihood functions for all five
MCMC chains that were run for sampling from the model
with the uninformative selection prior (a) and correspond-
ingly all fiveMCMC chains used for the informative selection
prior (b). The trace plots demonstrate that all Markov chains
move very fast (within the first 1000 MCMC iterations) to a
region of the model space, where most model log likelihood
values are in the range between ca. −500 and −450. The trace
plots also show that the Markov chains do not get stuck in

https://www.ncbi.nlm.nih.gov/gene/130013
https://www.ncbi.nlm.nih.gov/gene/130013
https://www.ncbi.nlm.nih.gov/gene/221833
https://www.ncbi.nlm.nih.gov/gene/221833
https://www.ncbi.nlm.nih.gov/gene/137902
https://www.ncbi.nlm.nih.gov/gene/137902
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Figure 7: Nonsparse simulated data, incorrect informative prior: posterior mean estimates of 𝛽 (a, b) and of selection probabilities (c, d) of
all variables (a, c) and of the first 150 variables (b, d). Estimates are shown as black circles, selected variables as green triangles, and the true
predictors as orange squares.
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Figure 8: Prediction error curves of the simulated nonsparse test data up to time unit 80, based on the model containing only the selected
variables with the largest posterior inclusion probabilities.
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Figure 9: Glioblastoma data: posterior mean estimates or 𝛽 (a, b) and of selection probabilities (c, d) for the uninformative (a, c) and
informative (b, d) priors. The 𝑝𝑚 = 10 (uninformative prior) and 𝑝𝑚 = 9 (informative prior) selected variables are highlighted as green
triangles, while estimates are shown as black circles.
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Figure 10: Glioblastoma data: posterior selection probabilities for the models based on the uninformative (𝑥-axis) versus the informative
(𝑦-axis) priors. The highlighted data points correspond to the selected variables with the largest posterior selection probabilities based on
the two priors (blue diamonds identify variables selected only with the uninformative prior, red squares only with the informative prior, and
purple triangles with both priors; see Figure 9).
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Figure 11: Glioblastoma data: prediction error curves for the test data based on the model containing only the selected variables with the
largest posterior inclusion probabilities (see Figure 9).

Table 3: Glioblastoma data: overview of the genes among 𝑝𝑚 variables with the largest marginal posterior selection probabilities in themodel
with either the uninformative or the informative prior.

Symbol Full name 𝑝1(𝛾𝑖 | D)∗ 𝑝2(𝛾𝑖 | D)+
ACSMD Aminocarboxymuconate semialdehyde decarboxylase 0.337 0.083
AKR1B10 Aldo-keto reductase family 1 member B10 0.104
CALB2 Calbindin 2 0.080
CDH10 Cadherin 10 0.081
CNN1 Calponin 1 0.085
CRHBP Corticotropin releasing hormone binding protein 0.234
CYB5R2 Cytochrome b5 reductase 2 0.098
C14orf132 Chromosome 14 open reading frame 132 0.154
ENPP5 Ectonucleotide pyrophosphatase/phosphodiesterase 5 0.131
FLRT2 Fibronectin leucine rich transmembrane protein 2 0.157
METTL7B Methyltransferase like 7B 0.060
PXDNL Peroxidasin like 0.100 0.140
RCAN2 Regulator of calcineurin 2 0.109
SLC4A4 Solute carrier family 4 member 4 0.059
SP8 Sp8 transcription factor 0.083 0.194
UGT2B7 UDP glucuronosyltransferase family 2 member B7 0.076
∗𝑝1(𝛾𝑖 | D) denotes the posterior selection probability in the model with the uninformative selection prior and +𝑝2(𝛾𝑖 | D) denotes the posterior selection
probability in the model with the informative selection prior.
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Figure 12: Simulation study: runningmeanplots of posterior for𝛽 for correct informative prior: sparse settingwithout (a) andwith (b) parallel
tempering and nonsparse setting without (c) and with (d) parallel tempering. For comparison purposes only, the first 30,000 iterations are
shown.
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Figure 13: Simulation study: trace plots of log likelihood values for correct informative prior: sparse setting without (a) and with (b) parallel
tempering and nonsparse setting without (c) and with (d) parallel tempering. For comparison purposes only, the first 30,000 iterations are
shown.
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Figure 14: Simulation study: trace plots of 𝛽 for correct informative prior without parallel tempering: sparse setting (a, b) and nonsparse
setting (c, d) with all variables (a, c) and with first 50 or 150 variables (b, d). For comparison purposes only, the first 30,000 iterations are
shown.

model regions with very similar log likelihood values, which
indicates a good mixing performance.

