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Abstract

With the rapid accumulation of microbiome data around the world, numerous computational bioinformatics methods have been
developed for pattern mining from such paramount microbiome data. Current microbiome data mining methods, such as gene and
species mining, rely heavily on sequence comparison. Most of these methods, however, have a clear trade-off, particularly, when it
comes to big-data analytical efficiency and accuracy. Microbiome entities are usually organized in ontology structures, and pattern
mining methods that have considered ontology structures could offer advantages in mining efficiency and accuracy. Here, we have
summarized the ontology-aware neural network (ONN) as a novel framework for microbiome data mining. We have discussed the
applications of ONN in multiple contexts, including gene mining, species mining and microbial community dynamic pattern mining.
We have then highlighted one of the most important characteristics of ONN, namely, novel knowledge discovery, which makes ONN
a standout among all microbiome data mining methods. Finally, we have provided several applications to showcase the advantage
of ONN over other methods in microbiome data mining. In summary, ONN represents a paradigm shift for pattern mining from
microbiome data: from traditional machine learning approach to ontology-aware and model-based approach, which has found its
broad application scenarios in microbiome data mining.
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Introduction
Pattern mining from microbiome data is a broad topic,
which can include many types of knowledge to be dis-
covered such as functional gene mining, novel species
discovery, dynamic pattern mining and so on. Yet tra-
ditionally, microbiome data mining has heavily relied
on sequence comparison for gene mining [1], species
mining [2, 3] and taxonomic composition comparison
for microbial community dynamic pattern discovery [4].
Machine learning methods have recently been used in
a variety of microbiome data mining contexts whereas
deep learning approaches are rarely developed in those
contexts owing to the high heterogeneity of microbiome
samples as well as the critical data involved in these
pattern mining processes [5, 6].

Microbiome entities are usually organized in ontology
structures (Figure 1). Functional genes are organized
using general ontology such as Gene Ontology (GO) [7]
or specialized ontology such as the antibiotic resistance
ontology [8]. Species are organized using the phylogenetic
tree of life [9, 10], and microbial community samples are
organized using the biome ontology [11]. The structure

of ontology can be described in terms of a directed
graph, wherein each term is a node, and the relationships
among the terms are directed edges between the nodes,
representing the hierarchical relationships of two terms:
usually the edge source term contains the edge target
term. Specifically, all the defining terms are organized
by a structured hierarchy, which is called the ontology
structure. For example, in the antibiotic resistance
ontology, the term ‘non–beta-lactam’ is parent of the
term ‘aminoglycoside’. Therefore, there is a directed
edge between ‘non–beta-lactam’ and ‘aminoglycoside’.
Recently, pattern mining methods that have considered
ontology structures have shown the advantages to
be gained in mining efficiency and accuracy [12–15].
However, the neural network represents an advanced
approach for microbiome data mining [16–19]. Therefore,
building neural network models together with ontology
structures of microbiome entities should facilitate
pattern mining from microbiome data.

In this work, we have summarized the ontology-
aware neural network (ONN) as a general framework
for microbiome data mining. We first introduce the ONN
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Figure 1. Microbiome entities are usually organized in an ontology structure. (A) Functional genes are organized according to general ontology such
as gene ontology. (B) Species are organized according to the phylogenetic tree of life. (C) Microbial community samples are organized according to the
biome ontology.

approach as a general framework for pattern mining
from microbiome data, for a broad spectrum of micro-
biome data mining scenarios. Then, we discuss about
applications of ONN in multiple contexts, including gene
mining, species mining and dynamic pattern mining.
We then highlighted one of the most important char-
acteristics of ONN, namely novel knowledge discovery,
which makes ONN a standout among all microbiome
data mining methods. Taken together, ONN represents
a paradigm shift for pattern mining from microbiome
data: from traditional machine learning approach to
ontology-aware and model-based approach, which has
found its broad application scenarios in microbiome data
mining.

Current methods and deep learning for
microbiome data mining
There are already computational solutions for pattern
mining from microbiome data [20–23] (Table 1). Most of
these methods, however, have a clear trade-off, particu-
larly when it comes to big-data analytical efficiency and
accuracy.

