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Abstract Autism spectrum disorder (ASD) is characterized by a panoply of social, communicative, 
and sensory anomalies. As such, a central goal of computational psychiatry is to ascribe the heterog-
enous phenotypes observed in ASD to a limited set of canonical computations that may have gone 
awry in the disorder. Here, we posit causal inference – the process of inferring a causal structure 
linking sensory signals to hidden world causes – as one such computation. We show that audio-visual 
integration is intact in ASD and in line with optimal models of cue combination, yet multisensory 
behavior is anomalous in ASD because this group operates under an internal model favoring inte-
gration (vs. segregation). Paradoxically, during explicit reports of common cause across spatial or 
temporal disparities, individuals with ASD were less and not more likely to report common cause, 
particularly at small cue disparities. Formal model fitting revealed differences in both the prior prob-
ability for common cause (p-common) and choice biases, which are dissociable in implicit but not 
explicit causal inference tasks. Together, this pattern of results suggests (i) different internal models 
in attributing world causes to sensory signals in ASD relative to neurotypical individuals given iden-
tical sensory cues, and (ii) the presence of an explicit compensatory mechanism in ASD, with these 
individuals putatively having learned to compensate for their bias to integrate in explicit reports.

Editor's evaluation
Autism spectrum disorder is characterized by social, communicative and sensory anomalies. This 
study uses behavioral psychophysics experiments and computational modelling to interrogate how 
individuals with autism combine sensory cues in multisensory tasks. The results showed that individ-
uals with autism were more likely to integrate cues, but less likely to report doing so, thus raising 
interesting questions regarding how individuals with autism perceive the world.

Introduction
Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental condition characterized by 
impairments across social, communicative, and sensory domains (American Psychiatric Association, 
2013; see also Robertson and Baron-Cohen, 2017 for a review focused on sensory processing in 
ASD). Given this vast heterogeneity, many Lawson et al., 2017; Lawson et al., 2017; Lawson et al., 
2014; Lieder et al., 2019; Noel et al., 2020; Noel et al., 2021a, Noel et al., 2021b; Series, 2020 
have recently turned their attention to computational psychiatry to ascribe the diverse phenotypes 
within the disorder to a set of canonical computations that may have gone awry.
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A strong yet unexplored candidate for such a computation is causal inference (Körding et  al., 
2007). In causal inference, observers first make use of observations from their sensory milieu to deduce 
a putative causal structure – a set of relations between hidden (i.e. not directly observable) source(s) in 
the world and sensory signals (e.g. photons hitting your retina and air-compression waves impacting 
your cochlea). For instance, in the presence of auditory and visual speech signals, one may hypoth-
esize a single speaker emitting both auditory and visual signals, or contrarily, the presence of two 
sources, e.g., a puppet mouthing (visual) and the unskillful ventriloquist emitting sounds (auditory). 
This internal model linking world sources to signals then impacts downstream processes. If signals are 
hypothesized to come from a common source, observers may combine these redundant signals to 
ameliorate the precision (Ernst and Banks, 2002) and accuracy (Odegaard et al., 2015; Dokka et al., 
2015) of their estimates. In fact, an array of studies Ernst and Banks, 2002; Hillis et al., 2002; Alais 
and Burr, 2004; Kersten et al., 2004 have suggested that humans combine sensory signals weighted 
by their reliability. On the other hand, hypothesizing that a single source exists, when in fact multiple 
do, may lead to perceptual biases (as in the ventriloquist example).

It is well established that humans perform causal inference in solving a wide array of tasks, such 
as spatial localization (Körding et al., 2007; Odegaard et al., 2015; Rohe and Noppeney, 2015; 
Rohe and Noppeney, 2016), orientation judgments (van den Berg et al., 2012), oddity detection 
(Hospedales and Vijayakumar, 2009), rate detection (Cao et al., 2019), verticality estimation (de 
Winkel et al., 2018), spatial constancy (Perdreau et al., 2019), speech perception (Magnotti et al., 
2013), time-interval perception (Sawai et al., 2012), and heading estimation (Acerbi et al., 2018; 
Dokka et al., 2019), among others. As such, causal inference may be a canonical computation, ubiq-
uitously guiding adaptive behavior and putatively underlying a wide array of (anomalous) phenotypes, 
as is observed in autism.

