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Abstract

Microarray technology is important to simultaneously express multiple genes over a

number of time points. Multiple classifier models, such as sparse representation (SR)-based

method, have been developed to classify microarray gene expression data. These methods

allocate the gene data points to different clusters. In this paper, we propose a novel collabo-

rative representation (CR)-based classification with regularized least square to classify

gene data. First, the CR codes a testing sample as a sparse linear combination of all training

samples and then classifies the testing sample by evaluating which class leads to the mini-

mum representation error. This CR-based classification approach is remarkably less com-

plex than traditional classification methods but leads to very competitive classification

results. In addition, compressive sensing approach is adopted to project the high-dimen-

sional gene expression dataset to a lower-dimensional space which nearly contains the

whole information. This compression without loss is beneficial to reduce the computational

load. Experiments to detect subtypes of diseases, such as leukemia and autism spectrum

disorders, are performed by analyzing the gene expression. The results show that the pro-

posed CR-based algorithm exhibits significantly higher stability and accuracy than the tradi-

tional classifiers, such as support vector machine algorithm.

Introduction

The development of microarray technology facilitates the collection of information containing

expression values of multiple genes under different experimental conditions. This technology

also promotes and affects the progress in biological and biomedical research [1–3]. Therefore,

huge amounts of genome-wide expression data have been remarkably acquired, and the quan-

tity of data is continuously growing. These data provides the opportunity to better understand

the tissues being studied and explore a finer molecular distinction between health states. Thus,

approaches based on machine learning, which can automatically acquire qualitatively interest-

ing patterns from gene data, have been widely adopted [4–7]. Among these machine learning

pathways, support vector machine (SVM) and K-nearest neighbor (KNN) are used to study
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performance [8–11]. To facilitate a more flexible and comprehensive analysis, Pse-in-one and

Pse-analysis have been proposed. These methods are considered powerful bioinformatics anal-

ysis tools based on web server and Python package, respectively [12, 13]. These tools can gen-

erate any desired pseudo components or feature vectors for protein/peptide and DNA/RNA

sequences according to the need of users’ in their studies. In [14], various neural network tech-

nologies for cancer classification were surveyed, and the results are beneficial to exploit the

most cost-effective approaches for clinicians. Zheng et al. [15] used independent component

analysis to refine a subset of genes to further improve the clustering performance of nonnega-

tive matrix factorization. However, gene data are always in high-dimensional space because of

the enormous numbers of measurements (e.g., genes and probes). The high-dimensional char-

acteristic limits the applicability of the majority of conventional classifier models. This charac-

teristic also leads to the poor performance of conventional models in the identifying diseases

from genome-wide expression data. Moreover, parameters should be optimized to facilitate

the implementation of the algorithm depending on the structure of the data set.

Sparse representation is well-known as a powerful tool in various applications and has been

highly developed for signal processing and machine learning [16]. Sparse representation-based

classification (SRC) was introduced to identify gene expression without requiring any parame-

ter optimization [17]. The SRC scheme has been successfully applied in the diagnosis of micro-

array gene expression in cancer. In [18], SRC was applied and showed better performance than

the state-of-the art methods in protein fold recognition. In the SRC scheme, a microarray gene

expression y can be expressed as y = Fα by sparse representation over a dictionary F, while α
is a sparse vector. Assuming that l0-norm indicates the number of non-zeros in α, the sparsity

of α can be represented by l0-norm. Thus, α can be evaluated with the criteria of l0-norm mini-

mization. However, the solution of l0-norm minimization is NP-hard, which is very time-

consuming. Consequently, l1-norm minimization is considered as the alternative to l0-norm

minimization because of its closest convex function of the former. The former minimization

process is widely equipped with in sparse coding as follows: minαkαk1 s.t. ky − Fαk2� ε,

where ε is a small constant. Although the computational complexity of l1-norm minimization

is much lower than that of l0-norm minimization, the applications of l1-norm minimization is

still limited by the high complexity in real-time scenarios. Therefore, various algorithms have

been presented to accelerate l1-norm minimization.