Antibiotic resistance gene (ARG) is a major challenge
for microbiome data mining, which aims to predict the
presence of ARG from metagenomic data in livestock
manure, compost, wastewater treatment plants, soil,
water and other affected environments as well as within
the human microbiome. Traditional methods for the
identification of ARG are based on the computational
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Table 1. Current methods and deep learning for microbiome data mining

Category Traditional
methods

Deep learning
methods

Description

ARG mining ResFinder [1] ONN4ARG [13],
DeepARG [16]

Deep learning methods could identify novel ARG with high
efficiency

BGC mining AntiSMASH [25],
ClusterFinder [26]

DeepBGC [27] AI methods are suitable for detection of BGCs of known
classes from bacterial genomes

Microbial
source
tracking

SourceTracker [5],
FEAST [6]

ONN4MST [14],
EXPERT [15]

Deep learning methods are especially suitable for source
tracking among thousands to millions of samples in a fast
and accurate manner

Note: AI, artificial intelligence; BGC, biosynthetic gene cluster.

principle of comparison of the metagenomic DNA
sequences against available online databases (e.g. CARD
[8]). Such comparison is performed by aligning raw
reads or predicted open reading frames (full–gene-length
sequences) from the assembled contigs to the database
of choice, using programs such as BLAST, Diamond [24]
and so on. However, traditional methods are limited to
identifying ARGs that are close homologous genes to
known ARGs in the database and cannot identify remote
homologous genes or novel ARGs. Recently, several
deep learning solutions have been proposed for ARG
prediction. First is DeepARG [16], which is based on a
deep neural network model and the second is HMD-ARG
[17], which conducts a convolutional neural network
model. The input of deep learning approaches can be
bit-score (for DeepARG) or one-hot encoding vector of
protein sequence (for HMD-ARG). Deep learning, unlike
traditional sequence alignment methods, leads to model-
based methods that can quickly profile ARGs in large-
scale metagenomic data and predict ARGs from billions
of candidates [16, 17].

Functional gene mining not only focuses on single
gene identification such as ARG but also attempts to
predict a set of functional genes, that is a biosynthetic
gene cluster (BGC). Natural products represent a rich
reservoir of small molecule drug candidates. These
molecules are microbial secondary metabolites syn-
thesized by co-localized genes termed BGC. Numerous
bioinformatics tools [25–27] have leveraged the increas-
ingly abundant genomic data to facilitate BGC mining.
Early approaches implemented simple BGC reference
alignment techniques using programs such as BLAST and
were often paired with manual curation. ClusterFinder
makes use of a Hidden Markov Model to improve the
ability to find new BGC genomic elements [26]. DeepBGC
is a recently released deep learning solution that uses a
bidirectional long-/short-term memory recurrent neural
network model to improve detection of BGCs of known
classes from bacterial genomes and has the potential to
detect novel classes of BGCs [27].

Microorganisms can be found in almost every envi-
ronment of the Earth’s biosphere and are responsible
for numerous biological activities including carbon and
nitrogen cycling [28], soil organic matter [29] and human
health and disease [30]. Phylogenetic analyses of these

microorganisms have revealed that the composition
of human gut microbiomes is affected by the host
[31], while additional research has illustrated dynamic
changes of gut microbiota in the adaptation to the host
[32]. It is critical to identify and characterize microbial
species in environments and individual human hosts
in order to learn about human–microbial interactions.
Many bioinformatics computational tools have been
developed for the characterization and identification
of microorganisms at species or strain levels, such as
StrainPhlAn [33], ConStrains [34] and Strain-GeMS [2].
However, most of these traditional tools are based on
genomic sequence comparison and marker genes such
as 16S rRNA and thus often lack the resolution to reliably
capture intraspecific genomic differences.