Indeed, the hypothesis that causal inference may be anomalous in ASD is supported by a multitude 
of tangential evidence, particularly within the study of multisensory perception. Namely, the claims 
that multisensory perception is anomalous in ASD are abundant and well established (see Baum et al., 
2015 and Wallace et al., 2020, for recent reviews), yet these studies tend to lack a strong computa-
tional backbone and have not explored whether these deficits truly lie in the ability to perform cue 
combination, or in the ability to deduce when cues ought to (vs. not) be combined. In this vein, we 
have demonstrated that optimal cue combination for visual and vestibular signals is intact in ASD 
(Zaidel et al., 2015). In turn, the root of the multisensory deficits in ASD may not be in the integra-
tion process itself (see Noel et al., 2020, for recent evidence suggesting intact integration over a 
protracted timescale in ASD), but in establishing an internal model suggesting when signals ought to 
be integrated vs. segregated – a process of causal inference.

Here we employ multiple audio-visual behavioral tasks to test the hypothesis that causal infer-
ence may be aberrant in ASD. These tasks separate cue integration from causal inference, consider 
both explicit and implicit causal inference tasks, and explore both the spatial and temporal domains. 
Importantly, we bridge across these experiments by estimating features of causal inference in ASD 
and control individuals via computational modeling. Finally, we entertain a set of alternative models 
beyond that of causal inference that could in principle account for differences in behavior between 
the ASD and control cohorts and highlight which parameters governing causal inference are formally 
dissociable in implicit vs. explicit tasks (these latter ones constituting a large share of the studies of 
perceptual abilities in ASD).

Results
Intact audio-visual optimal cue integration
First, we probe whether individuals with ASD show a normal or impaired ability to optimally combine 
sensory cues across audio-visual pairings. To do so, individuals with ASD (n=31; mean ± S.E.M; 
15.2±0.4 years; 5 females) and age-matched neurotypical controls (n=34, 16.1±0.4 years; 9 females) 
viewed a visual disk and/or heard an audio beep for 50 ms. The auditory tone and visual flash were 
synchronously presented either at the same location (Figure 1A, left panel) or separated by a small 
spatial disparity ∆ = ±6° (Figure 1A, right panel). The disparity was small enough to escape percep-
tual awareness (see explicit reports below for corroboration). The auditory stimulus was always the 
same, making the auditory signals equally reliable across trials. The reliability of the visual cue was 
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manipulated by varying the size of the visual stimulus (see Methods for detail). On each trial, subjects 
indicated if the stimulus appeared to the right or left from straight ahead.

Figure 1B and C, respectively, shows the location discrimination of unisensory stimuli (audio in blue 
and visual according to a color gradient) for an example, control and ASD subject. Overall, subjects with 
ASD (6.83±0.68°) localized the visual stimulus as well as neurotypical subjects (6.30±0.49°, Figure 1D, 
no group effect, F[1, 57]=0.88, p=0.35, η2=0.01). As visual reliability decreased (lighter colors), the 
psychometric curves became flatter indicating larger spatial discrimination thresholds (high reliability: 
1.10±0.07°, medium: 4.76±0.36°, low: 13.96±0.82°). This effect of visual reliability was equal across 
both subject groups (group × reliability interaction, F[2, 114]=0.11, p=0.89, η2<0.01), with visual 
thresholds being equal in control and ASD across all reliability levels. Auditory discrimination seemed 
to highlight potentially two subgroups within the ASD cohort (blue vs. green). Auditory threshold 
estimation was not possible for 6 of the 31 subjects within the ASD group (Figure 1D, green, R2 value 
<0.50), due to a lack of modulation in their reports as a function of cue location (excluding these 
6 subjects, average R2 neurotypical control = 0.95; average R2 ASD = 0.96). Given that the central 
interest here is in interrogating audio-visual cue combination, and its agreement or disagreement 
with optimal models of cue combination, the rest of the analyses focuses on the 25 ASD subjects (and 
the control cohort) who were able to localize auditory tones. Auditory thresholds were similar across 
neurotypical controls and the ASD cohort where threshold estimation was possible (t57=–1.14, p=0.21, 
Cohen’s d=0.11).

