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Abstract: The need to promote sustainable civil infrastructure is one of the most important con-
cerns in the construction industry. Geopolymer composites are one of the promising eco-friendly
materials for the development of low carbon concrete. The main objective of this experimental
investigation is to study the effect of hybrid fibres on the shear strength of flexural members made
with ternary blend geopolymer concrete (TGPC). A total number of 27 reinforced concrete beams
of size 100 mm × 150 mm × 1200 mm were cast and tested for shear. M55 grade of concrete was
considered in this study. Crimped steel fibres and polypropylene fibres with an aspect ratio of 66
and 300, respectively, were used in this work. The main variables considered in this investigation
involve two volume proportions of steel fibres, viz., 0.5% and 1% as well as four volume proportions
of polypropylene fibres viz., 0.1%, 0.15%, 0.2% and 0.25%. The hybrid fibre-reinforced ternary blend
geopolymer concrete (HTGPC) beams were compared with TGPC beams without fibres. From the
test results, it was clear that incorporating hybrid fibres improved the shear strength and changed
the type of failure of the beam from shear to flexure. Moreover, a method to predict the ultimate
shear strength of HTGPC was proposed, and the estimated values were found to be the same as the
test results.

Keywords: beam; geopolymer concrete; hybrid fibre-reinforced concrete; shear strength; ternary blend

1. Introduction

Geopolymer concrete (GPC) is a new environmentally friendly material that reduces
the global warming of the Earth and the greenhouse effect by replacing ordinary Port-
land cement (OPC). Portland cement is not considered a sustainable material due to the
emission of a substantial amount of carbon dioxide (CO2) into the atmosphere during
its production [1–3]. GPC developed by Davidovits provides a suitable replacement for
conventional concrete [4,5]. GPC is produced from an aluminosilicate source material
using alkaline activators. It reduces the CO2 footprint and effectively utilises industrial
wastes such as silica fumes, fly ash, ground granulated blast furnace slag (GGBS), etc. GPC
has excellent mechanical properties and better fire resistance than conventional cement
concrete. It reduces the carbon footprint and saves water for curing since the strength of
GPC is from the polymerisation process, while the strength of OPC is due to the hydration
of cement [6]. Ternary blend geopolymer concrete (TGPC) is developed by mixing three
different source materials of varying particle sizes to form a denser concrete, resulting
in improved properties compared to GPC [7,8]. Many researchers, aiming to provide
knowledge about the effect of such concrete as structural elements, have discussed the
structural behaviour of reinforced GPC members. Sofi et al. [9] studied the bond behaviour
of geopolymer concrete with a steel bar by performing the direct pull-out test and the
beam-end test. They concluded that the development length for GPC could be predicted
using the equations provided in the standards for normal concrete. Sumajouw et al. [10]
studied the effect of tensile reinforcement ratio on the behaviour of reinforced GPC and
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reported that the flexural capacity and ductility index are similar to conventional cement
concrete. Many other studies also highlighted that the GPC beams performed similarly to
conventional reinforced concrete under flexure [11–14].