Another issue is that the dimension of the feature space may be too high for classification

algorithm. Numerous algorithms may become invalid or infeasible when lots of feature data in

a dimension have to be processed [19–21]. A successful method is to extract a small number of

discriminative information from a high-dimensional space. That is, high-dimensional data can

be mapped to a feature space with lower dimension to facilitate the design of a classification

algorithm. The algorithm of feature extraction is effective but highly complex. Compressive

sensing (CS) theory is a well-known solution for sparse signals in sampling theory [22]. The

main result of CS, which was introduced by Candés and Tao [23] and Donoho [24], is that a

length-N signal x, that is, K-sparse in some basis can be recovered exactly in the polynomial

from just M = O(K log(N/K)) linear measurements of the signal. Using the CS approach, high-

dimensional feature data can be simply projected to a space with much lower dimension with

a random sensing matrix. The low-dimensional data retain enough information and can

recover the original high-dimensional features. In this paper, we employ a measurement

matrix which is assumed to be very sparse to efficiently compress the feature from the gene

expression dataset. CS facilitates the extraction of the feature data to a low-dimensional one in

the compressed domain.

To improve the sparse representation with computationally expensive l1-norm minimiza-

tion, this paper proposes a collaborative representation (CR)-based classification (CRC) to
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subtype gene expression datasets. CR collaboratively uses whole training samples from all clas-

ses to constitute the query sample y. CRC with regularized least square can achieve competitive

classification results with considerably less complexity. Our works are beneficial in augment-

ing the study of sparsity-based genome-wide data pattern classification. We used benchmark

cancer, autism spectrum disorder (ASD), and brain data sets, in the experiments. To measure

the effectiveness of the CRC algorithm, accuracy in terms of prediction or error rate in classify-

ing a selected gene subset is evaluated.

Materials and methods

In this study, the classification problem can be depicted as follows: The microarray gene data

sets, which serve as sample to train, are classified for the diagnosis and prognosis of various

types of diseases. To apply sparse representation model, the coding vector of y should be

sparse. Moreover, coding should be performed collaboratively over the whole dataset instead

of each subset. By identifying the sparsest representation of y over X, the subset is naturally

discriminative.

Collaborative representation-based classification

Classification of gene expression datasets using algorithms has been well studied for the robust

diagnosis and prognosis of various diseases to achieve high prediction accuracy [25]. The pri-

mary goal of this approach is to identify the important pathways or genes strongly associated

with the clinical outcomes of interest. Sparse representation has been applied to classify geno-

mic data [26, 27]. The corresponding performance was tested by distinguishing two subtypes

of leukemia by analyzing microarray gene expression. With the selected leukemia genes from

the 7129 ones, SRC achieved a classification accuracy of 97.4% when performed with the leave-

one-out (LOO) method. When the tests were imposed on the same datasets, compared with

existing methods, such as weighted vote, SVM, sparse logistic regression method, and rough

sets method, SRC shows potential advantages with respect to improved classification rates

with fewer informative genes. SRC also helps reduce computational load in terms of computa-

tional complexity and memory storage when processing high-dimensional data. Detecting

subtypes of diseases, such as leukemia, according to different genetic markups is important.

SRC is favorable for personalized therapy and improving treatment.

According to the theory of sparse representation, a complete dictionary of atoms, denoted

by F 2 Rm�n, can accurately represents any signal x 2 Rm by linearly combining these atoms

in F. Nevertheless, if F is orthogonal, the representation of x is required with many atoms

from F, leading to a complex computation. Then, the orthogonality of F is relaxed to allow

less atoms to represent x. That is, more atoms is required to be involved in F to allow more

choices to represent x. The dictionary F with redundant atoms is referred to as an over-com-

plete matrix, leading to a sparser representation of signal x. Such sparse representation has

been utilized in image restoration, in which great success has been achieved.

A total number of K classes of targets are assumed. Let Xi 2 R
m�n denote the dataset of the

ith class, X = [X1, X2, � � �, XK] and the column of Xi is a sample belonging to class i. The exis-

tence of a microarray gene data y 2 Rm is assumed, which can be coded as y = Xα + w, where

w is a vector indicating the residual, α = [α1; � � �; αi; � � �; αK] and αi denotes the coding vector

corresponding to class i. If y belongs to the ith class, w is a zero vector, then y = Xiαi holds.

Only the coefficients in αi are significant when most entries in αj, j 6¼ i are nearly zeros. That is,

vector α is sparse, and its non-zero entries are used to encode the identity of sample y. Table 1

shows the matrix measurements of the microarray gene expression data for samples of prostate

tumors and adjacent prostate tissue without tumor. Assuming that the training samples consist
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of these samples, the dictionary of samples is as follows:

X ¼

9 � 1 � 1 � 2 � 9 0

� 11:4 17 � 1 0 � 19 0

2:7 0 0 � 1 0 0

0:6 3 � 1 � 2 0 � 2

4:3 6 3 6 76 2

28 � 6 0 3 9 0

..