Microbial source tracking also remains challenging
for microbiome data mining, which aims to estimate
the proportion of contaminants in a given community
that come from possible source environments. Many
methods have been proposed to accurately estimate
the contribution of hundreds of potential source envi-
ronments for a community sample promptly. For
example, the Bayesian-based method SourceTracker [5]
and expectation–maximization-based method FEAST
[6] could achieve high accuracy regarding hundreds
of microbial community samples from a handful of
biomes. However, the time cost of source tracking would
increase rapidly as the number of samples and biomes
increases, preventing these methods from large-scale
microbial source tracking. Notably, large-scale microbial
source tracking is of vital importance because it can
help researchers quickly identify all possible sources of
samples and narrow the tracing range, which has great
potential in some applications, such as forensic studies
[35]. Deep learning solutions, such as ONN4MST [14]
and EXPERT [15], have recently been proposed to solve
this problem. Model-based methods, such as the neural
network, are used in these deep learning solutions to
model microbial community structures, and the speed
and accuracy of the source tracking procedure could be
greatly improved.

Current methods for microbiome data mining have
a trade-off between big-data analytical efficiency and
accuracy. Deep learning methods eliminate this trade-
off. Those deep learning methods take advantage of deep
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Figure 2. Advantages of deep learning methods for pattern mining from
microbiome data. Most of current methods have a trade-off between
big-data analytical efficiency and accuracy, for pattern mining from
microbiome data. Compared with traditional methods, deep learning
methods modeling microbiome data and thus has potential to discover
novel knowledge. Traditional methods usually take sequence alignment,
database search and statistical estimation for pattern mining from micro-
biome data. Deep learning methods take modeling approaches and thus
could lead to more comprehensive knowledge discovery.

learning models (i.e. neural network), and both accuracy
and efficiency could be largely improved compared with
traditional methods. For example, Kang et al. reported an
ultrafast and interpretable source tracking method (i.e.
ONN4MST), which utilizes a novel deep learning model to
profile microbial community structures [14]. ONN4MST
achieved the prediction accuracy of 0.97 when faced with
millions of samples from thousands of biomes, while
the running time of the entire source tracking procedure
could be within 1 s per sample. Deep learning methods
are advantageous in the generation of the models from a
massive amount of samples, which are representative of
the global profile of the context-dependent subjects [36].
Deep learning methods are therefore suitable for accu-
rate and fast search when new samples (either a gene,
species or community) are searched against models [37–
39]. We summarized current methods and deep learning
methods for microbiome data mining in Table 1.

In summary, deep learning methods are particularly
suitable for solving the problem of source tracking, gene
mining and other patterns mining. The advantages of
deep learning methods for pattern mining from micro-
biome data are shown in Figure 2.

Onn as a general framework for pattern
mining from microbiome data
Microbiome entities are usually organized in ontology
structures (Figure 1), which inspires us to seek a general
deep learning framework, that is compatible with the
ontology structure of microbiome data. Here, we sum-
marized ONN as a general framework for pattern min-
ing from microbiome data. The advantages of ONN are

established from several aspects (Figure 3). First, ONN
is suitable for large-scale sample pattern mining from
microbiome data. Second, ONN employs an advanced
deep learning model (i.e. neural network), which has
shown superiority in many fields of microbiome data
mining. Third, ONN utilizes ontology information and
thus can identify genes, species and patterns hierarchi-
cally, thus facilitating knowledge discovery from multi-
ple dimensions. Moreover, ONN eliminates the trade-off
between big-data’s analytical efficiency and accuracy of
current methods for microbiome data mining.

The ontology structure of microbiome entities (e.g.
gene ontology, biome ontology) and the neural network
model adapted to specific problems are two key com-
ponents of ONN. ONN was able to understand the hier-
archy of microbiome entities by incorporating ontology
structure into neural network models. ONN uses a novel
ontology-aware layer to implement the model, which
encodes the ontology information. As a result, ONN gen-
erates hierarchical annotations according to the ontology
used. ONN can be easily applied to any microbiome data
mining problem involving ontology structures, such as
gene mining, species mining and dynamic pattern min-
ing.