A lot of research has been performed to explore the effect of fibres on the mechanical
properties of concrete [15–17]. Naaman and Reinhardt [18] reported that adding a little
fraction of short Torex fibres, which are engineered to achieve optimal properties in the or-
der of 0.5% to 1% by volume, in concrete could enhance the toughness in the post-cracking
response by bridging across the cracks. In the hybrid fibres system, the short fibres can
bridge across the microcracks while the long fibres are more effective at controlling the
progression of macrocracks [19–22]. The advantages of having a combination of metallic
and non-metallic fibres in cement concrete are improving the mechanical properties and
reducing the total cost of the concrete [23–25]. Navid et al. [26] studied the fibre–matrix
interaction of fly ash-based GPC incorporated with steel and polypropylene fibres. They
reported that the fibres played a vital role in the interfacial bond and improved properties
such as energy absorption and flexural strength. Attempting to improve the tensile be-
haviour of high strength concrete has recently been gaining importance among researchers.
High-performance fibre-reinforced concrete is a recently developed concrete that possesses
high strength and ductility for use in structures where bending is dominant. Doo-Yeol
et al. [27] investigated the effect of fibre length and placement method on the flexural
behaviour of ultra-high-performance fibre-reinforced concrete (UHPFRC). They reported
that the fibres placed in the centre exhibited higher flexural strength since more fibres
existed in the crack plane. The material and bond properties of UHPFRC with micro steel
fibres were reported by Doo-Yeol et al. [28]. They found that the CMR model was appro-
priate for predicting the ascending portion of the bond stress–slip response between the
UHPFRC and the steel rebar. Umberto et al. [29] developed a numerical model for tracing
the structural response of steel bar-reinforced UHPFRC enhanced with nanomaterials.

Several studies were carried out in the past on fibre-reinforced concrete beams without
stirrups for normal concrete, high strength and high-performance concrete (HPC), and the
studies proved the efficiency of the fibres in increasing the shear strength [30,31]. Victor
et al. [32] examined the ultimate shear strength of fibre-reinforced mortar and concrete
beams without stirrups and noted that the fibres prevented the shear failure. Many authors
proposed empirical equations for predicting the ultimate shear strength for fibre-reinforced
cement concrete [30,33–35]. Ambily et al. [36] and Ganesan et al. [37] reported the response
of geopolymer concrete beams tested under shear and the effect of steel fibres on the shear
strength of beams. All these works are limited to normal concrete, HPC, UHPFRC and fly
ash-based GPC composites. However, studies on the behaviour of hybrid fibre-reinforced
ternary blend geopolymer concrete (HTGPC) beams under shear are not yet reported.
Hence, in this study, an attempt is made to analyse the shear strength of TGPC due to the
influence of hybrid fibres.

2. Experimental Programme
2.1. Materials

The primary source material for the TGPC used in this work was low-calcium class F
fly ash procured from Mettur Thermal Power Station in Tamil Nadu, India, conforming to
the requirements of IS 3812:2003 [38]. Its chemical composition includes Al2O3 (27.75%)
and SiO2 (55.36%). It is a dark grey powder and has a specific gravity of 2.30. The average
size of the fly ash particle is 75 microns. GGBS consisting of 77.37% of total CaO, MgO
and SiO2 conforming to BS 6699:1992 [39] was also used as one of the source materials.
The colour of GGBS is off-white and has a specific gravity of 2.88. The mean particle size
of GGBS is 30 microns. Metakaolin procured from the local supplier was used as a third
precursor for the TGPC. It has a specific gravity of 2.56 with a creamish-ivory powder
appearance. It is composed of 92% of combined SiO2, Al2O3 and Fe2O3 elements. The
average particle size of metakaolin is 2–3 microns. These three materials were combined to
form a ternary binder for the TGPC. The detailed properties of the source materials and
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their morphological information were provided in the previous study performed by the
authors [7,40].

Locally available crushed stone (M-Sand) passing through a 4.75 mm (No.4) IS sieve
conforming to Zone II of IS 383:1970 (reaffirmed 2002) [41] with a fineness modulus and
specific gravity of 2.92 and 2.39 was used as fine aggregate. Coarse aggregate with a
maximum size of 12.5 mm with a fineness modulus and specific gravity of 6.92 and 2.78
was also used. A blend of sodium hydroxide (NaOH) in pellet form with 99% purity and a
sodium silicate (Na2SiO3) solution consisting of 8% of Na2O, 28% of SiO2 and 64% of water
by mass was used as an alkaline activator. Naphthalene-based water reducing admixture,
Conplast SP 430, was added for better workability. The hybrid fibres used in this study
consist of (i) crimped steel fibres with a length of 30 mm and 0.45 mm diameter and (ii)
polypropylene fibres having a length of 12 mm and 40 micron diameter. Figure 1 shows
images of the steel and polypropylene fibres added in the mixture. The ultimate tensile
strength of the steel and polypropylene fibres was 800 MPa and 600 MPa, respectively.
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Figure 1. Fibres used: (a) crimped steel fibres; (b) polypropylene fibres.