. ..
. ..

. ..
. ..

. ..
.

37:3 14 26 25 � 21 21

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

: ð1Þ

A sample to be identified is treated as the measurement output, and α is to be reconstructed.

Microarray gene expression datasets, such as breast cancer dataset, usually suffer from high

dimensionality. In traditional SRC, enough training samples for each class is required for dic-

tionary Xi to be over-complete. However, the sample size of the gene expression data is very

small compared to its high dimensionality, leading to the under-complete matrix Xi. Conse-

quently, the representation error would be unacceptable, even when y belongs to class i. This

characteristic leads to a failure decision made by the classifier. One obvious solution is to use

more samples of class i to represent y. However, collecting huge number of samples is expen-

sive. Nevertheless, differences among genes are very small such that the diverse classes of gene

expression data share similarities. Thus, the testing gene y can be coded collaboratively by the

dictionary of all samples X = [X1, X2, � � �, Xk] under the l1-norm sparsity constraint.

When y is collaboratively represented with all classes containing all samples, y can be classi-

fied individually by SRC by checking class by class [28]. The sparse solution to y = Xα can be

determined by solving the following optimization problem:

â ¼ arg mink a k0 s:t: y ¼ Xa ð2Þ

However, solving l0-optimization is an NP hard problem. Optimizations of l0-optimization

and l1-optimization have recently been proved to be equivalent when α is sparse enough. In

general, the sparse representation problem can be expressed as follows:

â ¼ arg min
a
k a k1 s:t: y ¼ Xa ð3Þ

We use sparsity constraint of l2-norm instead of that of l1-norm, Thus. the problem becomes

Table 1. Gene expression data.

G1 G2 G3 G4 G5 G6 � � � Gn Label

X1 9 -11.4 2.7 0.6 4.3 28 � � � 37.3 Normal

X2 -1 17 0 3 6 -6 � � � 14 Cancer

X3 -1 -1 0 -1 3 0 � � � 26 Normal

X4 -2 0 -1 -2 6 3 � � � 25 Cancer

X5 -9 -19 0 0 76 9 � � � -21 Normal

X6 0 0 0 -2 2 0 � � � 21 Cancer

https://doi.org/10.1371/journal.pone.0189533.t001
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as follows:

â ¼ arg min
a
ky � Xa k2

2
þ lkak1 ð4Þ

If X is over-complete, â is computed by an algorithm such as OMP algorithm. Then, y is per-

pendicularly projected onto the space spanned by X, which can be expressed as follows:

ŷ ¼
X

i

Xiâ i ð5Þ

In SRC, a new sample ynew can be classfied by evaluating the reconstruction representation

errors:

ei ¼ arg min
i
kynew � Xiâ i k

2

2 ð6Þ

where â i designates the coding coefficient vector drawn according to class i. When the number

of classes is too large, a stable solution of the least square â ¼ arg min a k y � Xa k2
2

cannot be

obtained. To overcome this limitation, CRC is proposed to collaboratively represent the query

sample using X. The corresponding l2-minimization with regularized least square is as follows:

p̂ ¼ ðXTX þ lIÞ� 1XT y ð7Þ

Assuming P = (XTX + λI)−1 XT, this formula shows that P is independent of y. Hence, P is only

required to be computed once and can be shared in classifying different samples. The reduc-

tion in the complexity of CRC is not achieved at the expense of performance. Similar to SRC, p̂
is used to classify the type of gene expression data. The representation residual ky � Xip̂ik2 is

the main criteria for classification, where p̂i is the coding vector associated with class i. How-

ever, the l2-norm k p̂ik2 is also beneficial in providing some information about the class fea-

tures of gene expression data and can be combined for classification. Such combination is

useful to slightly improve the classification accuracy compared with that using only the repre-

sentation residual.

Compressive sensing-based dimensionality reduction

Gene expression datasets may have very high dimensionality. High-dimensional gene

expression datasets always result in high computational load and degradation of model per-

formance of classification algorithm [10, 19, 21]. Therefore, feature selection approach or

dimensionality reduction methods should eliminate redundant and irrelevant feature data to

decrease the ratio of features to samples. On the other hand, this process reduces the proba-

bility of overfitting.

A common method of dimensionality reduction in high-dimensional classification is

choosing some data from a dataset in an order and dropping the other data. This approach

would inevitably result in the loss of some information. Many probes in traditional microar-

rays are inactive during detection. That is, the microarray gene expression data can be sparse.