Gene mining
With the advanced sequencing technology and devel-
opment of microbiome culture strategies, many micro-
biome projects focusing on different biomes have been
proposed: for example, the Human Microbiome project
for sequencing human gut microbiome [21], Tara Oceans
project [40] for sequencing global ocean microbiome and
Earth Microbiome project [22] for sequencing global soil
microbiome. These projects have provided a large num-
ber of microbial genomes, which provide big reservoirs
of functional genes. However, the functional diversity of
microbiomes has not been fully explored, and about 40%
of microbial gene functions remains to be discovered [41].
ARG represents one special category of functional genes,
which is an urgent and growing threat to public health.
The discovery of resistance genes in diverse environ-
ments offers possibilities for early surveillance, actions
to reduce transmission, gene-based diagnostics and, ulti-
mately, improved treatment. Currently, numerous ARG
databases and ARG predictive tools have been estab-
lished or proposed. For example, the comprehensive ARG
database, i.e. CARD [8] is the most used ARG database.
CARD is a rigorously curated collection of known resis-
tance determinants and associated antibiotics, organized
by the antibiotic resistance ontology that organizes ARGs
according to their corresponding drug classes.

Species mining
Traditional microbiome studies have primarily focused
on bacteria although bacteria only represent a small
fraction of all microorganisms. In addition to bacteria,
archaea, viruses, and protists are also often abundant
in environments. Archaea are generally dominant in
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Figure 3. The differences between traditional methods and ONN for microbiome data mining. ONN is suitable for large-scale samples pattern mining
from microbiome data. The model used by traditional methods are usually machine learning models, including principle component analysis, random
forest, supporting vector machine, Bayesian, and expectation–maximization. ONN employs advanced models such as neural network. ONN utilizes
ontology information and thus are able to identify genes, species, and patterns hierarchically, facilitating knowledge discovery from multiple dimensions.
The trade-off between big-data analytical efficiency and accuracy of current methods for microbiome data mining can be solved by ONN methods.

extreme environments and define the limits of life
on Earth in many cases [42]. Archaea were originally
discovered and described in extreme environments
including in high salinity [43], extremely acidic [44]
and anerobic environments [45]. Viruses, as very small
infectious agents, rely on living cells to multiply and are
the smallest and most abundant of all microorganisms
[46]. Protists are unicellular eukaryotic microorganisms

that exhibit less complex physiological structures than
other eukaryotes. Although microorganisms harbor very
important functional genes, most of their genomic
contents remains poorly understood. For example,
over 60 000 protist species have been identified in the
NCBI (National Center for Biotechnology Information)
taxonomy system, while many have also yet to be
identified [47].
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Dynamic pattern mining
Niche-specific spatiotemporal dynamics within micro-
bial communities in addition to the consequences of
these spatiotemporal dynamics on species evolution are
key determinants for the formation, development, sta-
bility and dynamics of microbial communities [48]. How-
ever, many microbial ecological and evolutionary pat-
terns remain to be discovered: for example, the temporal
dynamics of human gut microbial communities. Human
gut microbiota rapidly respond to changes in diet [49, 50],
and the composition of an individual’s gut microbiota
is predominantly determined by dietary habits over the
long term (i.e. >1 year) [51, 52]. However, these dynamics
are highly variable among individuals [53]. Over short-
term time scales (i.e. <1 month), human gut microbiota
can drastically change during dietary shifts, while such
changes can also be quickly reversed after shifts in diet
[4]. In addition, strong plastic patterns can be observed
over mid-term time scales (i.e. between a month and a
year). Overall, investigations into these problems could
help develop a better understanding of the ecological and
evolutionary patterns ranging from small to large scales.

Disease pattern mining
Increasing evidence suggests that the human micro-
biome, not just the gut microbiome, is tightly related
to a variety of diseases, including chronic diseases [54],
inflammation diseases [55] and cancer [30]. Reveal-
ing the relationships between human diseases and
microbes can not only promote our understanding
of the disease pathogenesis but also provide new
strategies for the diagnosis and treatment of diseases.
Multiple computational models have been developed
in recent years to predict microbes that are linked
to diseases. These computational models include a
wide range of algorithms and models for analyzing
microbiome data, such as score-function-based models,
network algorithm-based models, machine learning-
based models and experimental analysis-based models
[56]. The relationship between the human microbiome
and specific diseases, however, is far from clear, let alone
the intricate patterns that could be used to differentiate
these diseases [57]. Bottlenecks can occur as a result of
batch effects between multiple cohorts [58], the dynamic
nature of diseases [59] and so forth. Traditional machine
learning methods are unable to distinguish diseases
based on the human microbiome despite the fact that
some diseases, such as inflammatory bowel disease, may
share a high proportion of microbes [60].