The central hallmark of multisensory cue combination is the improvement in the precision of esti-
mates (e.g. reduced discrimination thresholds) resulting from the integration of redundant signals. 
Optimal integration (Ernst and Banks, 2002) specifies exactly what ought to be the thresholds 
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Figure 1. Audio-visual optimal cue combination in autism spectrum disorder (ASD). (A) Participants (neurotypical control or individual with ASD) viewed 
a visual disk and heard an auditory tone at different locations and with different small disparities (top = no disparity, bottom = small disparity). They had 
to indicate the location of the audio-visual event. (B) Rightward (from straight ahead) responses (y-axis) as a function of stimulus location (x-axis, positive 
= rightward) for an example, control subject. Color gradient (from darkest to lightest) indicates the reliability of the visual cue. (C) As (B), but for an 
example, ASD subject. (D) Discrimination thresholds in localizing audio (blue) or visual stimuli with different reliabilities (color gradient) for control (black) 
and ASD (red) subjects. Every point is an individual subject. A subset of six ASD subjects had very poor goodness of fit to a cumulative Gaussian (green) 
and were excluded from subsequent analyses. (E) Measured (x-axis) vs. predicted (y-axis) audio-visual discrimination threshold, as predicted by optimal 
cue integration. Black and red lines are the fit to all participants and reliabilities, respectively, for the control and ASD subjects. Two-dimensional error 
bars are the mean and 95% CI for each participant group and reliability condition. (F) Rightward response of an example control subject as a function 
of mean stimulus location (x-axis, auditory at +3 and visual –3 would result in mean stimulus location = 0) and disparity, the visual stimuli being either 
to the right (solid curve) or left (dashed) of the auditory stimuli. Color gradient shows the same gradient in reliability of the visual cue as in (B). (G) As 
(F), but for an example, ASD subject. (H) Measured (x-axis) vs. predicted (y-axis) visual weights, according to Equation 2 (Methods). Convention follows 
that established in (E). Both control (black) and ASD (red) subjects dynamically adjust the weight attributed to each sensory modality according to their 
relative reliability.
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derived from integrating two cues, and thus we can compare measured and predicted audio-visual 
thresholds, according to optimal integration (see Equations 1; 2 in Methods). Figure 1E demon-
strates that indeed both control (gradients of black) and ASD (gradients of red) subjects combined 
cues in line with predictions from statistical optimality (control, slope = 0.93, 95% CI = [0.85–1.04]; 
ASD, slope = 0.94, 95% CI = [0.88–1.08]). These results generalize previous findings from Zaidel et al., 
2015 and suggest that across sensory pairings (e.g. audio-visual here, visuo-vestibular in Zaidel et al., 
2015) statistically optimal integration of multisensory cues is intact in ASD.