Only a few significant entries of gene expression data matrix may be of interest. This phenom-

enon suggests the fast transformation of a microarray along with the CS measurement process,

where each measurement y is a linear combination of entries in the microarray gene expres-

sion data vector x. A number of N gene expression data is assumed in every sample, but that

at most K samples are collected, with K� N. In random projection, a sensing matrix R with

rows having unit length projects data from the high-dimensional feature x 2 RN to a lower-
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dimensional space v 2 RM as follows:

v ¼ Rx ð8Þ

where M� N. Each projection v is essentially identical to a compressive measurement during

CS encoding. Therefore, using the CS principle, the number of data to be classified can be

remarkably lower than the number of the original microarray gene data. With fewer data, the

classification algorithm can also be more efficient. We refer to this reduction of microarray

dimensionality as a CS dimensionality reduction.

Ideally, R can offer a stable embedding that approximately retains the important informa-

tion in any K-sparse signal when x 2 RN is projected to v 2 RM . Therefore, the so-called

restricted isometry property (RIP) is derived to approximately maintain distances between any

pair of K-sparse signals. Note that every signal pair shares the same K basis. That is, for any

two K-sparse vectors x1 and x2 sharing the same K basis,

ð1 � �Þkx1 � x2k
2
2
� kRx1 � Rx2k

2
2
� ð1þ �Þkx1 � x2k

2
2

ð9Þ

Incoherence is achieved if the sparse signal satisfies the RIP condition. For example, random

matrices with entries identically and independently drawn from a standard normal distribu-

tion, Bernoulli distributions, or Fourier matrix satisfy the RIP condition. However, given that

the matrix is dense, the loads in terms of memory and computational complexity become

unacceptable when N is large. The matrix which satisfies the RIP condition can be directly

obtained using the Johnson-Lindenstrauss lemma. In this paper, we use a very sparse random

measurement matrix with entries defined as follows:

rij ¼
ffiffiffi
r
p
�

1 with probability
1

2r

0 with probability
1

2r

� 1 with probability
1

2r

8
>>>>>>>>><

>>>>>>>>>:

ð10Þ

This type of matrix with ρ = 1 or 3 satisfies the Johnson-Lindenstrauss lemma [29]. This matrix

is easy to compute and requires only a uniform random generator. In the latter approach, the

microarray readouts are linear combinations of input gene expression data components. Thus,

the readouts can be expressed in the form given by Eq 8. With a reduced number of measure-

ments, we are able not just to detect but also classify the target gene expression datasets. The

proposed CRC with CS dimensionality reduction algorithm is summarized in Algorithm 1.

Algorithm 1 CRC Algorithm
Input: The gene expression sample datasets D = [D1, D2, � � �, DK] and the
test dataset ynew.
Output: The classification result of s.
1: The dimensionality of X and y is reduced using the sensing matrix R
in Eq 10. The new lower-dimensional versions of D and ynew are written
as X and y, respectively.
2: The columns of X are normalized with l2-norm criteria.
3: ynew is coded over X by r̂ ¼ Pynew where P = (XTX + λI)−1XT

4: The regularized residuals ri ¼kynew � Xir̂ ik2=k r̂ i k2 are computed.
5: The identity of ynew is determinated as Identity(ynew) = arg mini ri

Collaborative representation classification
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Results and discussion

To evaluate the classification performance, we performed experiments on two benchmark data-

sets and compared the proposed model with state-of-the-art models. The simulations were con-

ducted on a system with i7-4790 CPU with 3.60 GHz processor and 8 GB RAM. The algorithms

were evaluated based on accuracy to determine the rating prediction accuracy as follows:

Accuracy ¼
TPþ TN

TPþ FN þ TN þ FP
ð11Þ

where TP denotes true positive (item is true and classified truly), TN is true negative (item is

true but not classified truly), FP is false positive (item is false but classified truly), and FN is false

negative (item is false and not classified truly).

The performance of the classifiers is quantified by LOO cross-validation (LOOCV) and

10-fold cross validation (10-fold-CV). In the LOOCV scheme, each sample in the dataset was

predicted by building a model from the remaining samples and recording the accuracy of each

model. In 10-fold-CV, the dataset was randomly divided into 10 equally sized subsets. Nine of

these subsets were used in the model construction, while the remaining subset was used for

prediction.