Applications of onn in microbiome data
mining contexts
Recently, a series of ONN methods have been developed
for pattern mining from microbiome data. Those ONN
methods have achieved robust performance compared
with traditional machine learning methods or other deep

learning methods that do not consider biological ontol-
ogy. In this section, we summarize several major appli-
cations of ONN in microbiome data mining contexts
(Table 2).

Gene function predicting and ARG mining
A large number of protein sequences are becoming avail-
able through the application of novel high-throughput
sequencing technologies. Experimental functional char-
acterization of these proteins is time consuming and
expensive and is often only done rigorously for a few
selected model organisms. Computational function pre-
diction approaches have been suggested to fill this gap.
The functions of proteins are classified using the GO,
which contains over 40 000 classes. To address the prob-
lem in protein function prediction, DeepGO [12] utilizes
the dependencies between GO classes as background
information to construct an ONN model and specifically
outputs information in the hierarchical structure of the
GO. Developers compared DeepGO with the other two
top-performing methods on a standard benchmark data
set, and results show DeepGO achieved the highest area
under the curve (AUC) of 88%.

ARG represents a specific class of functional genes,
which enable bacteria to survive under extremely
antibiotic environments. The discovery of resistance
genes in diverse environments offers possibilities for
early surveillance, actions to reduce transmission, gene-
based diagnostics, and, ultimately, improved treat-
ment. Recently, ONN4ARG [13] has been proposed
to solve problems in novel ARG identification and
make efforts for comprehensive profiling of ARGs in
diverse environments. ONN4ARG is an ONN model that
employs a novel ontology-aware layer and generates
multilevel annotations of antibiotic resistance types.
Systematic evaluations show that the ONN4ARG model
has profound performance improvement over state-of-
the-art models such as DeepARG [16], especially for the
detection of remotely homologous ARGs. Experiments
based on more than 200 million candidate microbial
genes collected from thousands of samples from various
environments have resulted in submillion candidate
ARGs and more than 40 000 putative novel ARGs,
which have greatly expanded existing ARG repositories
[16]. Furthermore, we compared the ONN method (i.e.
ONN4ARG) with current standard methods for ARG
predicting. The ONN model of ONN4ARG is built based
on CARD version 3.0.3. When we compared the latest
CARD version 3.1.4 with the previous version 3.0.3,
we discovered 2281 new ARGs. The 2281 ARGs were
then clustered into 312 clusters with a 90% sequence
identity, and the 312 representative ARGs were used as
the testing data set. For Diamond, we searched CARD
version 3.0.3 with the testing data set. For DeepARG,
we used the DeepARG program (default parameters)
to predict the testing data set. For ONN4ARG, we used
the ONN4ARG program (default parameters) to predict
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Table 2. The application of ONN in multiple contexts

Method Category Description Reference

DeepGO Gene function
prediction

DeepGO utilizes the dependencies between GO classes as background information
to construct an ONN model and specifically outputs information in the
hierarchical structure of the GO

[12]

ONN4ARG Functional gene
prediction

ONN4ARG was proposed to solve problems in novel ARG identification and make
efforts for comprehensive profiling of ARGs in diverse environments. ONN4ARG is
an ONN model that employs a novel ontology-aware layer and generates
multilevel annotations of antibiotic resistance types

[13]

ONN4MST Dynamic pattern
mining

ONN4MST was proposed for microbial source tracking. The ONN model can utilize
the biome ontology information to model the dependencies between biomes, and
estimate the proportion of various biomes in a community sample

[14]

EXPERT Disease prediction EXPERT is an exact and pervasive expert model for source tracking microbial
communities based on transfer learning. EXPERT could easily expand the
supervised model’s search scope to include the context-dependent community
samples and understudied biomes (e.g. samples from different disease stages)