A second characteristic of statistically optimal integration is the ability to dynamically alter the 
weight attributed to each sensory modality according to their relative reliability, i.e., decreasing the 
weight assigned to less reliable cues. Figure 1F and G, respectively, shows example psychometric 
functions for an example control and ASD individual when auditory and visual stimuli were separated 
by a small spatial disparity (Δ=±6°). Both show the same pattern. When the auditory stimulus was 
to the right of the visual stimulus (∆=6°, dashed curves), psychometric curves at high reliability (dark 
black and red symbols for control and ASD) were shifted to the right indicating a leftward bias, in the 
direction of the visual cue (see Methods). At low visual reliability, psychometric curves shifted to the 
left indicating a rightward bias, toward the auditory cue. That is, in line with predictions from optimal 
cue combination, psychometric curves shifted to indicate auditory or visual ‘dominance’, respectively, 
when auditory and visual cues were the most reliable. Analogous shifts of the psychometric functions 
were observed when the auditory stimulus was to the left of the visual stimulus (∆=−6°, solid curves). At 
the intermediary visual reliability – matching the reliability of auditory cues (Figure 1D) – both stimuli 
influenced localization performance about equally. Such a shift from visual to auditory dominance 
as the visual cue reliability worsened was prevalent across ASD and control subjects. Importantly, 
measured and predicted visual weights according to optimal cue combination were well matched in 
control (Figure 1H, black, slope = 0.97, 95% CI = [0.92–1.02]) and ASD (Figure 1H, red, slope = 0.99, 
95% CI = [0.93–1.05]) groups. Measured visual weights were also not different between groups at 
any reliability (F[2, 114]=1.11, p=0.33, η2=0.02). Thus, just as their neurotypical counterparts, ASD 
subjects dynamically reweighted auditory and visual cues on a trial-by-trial basis depending on their 
relative reliabilities. Together, this pattern of results suggests that individuals with ASD did not show 
impairments in integrating perceptually congruent (and near-congruent) auditory and visual stimuli.

Impaired audio-visual causal inference
Having established that the process of integration is itself intact in ASD, we next queried implicit 
causal inference – the more general problem of establishing when cues ought to be integrated vs. 
segregated. Individuals with ASD (n=21, 17.32±0.57 years; 5 females) and age-matched neurotypical 
controls (n=15, 16.86±0.55 years; 7  females, see Supplementary file 1, Supplementary file 2 for 
overlap in cohorts across experiments) discriminated the location of an auditory tone (50 ms), while 
a visual disk was presented synchronously at varying spatial disparities. The stimuli were identical to 
those above but spanned a larger disparity range (∆=±3,±6,±12, and ±24°), including those large 
enough to be perceived as separate events (see explicit reports below). Subjects indicated if the 
auditory stimulus was located to the left or right of straight ahead, and as above, we fit psycho-
metric curves to estimate perceptual biases. The addition of large audio-visual disparities fundamen-
tally changes the nature of the experiment, where now observers must first ascertain an internal 
model, i.e., whether auditory and visual cues come from the same or separate world sources. As the 
disparity between cues increases, we first expect to see the emergence of perceptual biases – one 
cue influencing the localization of the other. However, as cue disparities continue to increase, we 
expect observers to switch worldviews, from a regime where cues are hypothesized to come from 
the same source, to one where cues are now hypothesized to come from separate sources. Thus, as 
cue disparities continue to increase, eventually the conflict between cues ought to be large enough 
that perceptual biases asymptote or decrease, given that the observer is operating under the correct 
internal model (Körding et al., 2007; Rohe and Noppeney, 2015; Rohe and Noppeney, 2016; Rohe 
et al., 2019; Cao et al., 2019; Noel and Angelaki, 2022).

Overall, individuals with ASD showed a larger bias (i.e. absolute value of the mean of the cumula-
tive Gaussian fit) in auditory localization than the control group (see Figure 2A and B, respectively, for 
control and ASD cohorts; F[1, 34]=5.44, p=0.025, η2=0.13). Further, how the bias varied with spatial 
disparity (∆) significantly differed between the groups (group × disparity interaction: F[7, 168]=3.50, 
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p=0.002, η2=0.12). While the bias saturated at higher ∆ in neurotypical subjects, as expected under 
causal inference, the bias increased monotonically as ∆ increased in the ASD group. Thus, despite 
increasing spatial discrepancy, ASD subjects tended to integrate the cues, as if they nearly always 
utilized visual signals to localize the auditory cue and did not readily switch to a worldview where the 
auditory and visual cues did not come from the same world source. The effect of visual cue reliability 
was similar in both groups (group × reliability interaction, F[2, 168]=1.05, p=0.35, η2=0.01), indi-
cating that the auditory bias decreased as visual cue reliability worsened in both groups.