2.2. Mix Proportions for TGPC

As standard mix design is not available for geopolymer concrete, the TGPC mix pro-
portion for M55 concrete was arrived at by trial and error based on Rangan’s recommenda-
tions [42]. The proportion of fly ash, GGBS and metakaolin the alkaline activator-to-binder
ratio and the molarity of NaOH were obtained from the detailed studies carried out by the
authors, which are presented elsewhere [40,43] and are used in the present experimental
investigation. Thus, the TGPC consists of 60% fly ash, 25% GGBS and 15% metakaolin.
Moreover, the alkaline activator-to-binder ratio was selected as 0.3, and the molarity of
NaOH was maintained as 14 M. The water-to-binder ratio was kept constant at 0.2. Super-
plasticiser was added to the mix by 1.5% of the binder’s total weight for better workability.
The summary of the TGPC mix proportion is provided in Table 1. The fibres were added to
the same mix proportion at different levels to study their effect on the concrete.

Table 1. Mix proportion of ternary blend geopolymer concrete.

Materials Quantity, kg/m3

Fly ash 237.47
GGBS 122.61

Metakaolin 64.53
Coarse aggregate 1293.60

Fine aggregate 554.40
NaOH solution 36.40

Na2SiO3 90.99
Superplasticizer 6.37

Water 84.92
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2.3. Specimen Details

The shear behaviour of HTGPC beams under flexure was studied by casting and
testing 27 reinforced concrete beams of size 100 × 150 × 1200 mm3 with different volume
fractions of fibres. Three specimens were tested for each combination of fibres and the
average of the results was taken for analysis. The details of reinforcement of the specimen
and the dimensions are provided in Figure 2. Two nos. of 10 mm diameter high yield
strength deformed (HYSD) bars and two nos. of 6 mm diameter bars were provided at the
bottom and top of the beam, respectively. The properties of the reinforcing bars are given
in Table 2. Two-legged stirrups were provided using a 6 mm diameter bar at the loading
and supporting points. No shear reinforcement was provided in the shear span to ensure
shear failure [37].
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Table 2. Properties of steel bars.

Nominal Diameter of Bar,
mm

Actual Diameter of Bar,
Mm

Yield Strength,
MPa

Ultimate Strength,
MPa

Modulus of Elasticity,
GPa

10 9.97 534 584 244
6 6.09 526 578 232

2.4. Mixing, Casting and Curing Procedure

The test specimens were prepared using the dry materials in the horizontal drum-type
concrete mixture, including ternary source material, coarse aggregates and fine aggregates.
The NaOH pellets were mixed with water to prepare a 14 M solution, and then a Na2SiO3
solution was added to it to form the alkaline activator 24 h before casting. The ratio
of Na2SiO3 to NaOH by weight was kept constant at 2.5:1. While preparing the dry
mixture, polypropylene fibres were added to the mix for the uniform distribution of fibres.
Superplasticiser, alkaline activator and water were added to the dry mix, followed by the
steel fibres. The reinforcement cage was kept inside the steel mould; the mixture was
then poured in three layers into the mould and vibrated using a needle vibrator for better
compaction. The top surface was smoothened using a trowel and covered with plastic film
to avoid moisture loss while curing. After 24 h of rest, the beams were cured at 60 ◦C for
the next 24 h inside the steam-curing chamber. The samples were left at room temperature
until testing.