Datasets

In this study, we use gene data for leukemia and ASD to evaluate the performance of CRC.

The leukemia data set was downloaded from an open resource on the website of Gene Pattern

in Broad Institute. The original training data set consisted of 38 bone marrow samples (27

ALL and 11 AML), while the testing data set consisted of 35 bone marrow samples (21 ALL

and 14 AML) [14]. A total of 7129 gene expression samples were tested. The brain gene data

was collected by a consortium consisting of Allen Institute for Brain Science and five collabo-

rating universities [30–32]. Using the GENCODE consortium’s release [33], the expression

data were assembled and aligned in the form of RNA-sequencing reads. The data were in

the units of reads per kilobase of transcript per million mapped reads (RPKM). Therefore, A

log2(RPKM+1) transformation operation was imposed on these data. The dataset had 524 sam-

ples with a developmental time point range from 8 weeks post-conception to 40 years of age

from 26 brain structures. To our knowledge, this brain dataset is currently the most compre-

hensive transcriptome of the human developing brain. In the training dataset, the expression

values for the temporospatial time points acted as features.

We also considered the diffuse large B-cell lymphoma (DLBCL) [34] and breast cancer, which

has high dimension. The DLBCL data set consisted of 58 samples from DLBCL patients and 19

samples from follicular lymphoma with 7070 genes. The gene expression profiles were organized

using Affymetrix human oligonucleotide arrays. The gene dataset of breast cancer has 14 doce-

taxel-resistant samples and 10 docetaxel-sensitive samples. The cDNA microarrays comprised

12625 genes. All datasets are downloaded from http://www.biolab.si/supp/bi-cancer/projections/

index.html (Table 2), and have been preprocessed by t-test with a 0.05 confidence level.

Table 2. Gene data sets used in this study.

Data set Samples Genes Classes

Leukemia 72 7129 2

DLBCL 77 7070 2

breast 24 12625 2

ASD 2128 524 2

https://doi.org/10.1371/journal.pone.0189533.t002
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Dimensionality reduction results

The computational load can be reduced, and overfitting can be avoided by reducing the

dimensionality for a dataset. CS is used to project the high-dimensional data to a lower-

dimensional space. The much lower bound for M is sufficient to achieve good results for

gene data classification. The average LOOCV accuracy under the incremental dimension

reduced by CS is shown in Figs 1–4. Fig 1 shows that in leukemia, when the reduced

dimensionality is more than 500, the average accuracy would not increase. That is, 500 is an

optimal choice for CS dimensionality reduction of leukemia gene data. Similarly, Figs 2 and

3 show that the optimal reduced dimensionalities for breast cancer and DLBCT are 200 and

600, respectively. By contrast, Fig 4 depicts the performance of ASD always remains stable

even when the dimensionality is reduced to 3. Thus, the data in the gene datasets of this dis-

ease may be highly coherent. These coherent data may be sparse in the other form. Com-

pared with the original dimensionality, CS dimensionality reduction is helpful to speed up

the classification algorithm.

We also compared the running time of CRC and SRC with fast l1-minimization methods.

We fixed the reduced dimensionality. In one LOOCV loop, the average running speeds of

CRC and SRC are listed in Table 3.

The improved speed of CRC is obvious in the ASD database. However, in leukemia,

DLBCL, and breast cancer datasets, the matrix X is overdetermined. SRC directly uses pseu-

doinverse to solve the l1 minimization problem. When more samples are used for training,

SRC has to use the other fast l1 minimization methods, such as l_1_ls and homotopy. In such

case, CRC is 7 times faster than SRC.

Fig 1. The average accuracy of CRC for leukemia dataset with reduced dimensionality.

https://doi.org/10.1371/journal.pone.0189533.g001
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Fig 2. The average accuracy of CRC for breast cancer dataset with reduced dimensionality.

https://doi.org/10.1371/journal.pone.0189533.g002

Fig 3. The average accuracy of CRC for DLBCL dataset with reduced dimensionality.

https://doi.org/10.1371/journal.pone.0189533.g003
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Performance comparison

Several state-of-art classifier models, including SRC, KNN [35], support vector machines

(SVM) [36], and random forest [37], were adopted when performances were compared in

terms of averaged accuracy. The procedure was repeated 100 times, and their averaged perfor-

mances were calculated for all tested samples to enhance the quantification of the performance

of the learning model. The numerical results of the LOOCV, 10-fold CV, and 5-fold CV are

summarized in Tables 4–6. For comparison, we also considered the small round blue cell

tumors (SRBCT) which have multiple classes. Four different SRBCTs are used in this dataset,

namely, Ewing family tumor (EWS), Burkitt lymphoma (BL), neuroblastoma (NB), and rhab-

domysarcoma (RMS). The training set contained 63 samples, and the test set contained 20

samples. The cDNA microarrays consisted of 2308 genes.