To more rigorously quantify how auditory localization depended on ∆, we fit a third-order regres-
sion model to the auditory bias as a function of ∆, independently for each subject and at each visual 
reliability (y=a0+a1∆+a2∆2+a3∆3; see Methods). As shown in Figure 2C, across all visual reliabilities, 
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Figure 2. Audio-visual causal inference. Participants (black = control; ASD = red) localized auditory tones relative to straight ahead, in the presence 
of visual cues at different disparities of up to 24°. See Supplementary file 1, Supplementary file 2 for overlap of subjects with Figure 1. (A) Auditory 
bias (y-axis, central point of the cumulative Gaussian, e.g. Figure 1B) as a function of spatial disparity (x-axis, relative location of the visual cue) and 
reliability of the visual cue (darker = more reliable) in control subjects. (B) As (A), but for individuals with ASD. (C) Coefficient of the linear fits (y-axis, 
larger value indicates quicker increase in bias with relative visual location) in control (black) and ASD (red), as a function of visual cue reliability (darker = 
more reliable). (D) Linear R2 (x-axis) demonstrates that the linear fits account well for observed ASD data. On the other hand, adding a cubic term (y-axis, 
partial R2) improved fit to control data (at two reliabilities) but not ASD data. Error bars are ±1 S.E.M.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Visual and auditory localization performance of participants in Experiment 2 (audio-visual implicit causal inference).

Figure supplement 2. Heading discrimination during concurrent implied self-motion and object motion.

https://doi.org/10.7554/eLife.71866
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the ASD group had a larger linear coefficient (a1, ANOVA: F[1, 34]=6.69, p=0.014, η2=0.16), again 
indicating a monotonic increase in bias with cue spatial disparity.

To better account for putative non-linear effects at large ∆ - those which ought to most clearly 
index a change from integration to segregation - we fit different regression models (i.e. null, linear, 
quadratic, and cubic) and estimated the added variance accounted by adding a cubic term (partial 
R2). This latter term may account for non-linear effects at large ∆, where the impact of visual stimuli 
on auditory localization may saturate or even decrease (a3 being zero or negative) at large dispari-
ties. Results showed that not only the linear term accounted for more variance in the ASD data than 
controls (Figure 2D and x-axis, ANOVA: F[1, 34]=7.08, p=0.012, η2=0.17), but also the addition of a 
cubic term significantly improved fits in the control, but not ASD, group (Figure 2D and y-axis, partial 
R2, ANOVA: F[1, 34]=9.87, p=0.003, η2=0.22). Taken together, these results suggest that contrary 
to predictions from causal inference – where disparate cues should affect one another at small but 
not large disparities, i.e., only when they may reasonably index the same source – ASD subjects were 
not able to down-weight the impact of visual cues on auditory localization at large spatial disparities, 
resulting in larger errors in auditory localization.

To confirm that the larger biases observed within the ASD cohort were in fact due to these subjects 
using an incorrect internal model, and not a general impairment in cue localization, we compared 
unisensory visual and auditory localization thresholds and biases between experimental groups. From 
the 21 ASD and 15 control subjects who participated in the audio-visual causal inference experiment 
(Experiment 2), respectively, 15 and 14 of these also participated in Experiment 1 - performing an 
auditory and visual localization experiment with no disparity (see Supplementary file 1, Supplemen-
tary file 2 for further detail). Figure 2—figure supplement 1A shows the psychometric functions 
(auditory localization and visual localization at three different reliability levels) for all subjects partici-
pating in Experiment 2. Psychometric thresholds (Figure 2—figure supplement 1B, all p>0.09), bias 
(Figure 2—figure supplement 1C, all p>0.11), and goodness of fit (Figure 2—figure supplement 
1D, all p>0.26) were not significantly different between the ASD and control cohorts, across visual and 
auditory modalities, and across all reliabilities.