2.5. Testing

The beams were whitewashed and then tested after 28 days under a four-point loading
method to observe the crack patterns. The beams were tested in a compression and bending
testing machine (GDR, Blue Star Engg. Co. Pvt. Ltd., Madras, India) of 3000 kN capacity
at a constant loading rate of 4 kN/min until failure. The test was conducted in a load-
controlled test setup and necessary precautions were taken to keep a constant loading
rate. The deformations were observed by using electrical gadgets such as LVDTs, so that at
every stage of application of loading the time taken for the observation was minimal. Two
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LVDTs with a least count of 1 micron were fixed at the top and bottom of the mid-span.
The deformation at the mid-span was noted using a dial gauge having the least count of
0.01 mm and 25 mm travel. A crack width microscope with the least count of 0.02 mm was
used to observe the cracks developed in the specimens. The readings were taken at each
load increment of 2 kN during the test. The actual test setup is shown in Figure 3.
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Figure 3. Actual test setup.

3. Results and Discussions

The test results of the beams are shown in Table 3. The values given in the table are the
average of three identical beams tested with the same fibre content and loading condition.

Table 3. Test results.

Specimen
Volume Fraction, % Compressive

Strength,
MPa

Split
Tensile

Strength,
MPa

Flexural
Strength,

MPa

First Crack
Load, kN

Ultimate
Load, kN

Deflection
at Ultimate
Load, mm

Ultimate
Shear

Strength,
MPaVs Vp

TGPC 0 0 57.23 4.72 5.62 14 39 3.82 2.60

HTGPC1

0.5

0.1 61.47 6.00 6.48 16 44 4.74 2.93
HTGPC2 0.15 61.77 6.12 6.52 18 46 4.86 3.07
HTGPC3 0.2 61.21 6.25 6.54 19 47 5.04 3.13
HTGPC4 0.25 62.23 6.37 6.58 18 45 4.56 3.00

HTGPC5

1

0.1 66.93 6.27 7.76 25 52 6.82 3.47
HTGPC6 0.15 65.77 6.32 7.85 26 54 8.52 3.60
HTGPC7 0.2 64.09 6.48 7.80 24 53 7.26 3.47
HTGPC8 0.25 64.80 6.56 7.71 23 50 6.63 3.33

3.1. Load–Deformation Characteristics

The load–deflection curves for TGPC and HTGPC beams are shown in Figure 4. It
can be noted that the linearity of the curves for all the specimens deviates after the first
crack load. After the first crack load, multiple cracks were formed and the slope of the
curve reduced and became nonlinear [44]. The HTGPC beams show a more or less flat
portion of the curve beyond the ultimate load. In contrast, a sudden fall in the load
was observed after the ultimate load for the TGPC beams without hybrid fibres. From
the figure, it can be observed that the first stage was linear up to the formation of the
first crack. After the initial crack, the beams underwent post-cracked behaviour and
the load–deformation curve behaved nonlinearly until the peak load. The initiation of
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inclined cracks was influenced by strain–softening of tensile concrete, but in the progressive
development of diagonal cracks the dowel action of steel bars and the fibres appeared to
predominate [45]. It can also be noted from the figure that the HTGPC beams with 0.5%
steel fibres exhibited improved deformation with the addition of polypropylene fibres up to
0.2%. In comparison, the deformation of HTGPC beams with 1% steel fibres improved up to
0.15% polypropylene fibres. It can be observed that the further addition of polypropylene
fibres resulted in reduced deformation; this is due to poor workability in the TGPC mixture
with a high content of hybrid fibres [46]. In contrast, low hybrid fibre content resulted in
only a marginal improvement in the behaviour of the HTGPC specimens with 0.5% steel
fibres [47,48]. HTGPC beams with higher fibre proportion show less deformation for the
same magnitude of the load, which shows the ductility increases due to the incorporation
of hybrid fibres. HTGPC beams with a mix of 1% steel and 0.15% polypropylene fibre were
found to perform better than all other specimens.
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3.2. Cracking Behaviour and Failure Modes