4. Conclusion

In this manuscript, we have combined a Bayesian Cox model
for survival data (Lee et al., 2011 [5]) with a variable selection
approach suitable for high-dimensional input data (George
andMcCulloch, 1993 [10]).This approach of framing variable
selection via Gibbs sampling over the binary indicator vector𝛾 = (𝛾1, . . . , 𝛾𝑝) gave us the opportunity to integrate informa-
tion from a second data source into the model via the prior
distribution for 𝛾. In our application to glioblastoma data, we
integrated copynumber variation data into a gene expression-
based model for overall survival prognosis, and we found
that the inclusion of the copy number data results in a better
prediction performance in the test dataset.

This confirms our findings from the simulation studies
that our model setup is able to use the second data source
to achieve clear improvements in the prediction accuracy, if
the second data source truly supplies an informative selection
prior, that is, if the variables that are assigned an increased

prior selection probability due to information in the sec-
ondary data source really are associated (in the main data
source) with the response. An incorrect specification of the
selection prior, however, might lead to slightly worse predic-
tion performance compared to the uninformative selection
prior. In real applications, we will typically not know if an
informative selection prior is specified correctly.Therefore, it
is important to always compare the prediction performance
of such an informative prior with the uninformative (stan-
dard) prior to see whether or not prediction performance is
improved by the prior information. In general, a sensitivity
analysis to assess the impact of the choice of priors on
the results is a recommended procedure for any Bayesian
analysis, especially when using informative priors.

The advantage of our fully Bayesian modeling approach
compared to frequentist approaches is that we obtain full
inference, not only for the posterior distributions of the
regression coefficients 𝛽, but also for the posterior selection
probabilities of all the variables. Note that due to the joint
modeling we can even obtain posterior inference about the
joint selection probabilities of specific sets of variables. In
this way, we can explore how the selection of one variable
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Figure 15: Simulation study: trace plots of 𝛽 for correct informative prior with parallel tempering: sparse setting (a, b) and nonsparse setting
(c, d) with all variables (a, c) and with first 50 or 150 variables (b, d). For comparison purposes only, the first 30,000 iterations are shown.

affects the selection probability of another variable, or we
can estimate and compare the joint posterior selection prob-
abilities of specific (published) gene signatures, that is, sets
of genes that have been identified as being prognostic in
previous studies. Since we essentially use the Gibbs sampler
to perform a stochastic search over the model space of size 2𝑝
(with 𝑝 easily being in the hundreds or thousands), it is not
feasible to run the MCMC sampler long enough for reliable
posterior estimation in the low-probability regions. However,
this is usually not a concern, since we are mostly interested
in the variables and models with highest posterior selection
probabilities. Because of the nature of the stochastic search
sampler to visit models with a frequency that is proportional
to their posterior selection probability, it is much easier
to obtain a sufficient number of MCMC samples for good
estimation performance for these high-probability models.

In general, there is a trade-off between the computational
expense of longer MCMC runs and the improvement in
estimation accuracy, both by reducing the MCMC error and
by ensuring that the relevant high-probability model regions
have been visited with sufficient frequency. Increasing the
number of variables 𝑝 that are considered in the modeling
process will also increase the computational expense. Here a

good trade-off is achieved if the number of variables without
predictive value with regard to the survival outcome is kept
to aminimum. Our implementation of the algorithm in R has
not been optimized with respect to computing performance
and the computing speed could be improved substantially,
for example, by using the R package Rcpp [38] and by more
efficient memory management. Currently, a single MCMC
run in our simulation studies and data application takes
ca. one hour per 1000 MCMC iterations on a 2.6GHz
compute node running Linux with 64GBmemory; all results
presented in this manuscript are based on MCMC runs that
took a maximum of one week running time.

We found in our applications that the parallel tempering
algorithm did not sufficiently improve the mixing perfor-
mance of the Markov chains (i.e., the ability of the Gibbs
sampler to move around in the space of all models) to offset
the increase in computation time. The increase in compu-
tation time can be minimized by implementing the parallel
tempering with true computational parallelization, for exam-
ple, by running each of the tempered Markov chains on a
different node. In that case, the only increase in computation
time comes from the necessary regular exchanges of the states
of the Markov chains between neighboring tempered chains.
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Figure 16: Glioblastoma data: trace plots of log likelihood values for all five MCMC chains for the uninformative prior (a) and for the
informative prior (b).



18 Computational and Mathematical Methods in Medicine

Thus, parallel tempering might be much more favorable in
such an implementation. However, note that another trade-
off is involved, namely, the increase in computation time and
the improvement in mixing performance due to an increased
frequency of state exchanges. See [39] for a simple example
implementation in R, which illustrates the procedure.
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