Tables 4 and 5 shows that CRC outperformed the other classifiers using all validation meth-

ods. This approach has an average accuracies of 96.4% and 94.5% using LOOCV and 10-fold-

CV, respectively. The accuracies of SRC and CRC are quite close and at least 7% higher than

Fig 4. The average accuracy of CRC for ASD dataset with reduced dimensionality.

https://doi.org/10.1371/journal.pone.0189533.g004

Table 3. Running time of classification on the microarray database.

Data set SRC CRC Best reduced dimension

Leukemia 0.55 0.56s 500

DLBCL 0.67 0.68s 600

Breast Cancer 0.4 0.4s 200

ASD 3.5 0.52s 3

https://doi.org/10.1371/journal.pone.0189533.t003
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those of the other three methods. Table 6 shows the performances in terms of 5-fold CV.

All averaged accuracies are reduced compared with that of 10-fold CV. This phenomenon is

due to the less samples used to train. Note that the performance of ASD was reduced slightly,

because the total samples of ASD gene data were far more than the other gene datasets. The

proposed method yielded a slightly higher average accuracy, implying that CR remarkably

contributed to the classification. Considering these studies, CRC is the most robust method,

because it showed the highest accuracy with the least number of genes not only in the test set

but also using other types of validations, including 10-fold-CV and LOOCV.

Conclusion

This paper presented a new classifier model for classifying microarray gene expression. The

proposed classifier uniquely incorporates CS dimensionality reduction CS to guide data classi-

fication. This work has two important contributions. First, an effective CRC approach was

implemented. This method exhibited very high performance and valuable insight into the dif-

ferent types of cancer data sets. CRC did not require the optimization of parameters to facili-

tate classification. This method can be used for different types of gene expression data with

multiple classes without any modifications. Second, CS method was adopted to reduce the

dimensionality of data. The sensing matrix is a very sparse random matrix with entries as 0

and
ffiffiffi
r
p

. This method avoided the various feature extraction methods that are computationally

Table 4. Leave-one-out cross validation (CV) classification results.

Data set CRC SRC KNN SVM Random forest

Leukemia 96.5% 96.4% 84.7% 91.7% 90.0%

DLBCL 97.6% 95.5% 89.6% 84.4% 89.6%

Breast Cancer 79.2% 78.1% 74.4% 78.1% 68.1%

ASD 83.8% 82.1% 68.8% 71.4% 67.7%

SRBCT 98.9% 98.9% 97.8% 84.3% 92.8%

https://doi.org/10.1371/journal.pone.0189533.t004

Table 6. 5-fold CV classification results.

Data set CRC SRC KNN SVM Random forest

Leukemia 87.5% 86.2% 80.2% 83.5% 86.5%

DLBCL 83.1% 80.5% 80.0% 79.5% 78.9%

Breast Cancer 70.8% 68.1% 68.4% 68.5% 67.1%

ASD 82.6% 80.9% 70.0% 70.4% 66.8%

SRBCT 73.6% 73.6% 70.6% 72.6% 73.1%

https://doi.org/10.1371/journal.pone.0189533.t006

Table 5. 10-fold CV classification results.

Data set CRC SRC KNN SVM Random forest

Leukemia 94.5% 94.1% 85.5% 91.6% 93.5%

DLBCL 94.5% 89.5% 89.6% 84.4% 89.6%

Breast Cancer 74.6% 73.1% 74.4% 73.1% 69.1%

ASD 82.8% 81.1% 70.8% 70.4% 68.7%

SRBCT 91.6% 91.6% 89.6% 84.8% 90.3%

https://doi.org/10.1371/journal.pone.0189533.t005
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expensive. The proposed method can be introduced for clinical application for each patient.

Accurate diagnostics can be provided by only measuring a few gene expression data. We tested

our algorithm on publicly available data sets of several diseases, including leukemia, breast

cancer, ASD, DLBCL, and SRBCT. In conclusion, CRC can achieve high classification accu-

racy and fast computational speed.

Supporting information

S1 File. The code (Matlab) and data files along with instructions are provided as a zip file.
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