Figure 5 shows the crack patterns of the typical tested specimens after failure. Figure 5a
shows that, in the plain TGPC beam, the first crack was initiated in the flexural span. When
the load increased, diagonal cracks developed in the shear span and additional flexural
cracks formed. As the load increased further, the existing cracks widened; at the final
stage, the diagonal cracks developed faster, resulting in the beam’s failure [49]. In the
TGPC specimen, the failure occurred at the shear span when one of the diagonal cracks
widened and reached the specimen’s top. It can also be seen that, in a plain TGPC beam,
the spalling of cover concrete occurred [50]. The addition of hybrid fibres in TGPC resulted
in many finer cracks compared with specimens without fibres. In HTGPC specimens, the
cracks were developed and widened at higher loads [51]. However, at corresponding
loads, the crack widths of HTGPC specimens with 1% steel fibres were 60% lower than
the cracks formed in TGPC specimens, whereas the average crack width was 55% lower
for the specimens with 0.5% steel fibres. It may also be noted that, in HTGPC specimens,
the flexural cracks are more predominant than the cracks in the shear span. In general,
the incorporation of hybrid fibres delayed the first crack, increased the shear strength and
changed the failure mode from shear to flexure [44].
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general, the incorporation of hybrid fibres delayed the first crack, increased the shear 
strength and changed the failure mode from shear to flexure [44]. 
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Figure 5. Crack pattern of typical tested beams: (a) TGPC beam; (b) HTGPC beams with 0.5% steel 
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Figure 5. Crack pattern of typical tested beams: (a) TGPC beam; (b) HTGPC beams with 0.5% steel
fibres; (c) HTGPC beams with 1% steel fibres.
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3.3. Ultimate Shear Strength

Table 3 shows the test results of the tested specimens. The beams with hybrid fi-
bres show improved ultimate shear strength when compared with TGPC beams with-
out fibres [52]. The ultimate shear strength for HTGPC beams with 1% steel and 0.15%
polypropylene fibre increased by 38.46% compared with TGPC beams. This may be due to
the prevention and deviation of cracks from their path by the fibres bridging across the
cracks. Hence, for further propagation of cracks, the beams with fibres need more energy,
which consecutively improves the beam’s load-carrying capacity.

4. Design Equations Available in the Literature for Shear Strength of Reinforced
Concrete Flexural Members
4.1. Ashour et al.

Ashour et al. [33] proposed an equation by considering various factors such as steel
fibre content, shear span-to-depth ratio and longitudinal steel ratio to predict the shear
strength of fibre-reinforced concrete beams.

• Modification of ACI building code equation:

The shear strength equation obtained by modifying the ACI Building Code equation
is given by,

Vu =
(

0.7
√

f ′c + 7F
) d

a
+ 17.2ρ

d
a

(1)

• Modification of Zutty’s equation:

Zutty’s equation was modified by the factor F to account for fibres, and it is given as,
For a/d > 2.5,

Vu =
(

2.11
√

f ′c + 7F
)
(ρ d/a)0.333 (2)

For a/d > 2.5,

Vu =

[(
2.11 3

√
f ′c + 7F

)
(ρ

d
a
)

0.333
][

2.5 d
a

+ Vb

(
2.5− d

a

)]
(3)

4.2. Kwak et al.

Kwak et al. [34] considered different volume fractions of fibres and different shear
span-to-depth ratio; the following equation was proposed to obtain the shear strength,

Vu = 3.7 e fct
2/3
(

ρ
d
a

)1/3
+ 0.8Vb (4)

where:
e = 1.0 for a/d > 3.4 and 3.4 d/a for a/d ≤ 3.4

4.3. Li et al.

Taking into account split tensile and flexural strength, as well as reinforcement ratio
and shear span-to-depth ratio, the following equation was proposed by Li et al. [32] to
determine the shear strength,

For a/d > 2.5,

Vu = 1.25 + 4.68

[
( f f fct)