[15]

the testing data set. The ONN4ARG method outper-
formed current ARG prediction methods (Diamond
and DeepARG) in terms of accuracy and efficiency,
i.e. high accuracy and less time required given that
the memory usage is acceptable for a regular laptop
computer (Supplementary Table S1 available online
at http://bib.oxfordjournals.org/). ONN4ARG achieved
better performance than DeepARG largely because it
was able to identify remote homologous ARGs. For
example, ONN4ARG predicted one representative ARG
(WP_122630831.1) in the testing data set to be an ARG,
but DeepARG predicted it to be non-ARG. Notably, the
representative ARG (WP_122630831.1) shares a remotely
sequence identity of 48.9% with its closest homologous
ARG (CAQ53840.1) in DeepARG database (i.e. ARGminer
v1.1.1). We also searched WP_122630831.1 against the
CARD version 3.0.3, and the closest homologous ARG
in CARD version 3.0.3 is also CAQ53840.1. Therefore,
results on this representative ARG (WP_122630831.1)
have confirmed that ONN4ARG could be superior than
other methods in the discovery of novel ARGs.

Species mining, including bacteria, virus and
protist mining
Despite the fact that microorganisms contain many
important functional genes, the majority of their
genomic content is still unknown. In the NCBI taxonomy
system, for example, over 60 000 protist species have
been identified, with many more yet to be identified [46].
Numerous bioinformatics tools have taken advantage
of the growing amount of genomic data to identify new
species. For example, StrainPhlAn [33], ConStrains [34]
and Strain-GeMS [2] are proposed for bacterial identifi-
cation at the strain level based on genomic information
and ArboTyping [61] for the identification of virus species
and genotypes. By considering that species are organized
according to the phylogenetic tree of life, the latter can be
considered an ontology structure, and the identification
of novel species is an ontology-related problem. As a
result, ONN is appropriate for species mining.

Microbial source tracking
With the rapid accumulation of microbial community
samples from various niches (also referred to as biomes)
around the world, knowledge about microbial com-
munities and their influence on the environment and
human health has grown rapidly. The rapid accumu-
lation of microbial community samples has provided
the opportunity to investigate the interactions among
microbes, human health and the environment. Those
community samples have created an enormous hurdle
for characterizing the potential inputs from other
associated biomes, thus calling for fast and accurate
microbial source tracking. Considerable attention has
been paid to exploring the interactions on small scales,
such as disease diagnosis, early development, pregnancy
and immigration whereas integrative, large-scale and
scalable investigations are understudied. Such investiga-
tions are challenging for a few reasons. First, the number
of samples easily exceeds millions whereas the number
of niches exceeds hundreds, and microbial source
tracking becomes a very complex task. Second, the noises
that exist in the rich-sourced data might hire important
patterns invisible for traditional methods. To address
these limitations, ONN4MST was proposed for microbial
source tracking. The ONN4MST model employs a novel
ontology-aware approach that encourages prediction
satisfying the ‘biome ontology’. In other words, the ONN
model can utilize the biome ontology information to
model the dependencies between biomes and estimate
the proportion of various biomes in a community sample.
ONN4MST has provided an ultrafast (<0.1 s) and accu-
rate (AUC >0.97 in most cases) solution for searching
a sample against the data set containing hundreds of
potential biomes and millions of samples, and also
outperformed state-of-the-art methods in scalability and
stability. Furthermore, we compared ONN method (i.e.
ONN4MST) with current standard methods for microbial
source tracking. The data set used for evaluation consists
of 10 270 microbial community samples selected from
the data sets used in published study by Shenhav et al.
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[6]. In terms of accuracy and efficiency, the ONN4MST
method outperformed current standard microbial source
tracking methods (SourceTracker and FEAST), with a
higher Area Under the Receiver Operating Characteristic
curve (AUROC) and a significant reduction in time
usage. (Supplementary Table S2 available online at
http://bib.oxfordjournals.org/). Links to the testing data
set are provided in Supplementary Table S3 available
online at http://bib.oxfordjournals.org/.