Last, to further bolster the conclusion that individuals with ASD show anomalous implicit causal 
inference, we replicate the same effect in a very different experimental setup. Namely, subjects (n=17 
controls, n=14 ASD, see Supplementary file 1, Supplementary file 2) performed a visual heading 
discrimination task requiring the attribution of optic flow signals to self-motion and/or object-motion 
(a causal inference task requiring the attribution of motion across the retina to multiple sources, self 
and/or object; see Dokka et al., 2019, Methods, and Figure 2—figure supplement 2A for further 
detail). We describe the details in the Supplementary materials given that the task is not audio-visual 
and has a different generative model (Figure 2—figure supplement 2B). Importantly, however, the 
results demonstrate that while heading biases are present during intermediate self-velocity disparities 
and object-velocity disparities for controls and ASD subjects (Figure 2—figure supplement 2C, D), 
they disappear during large cue discrepancies in control subjects, but not ASD subjects. Just as in the 
audio-visual case (Figure 2), ASD subjects do not readily change worldviews and move from integra-
tion to segregation as disparities increase (Figure 2—figure supplement 2C, D).

Together, these results suggest that in ASD the process of integrating information across modal-
ities is normal (see Zaidel et al., 2015) once a correct internal model of the causal structure of the 
world has been formed. However, the process of inferring this causal structure – the set of relations 
between hidden sources and sensory signals that may have given rise to the observed data – is anom-
alous. Namely, individuals with ASD seem to operate under the assumption that sensory cues ought to 
be integrated most of the time, even for large disparities. Next, we questioned if and how this deficit 
in causal inference expresses explicitly in overt reports.

Decreased disparity-independent explicit report of common cause
Individuals with ASD (n=23; 16.14±0.51  years; 5  females) and age-matched neurotypical controls 
(n=24; 17.10±0.42 years; 7  females; see Supplementary file 1, Supplementary file 2 for overlap 
in cohorts with previous experiments) viewed a visual disk and heard an auditory tone presented 
synchronously (50 ms), but at different spatial disparities (same stimuli as above, disparity up to 24°). 
Participants indicated whether the auditory and visual cues originated from a common source, or 
from two separate sources (see Methods for instructions). In contrast to the localization experiments, 

https://doi.org/10.7554/eLife.71866
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where subjects localized the physical position of stimuli, here subjects were asked to explicitly report 
the relationship between the auditory and visual stimuli. See Figure  3—figure supplement 1 for 
the unisensory discrimination performance in participants who took part in both the cue integration 
experiment (Experiment 1) and the current explicit common cause report across spatial disparities. 
Auditory and visual localization thresholds (all p>0.07), bias (all p>0.15), and the goodness of fit (all 
p>0.16) of these psychometric estimates were no different between the ASD and control cohort 
participating in this explicit causal inference judgment experiment.

As expected, most subjects reported a common source more frequently at smaller rather than 
larger ∆ (Figure 3 F[8, 259]=94.86, p<0.001, η2=0.74). Interestingly, while this pattern was true for all 
individual control subjects, eight of the individuals with ASD (i.e. ~⅓ of the cohort) did not modulate 
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Figure 3. Explicit common cause reports across spatial (top) and temporal (bottom) disparities. Proportion of common cause reports (y-axis) as a 
function of spatial disparity (x-axis) and visual cue reliability; high (A), medium (B), or low (C). The most striking characteristic is the reduced likelihood 
to report common cause, across any disparity or cue reliability. (D) Proportion of common cause reports (y-axis) as a function of temporal disparity. As 
indexed by many (e.g. Feldman et al., 2018) individuals with autism spectrum disorder (ASD) show larger ‘temporal binding windows’; temporal extent 
over which they are likely to report common cause. However, these individuals are also less likely to report common cause, when auditory and visual 
stimuli are in very close temporal proximity (an effect sometimes reported, e.g., Noel et al., 2018b, but many times neglected, given normalization 
from 0 to 1, to index binding windows; see e.g., Woynaroski et al., 2013; Dunham et al., 2020). See Supplementary file 1, Supplementary file 2 for 
overlap of subjects with previous figures. Error bars are ±1 S.E.M.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Visual and auditory localization performance of participants in Experiment 3 (audio-visual explicit causal inference).

Figure supplement 2. Reports of common cause as a function of spatial disparity.