3/4 (ρ
d
a
)

1/3
(d)−1/3

]
(5)

For a/d > 2.5,

Vu = 9.16
[

fct
2/3 ρ1/3

(
d
a

)]
(6)
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4.4. Narayanan and Darwish

The equation developed for determining the shear strength of fibre-reinforced beam
by Narayanan and Darwish [30] is given as,

Vu = e
(

0.24 fct + 80 ρ
d
a

)
+ Vb (7)

where:
e = 1.0 for a/d > 2.8 and 2.8 d/a for a/d < 2.8

4.5. Sharma

Sharma [35] conducted tests with different types of fibres and proposed a model for
predicting shear strength,

Vu =
2
3

fct

(
d
a

)0.25
(8)

The shear strength of the reinforced concrete beams with fibres can be obtained
through two design approaches. The first approach uses an empirical equation developed
to calculate the contribution of concrete and fibres to the shear strength of the beam. The
second approach is more deterministic, where the contribution of fibres to shear strength
is computed separately by toughness enhancement in flexure [53]. In this study, the
first approach is adopted to calculate the shear strength of the TGPC beams with fibres.
Table 4 shows the comparison of experimental shear strength (Vu(exp)) and theoretical
shear strength (Vu(the)) values obtained from the literature. The mechanical properties of
HTGPC with different volume fractions of hybrid fibres were obtained from the authors’
detailed experimental work, which is presented elsewhere [7] and used in this present
work. It can be observed that there is a variation between the practical and theoretical
models in the literature. This inconsistency is due to the fact that all the equations available
in the literature were obtained for conventional fibre-reinforced concrete. Therefore, an
attempt was performed to modify one of the available equations, giving the low coefficient
of variation for the ratio Vu(exp)/Vu(the). From the given equations, it is noted that the
equation predicted by Li et al. [32] gives the low value of the coefficient of variation (4.76%)
and a mean value near 1.0 (0.96). Since different variables such as aspect ratio of fibres,
volumetric fraction of fibres and strength of concrete affect the test results, an attempt is
made to introduce a factor that accounts for the above parameters.

Table 4. Comparison of experimental values with theoretical values obtained from the literature.

Specimen

Vu(exp),
MPa

Vu(the), MPa Vu(exp)/Vu(the)

Ashour
et al.-I

Ashour
et al.-II

Kwak
et al.

Li
et al.

Narayanan
and

Darwish
Sharma Ratio Ratio Ratio Ratio Ratio Ratio

i ii iii iv v vi vii i/ii i/iii i/iv i/v i/vi i/vii

TGPC 2.60 1.62 1.23 1.76 2.86 1.38 2.17 1.60 2.12 1.47 0.91 1.89 1.20

HTGPC1 2.93 2.58 1.71 2.55 3.12 2.29 2.54 1.14 1.72 1.15 0.94 1.28 1.15
HTGPC2 3.07 2.76 1.80 2.69 3.15 2.45 2.59 1.11 1.71 1.14 0.97 1.25 1.18
HTGPC3 3.13 2.92 1.88 2.83 3.18 2.63 2.67 1.07 1.67 1.11 0.98 1.19 1.17
HTGPC4 3.00 3.10 1.97 3.04 3.30 2.86 2.86 0.97 1.52 0.99 0.91 1.05 1.05

HTGPC5 3.47 3.22 2.03 3.15 3.44 2.97 3.02 1.08 1.71 1.10 1.01 1.17 1.15
HTGPC6 3.60 3.37 2.11 3.28 3.45 3.12 3.05 1.07 1.71 1.10 1.04 1.15 1.18
HTGPC7 3.47 3.52 2.18 3.48 3.53 3.36 3.25 0.98 1.59 1.00 0.98 1.03 1.07
HTGPC8 3.33 3.70 2.27 3.62 3.57 3.52 3.30 0.90 1.47 0.92 0.93 0.95 1.01