Disease prediction
Microorganisms have been discovered to be closely
related to a variety of important human diseases. The
growing number of human microbe–disease associa-
tions provides important insights into the underlying
disease mechanism from the perspective of human
microbes, which is extremely useful for pathogenesis
research, early diagnosis and precision medicine [62,
63]. EXPERT [15] is an exact and pervasive expert model
for source tracking microbial communities based on
transfer learning. Built on the ontology information and
transfer learning techniques, EXPERT has acquired the
context-aware flexibility and could easily expand the
supervised model’s search scope to include the context-
dependent community samples and understudied
biomes. EXPERT considers gut communities at different
disease stages as context-dependent biomes and esti-
mates the contribution from different disease stages for
a given microbial community sample. EXPERT’s utility
in characterizing human gut microbial communities
associated with different types of diseases is superior
to current standard methods. The superiority of EXPERT
has been demonstrated in disease pattern mining. For
example, when dealing with 635 samples from a recent
study of colorectal cancer, EXPERT could achieve an
AUROC of 98% when predicting the host’s phenotypical
status [15].

To sum up, we have demonstrated that ONN could be
applied on a broad spectrum of applications, including
functional gene mining, novel species mining and micro-
bial community dynamic pattern mining. Of note, ONN
is especially suitable for disease pattern mining, which is
very robust against batch effects and other confounding
factors.

Onn modeling tells us more about
unknown than known
The deep learning approach could best utilize the ontol-
ogy information hidden from the biological big data. At
the lowest ontology level, the deep learning approach
should be comparable with other methods. However, on
the higher ontology levels, the deep learning approach
could identify remote similarities among genes, species
and patterns of interest.

Microbiome samples could be collected from diverse
niches around the world, and genes, species and

communities represent the three levels of microbiome
knowledge. The ontological organization of the knowl-
edge about microbiomes, whether on gene, species or
community levels, could naturally lead us to the dis-
covery of new knowledge about microbiomes (Figure 4).
Currently, we know little at all of the gene, species
and community levels, and we can only obtain more
knowledge if the expanding of our knowledge could keep
pace with the increasing changes at these levels.

Compared with traditional methods, ONN is not
advantageous for the identification of genes, species
and communities in existing databases as numerous
methods already exist for database searches, sequence
comparisons and structure comparisons. However,
ONN’s performance is equally good compared with
existing methods proving the power of neural network
models on such data mining processes.

ONN demonstrated its advantages in the discovery of
novel genes, species and communities owing to its ability
to sense the ontology structure and lead to discovery at
higher levels of the ontology structure (Figure 5). ONN
outputs hierarchical predictions with predicted proba-
bility scores. In most cases, ONN makes confident pre-
dictions at higher levels and less confirmatory predic-
tions at lower levels. Those less confirmatory predictions
are potential candidates for novel genes, species and
patterns. ONN can give information about ancestors (or
categories at higher levels) of those potential candidates,
which is impracticable for methods without considering
ontology. One example is on functional gene discovery:
GAR is a newly discovered non–beta-lactam aminoglyco-
side resistance gene (e.g. gentamicin, micronomicin), that
is not found in any existing databases [13]. With both
DeepARG and HMD-ARG models, search results show
that the GAR is not an actual ARG. ONN4ARG, however,
correctly identified GAR as an ARG resistant to non–beta-
lactam antibiotics. Despite the fact that ONN4ARG could
only predict GAR as a non–beta-lactam rather than a
subtype of aminoglycoside, it was the only method used
in this study that could predict GAR as an ARG demon-
strating ONN4ARG’s capability for knowledge discovery
[13]. Another example is on microbial community sam-
ple source tracking: a microbial source tracking inves-
tigation that involved 11 microbial community samples
from groundwater biome also showed the capability of
ONN4MST for knowledge discovery [14]. ONN4MST could
identify a large proportion of these groundwater sam-
ples from aquatic biomes coupled with a considerable
proportion from terrestrial biome, thus suggesting that
the samples might be collected from terrestrial water (i.e.
river, lake and groundwater) or its sediment. In contrast,
FEAST assigned a large proportion of unknowns for these
groundwater samples.