Figure supplement 3. Fitting a functional form to the explicit causal inference reports.

https://doi.org/10.7554/eLife.71866
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their explicit common cause reports as a function of spatial disparity, despite good auditory and 
visual localization (see Figure 3—figure supplement 1 and Figure 3—figure supplement 2). These 
subjects were not included in subsequent analyses. For lower visual reliability (Figure 3, from A-C), 
both groups reported common cause less frequently (F[2, 74]=10.68, p<0.001, η2=0.22). A striking 
difference between experimental groups was the decreased likelihood of reporting common cause, 
across spatial disparities and visual cue reliabilities, in ASD relative to controls (Figure 3A–C shades 
of black vs. shades of red, F[1, 37]=11.6, p=0.002, η2=0.23). This pattern of results using an explicit 
causal inference task is opposite from that described for the implicit task of auditory localization, 
where individuals with ASD were more, and not less, likely to combine cues.

These differences were quantified by fitting Gaussian functions to the proportion of common 
source reports as a function of ∆ (excluding the eight ASD subjects with no modulation in their reports; 
R2 for this cohort <0.5). The Gaussian fits (control: R2=0.89±0.02; ASD: R2=0.93±0.01) yield three 
parameters that characterize subjects’ behavior: (1) peak amplitude, which represents the maximum 
proportion of common source reports; (2) mean, which represents the ∆ at which subjects perceived 
a common source most frequently; and (3) width (SD), which represents the range of ∆ over which the 
participant was likely to perceive a common source. Both control and ASD participants perceived a 
common source most frequently at a ∆ close to 0°, and there was no group difference for this param-
eter (control = 0.30±1.33°; ASD = 0.48±1.9°; F[1, 37]<0.01, p=0.92, η2<0.01). Amplitude and width, 
however, differed between the two groups. The peak amplitude of the best-fit Gaussian was smaller 
for the ASD than the control group (control = 0.75±0.02; ASD = 0.62±0.05; F[1, 37]=8.44, p=0.0006, 
η2=0.18), quantifying the fact that the ASD group perceived a common source less frequently than 
control participants. The width of the Gaussian fit was smaller in the ASD compared to the control 
group (control = 30.21±2.10°; ASD = 22.35±3.14°; F[1, 37]=7.00, p=0.012, η2=0.15), suggesting that 
the range of spatial disparities at which ASD participants perceived a common source was significantly 
smaller than in controls. Note, this range is well beyond the 6° used in the maximum likelihood estima-
tion experiment (~fourfold), thus corroborating that during the first experiment participants perceived 
auditory and visual cues as a single, multisensory cue.

To further substantiate these differences in the explicit report of common cause across ASD and 
neurotypical subjects, we next dissociated auditory and visual cues across time, as opposed to space. 
Twenty-one individuals with ASD (15.94±0.56  years; 5  females) and 13 age-matched neurotypical 
controls (16.3±0.47  years; 5  females, see Supplementary file 1, Supplementary file 2) viewed a 
visual disk and heard an auditory tone, either in synchrony (∆=0 ms) or over a wide range of asyn-
chronies (from ±10 to ±700 ms; positive ∆ indicates visual led auditory stimulus). Subjects indicated if 
auditory and visual stimuli occurred synchronously or asynchronously.

Analogous to the case of spatial disparities, we fit reports of common cause (i.e. synchrony, in this 
case) to Gaussian functions. Just as for spatial disparities, the ASD group had smaller amplitudes (ASD 
= 0.83±0.04; control = 0.98±0.01; Figure 3D; t-test: t32=7.75, p<0.001, Cohen’s d>2), suggesting 
that at small ∆ individuals with ASD perceived the stimuli as originating from a common cause less 
frequently than control subjects did. Further, the ASD group exhibited larger Gaussian widths (control 
= 171.68±13.17; ASD = 363±55.63 ms; t-test: t32=2.61, p=0.01, Cohen’s d=0.9), reflecting more 
frequent reports of common cause at large temporal disparities. This second effect corroborates 
a multitude of reports demonstrating larger ‘temporal binding windows’ in ASD than control (see 
Feldman et al., 2018 for a meta-analysis of 53 studies). Overall, therefore, explicit reports of common 
cause across spatial and temporal disparities agree in suggesting a lower likelihood of inferring a 
common cause at small temporal disparities - including no disparity - in ASD relative to neurotypical 
controls (see e.g. Noel et al., 2018b; Noel et al., 2018a, for previous reports showing altered overall 
tendency to report common cause during temporal disparities in ASD, although these reports typi-
cally focus on the size of ‘binding windows’).