Average 1.10 1.69 1.11 0.96 1.22 1.13
Coefficient of variation (%) 18.4 10.9 14.2 4.76 22.4 6.14
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Hence, the equation of Li et al. [32] was modified further by introducing a factor (Fs)
that represents the combination of the above parameters. The equation for the correction
factor (Fs) is given below,

Fs = A f sVsdsηbs + A f pVpdpηbp (9)

where ηbs and ηbp are the bond efficiency factor taken as 1.2 for crimped steel fibres and
1.0 for round straight fibres, respectively [54]. From the calculated shear strength values
using Equation (5), the ratios of Vu(exp)/Vu(the) were obtained and related to Fs as given in
Figure 6. The regression equation from the plot is,

Vu(exp)/Vu(the) = −0.1062(Fs)2 + 0.2615(Fs) + 0.9062 (10)
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To predict an equation for obtaining the ultimate shear strength of HTGPC beams
(Vu(pre)), Equation (10) is modified by replacing Vu(exp) with Vu(pre). Thus, the modified
equation for predicting the shear strength of HTGPC is obtained as,

Vu(pre) = Vu(the) (−0.1062(Fs)2 + 0.2615(Fs) + 0.9062) (11)

by substituting Equation (5) in the above Equation (11),

Vu(pre) = 1.25 + 4.68
[
( f f fct)

3/4(ρ d
a )

1/3
(d)−1/3

] (
−0.1062(Fs)

2 + 0.2615(Fs) + 0.9062
)

(12)

From Equation (12), the ultimate shear strength for all the beams was calculated and
the results were compared with the experimental values. Vu(pre) versus Vu(exp) values
were plotted and are shown in Figure 7. It can be noted from Figure 7 that most of the
points are lying near the line of equality and well inside the ±10% lines of agreement. The
coefficient of variation and Vu(pre)/Vu(exp) mean value are 3.70% and 1.0. This shows that
the predicted equation is found to correlate convincingly with the experimental test results.
The experimental investigations note that HTGPC is an important alternative to cement
concrete composites, which will lead to the development of sustainable composites. It
can also be noted that the shear strength of the concrete can be improved, and the shear
failure in reinforced concrete beams can be avoided with the incorporation of steel and
polypropylene fibres.
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5. Conclusions

The following conclusions may be derived based on this experimental investigation
into the shear strength of hybrid fibre-reinforced ternary blend geopolymer concrete beams
under flexure:

1. The addition of hybrid fibres in TGPC beams modified the cracking pattern and
failure from shear to flexure.

2. Due to hybrid fibres, the first crack load and ultimate shear strength of HTGPC beams
were improved by up to 85% and 38.5%, respectively, compared to the TGPC beams.

3. HTGPC specimens with a combination of 1% steel fibres and 0.15% polypropylene
fibres showed better results and suffered higher deflections, indicating a relative
increase in ductility compared with other specimens.

4. A method for predicting the ultimate shear strength for HTGPC was proposed to
account for the effect of hybrid fibres in TGPC. The predicted values of the ultimate
shear strength were found to compare convincingly with the experimental test results.

5. The modified equation for predicting the shear strength of HTGPC beams limits up
to 1% steel and 0.25% polypropylene fibres. The obtained test results will be helpful
in the rational design of HTGPC beams.
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Nomenclature

ρ percentage of reinforcement in tension
ηbs bond factor for steel fibre
ηbp bond factor for polypropylene fibre
a shear span
d effective depth of beam
dp diameter of polypropylene fibre
ds diameter of steel fibre
e arch action factor
fct tensile strength of concrete
f’c cylinder compressive strength
ff flexural strength of concrete
Afs aspect ratio of steel fibre
Afp aspect ratio of polypropylene fibre
Fs fibre factor
Vs volume fraction of steel fibres
Vp volume fraction of polypropylene fibres
Vu ultimate shear strength
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