In summary, ONN could enable novel knowledge
discovery from microbiome data at multiple levels: gene,
species, communities and so forth. These can deepen
our understanding of how microbial communities are
assembled and functioned, leading to better utilization
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Figure 4. The hierarchical organization of knowledge about microbiome. Microbiome samples could be collected from diverse niches around the world,
including environment (e.g. soil, water and air), host associated (e.g. human gut, oral and skin), and engineered (e.g. fermentation). Genes, species and
communities represent the three level of microbiome knowledge. The ontological organization of the knowledge about microbiome, whether on gene,
species or community levels, could naturally lead us to the discovery of new knowledge about microbiome.

Figure 5. Rationale on ‘why’ ONN could discover novel knowledge from microbiome data. Left: ONN outputs hierarchical predictions with predicted
probability scores. In most cases, ONN makes highly confident predictions at higher levels (e.g. L1, L2 and L3 in the figure) and low confirmatory
predictions at lower levels (e.g. L4 in the figure). Those low confirmatory predictions are potential candidates of novel genes, species and patterns. ONN
can give information about ancestors (or categories at higher levels) of those potential candidates and provide clues about novel knowledge. Right: In
contrast, traditional methods without considering ontology treat all terms as equal, so that no candidate (at lower levels of the hierarchical structure)
has highly confident prediction, resulting in no clue about the potentially novel knowledge. ONN showed its advantages on the discovery of novel genes,
species and communities, largely due to its ability to sense the ontology structure, and leads to the discovery at higher levels of the ontology structure.
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of microbiome data in environmental and clinical
applications.

Conclusions
ONN is a general framework that can be used for a broad
spectrum of microbiome data mining applications. On
the one hand, in many contexts, the biological data are
organized in the hierarchical or ontological manner;
therefore, ONN is naturally suitable for these types of
data. On the other hand, neural network methods could
generate models that always outperform traditional
methods in gene mining, species mining and dynamic
pattern discovery. Therefore, ONN, which combines
ontology awareness and neural network models, could
greatly facilitate pattern mining from microbiome data.

ONN has revealed an excellent pool of knowl-
edge about microbiome patterns at gene, species and
community levels, and it would lead to broader and
deeper knowledge about microbiomes. The power of
ONN on knowledge discovery has been exemplified in
many contexts: whether novel genes, new species or
novel dynamic patterns of communities, ONNs have
already led us to the discovery of new knowledge about
microbiomes whereas there might still be a large space
toward the full picture about the microbiome worlds.

It should be noted that the ONN method could be
powerful but might not be a general and all-purpose
method. Its usefulness in the context of functional gene
mining and microbial source tracking have been proved
in previous work and benchmarked in this work, yet its
applicability in novel species mining has not been proved
yet. Thus, though ONN could be a general framework for
pattern mining from microbiome data, its utility in the
broad spectrum of microbiome data mining applications
should be worthy of further investigation.

There is no doubt that ONN has limitations. First of
all, a good ontology structure is always dependent on
domain knowledge, which is not readily available in
numerous contextualized applications. The ONN model
is also limited by the interpretability of its results: the
quantitative classification results could be used for
gene mining or sample source tracking whereas the
exact accuracy of such pattern mining remains to be
determined. Furthermore, ONN’s robustness against
batch effects, as well as its applicability in contextualized
applications that have very few samples, remains to
be examined. Despite these limitations which remain
to be overcome, ONN represents a paradigm shift for
pattern mining from microbiome data: from traditional
machine learning approach to ontology-aware and
model-based approach, which has found its broad
application scenarios in microbiome data mining.

Finally, we should admit that currently we know little
at all of the gene, species and community levels, and we
can only obtain more knowledge if the expanding of our
knowledge could keep pace with the increasing changes
at these levels. ONN is a powerful tool toward this end,

and we hope similar ideas and methods could be used in
the broad spectrum to speed up the knowledge discovery
in the microbial world.

Key Points

• Microbiome entities are usually organized in ontology
structure, and pattern mining methods consider ontol-
ogy structures.

• ONN, which has considered ontology structures, could
offer advantages in mining efficiency and accuracy for
microbiome data mining.

• ONN could be used in multiple contexts, including
gene mining, species mining and microbial community
dynamic pattern mining.

• ONN could discover novel knowledge from microbiome
data, thus making it a standout among all microbiome
data mining methods.
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