Correlational analyses between psychometric features distinguishing control and ASD individuals 
(i.e. linear and cubic terms accounting for auditory biases during large audio-visual spatial disparities, 
amplitude and width of explicit common cause reports during spatial and temporal disparities) and 
symptomatology measures, i.e., autism quotient (AQ; Baron-Cohen et al., 2001) and social commu-
nication questionnaire (SCQ; Rutter et al., 2003) demonstrated weak to no association. Of the 12 
correlations attempted ([AQ + SCQ] × [amplitude + width] × [temporal + spatial] + [AQ + SCQ] × 
[linear + cubic terms]), the only significant relation (surviving Bonferroni-correction) was that between 

https://doi.org/10.7554/eLife.71866
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the width of the Gaussian function describing synchrony judgments as a function of temporal disparity 
and SCQ scores (Type II regression: r=0.52, p=0.002; see Smith et al., 2017 for a similar observation).

Causal inference modeling suggests an increased prior probability for 
common cause in ASD
To bridge across experiments (i.e. implicit and explicit audio-visual spatial tasks) and provide a quanti-
tative account of the switch between internal models (i.e. segregate vs. integrate) in ASD vs. controls, 
we fit subjects’ responses with a Bayesian causal inference model (Figure 4A and Körding et al., 
2007). The modeling effort is split in three steps.

First, we fit aggregate data and attempt to discern which of the parameters that govern the causal 
inference process may globally differ between the ASD and control cohorts. The parameters of the 
causal inference model can be divided into three sets. First, sensory parameters: the visual and audi-
tory sensory uncertainty (i.e. inverse of reliability), as well as visual and auditory priors (i.e. expecta-
tions) over the perceived auditory and visual locations (mean and variance of Gaussian priors). Second, 
choice parameters: choice bias (pchoice), as well as lapse rate and bias. These latter two parameters 
are the frequency with which an observer may make a choice independent of the sensory evidence 
(lapse rate) and whether these stimuli-independent judgments are biased (lapse bias). Third, infer-
ence parameters: the prior probability of combination (pcommon; see Methods and Supplementary 
file 3, Supplementary file 4 for further detail). In this first modeling step, we fit all parameters (see 
Supplementary file 3) to best account for the aggregate control subject. Then, we test whether a 
difference in choice and inference parameters, but not the sensory ones, can explain the observed 
difference between the control and the aggregate ASD data. We do not vary the sensory parameters 
given that unisensory discrimination thresholds did not differ between experimental groups (Figure 1, 
Figure 2—figure supplement 1, and Figure 3—figure supplement 1. See Methods, Supplementary 
file 4 and Figure 4—figure supplement 1 for technical detail regarding the model fitting procedure. 
Also see Figure 4—figure supplement 2 corroborating the fact that varying the inference param-
eter, as opposed to sensory uncertainty, results in better model fits). In a second step, we attempt 
not to globally differentiate between ASD and control cohorts, but to account for individual subject 
behavior. Thus, we fit single subject data and utilize the subject-specific measured sensory uncertainty 
to fit all parameters (i.e. sensory, choice, and inference). All subjects who completed the cue integra-
tion experiment (Experiment 1) – allowing for deriving auditory and visual localization thresholds – and 
either the implicit (Experiment 2) or explicit (Experiment 3) spatial causal inference task were included 
in this effort. This included ‘poor performers’ (six in Experiment 1 and eight in Experiment 3), given 
that the goal of this second modeling step was to account for individual subject behavior. Last, we 
perform model comparison between the causal inference model and a set of alternative accounts, also 
putatively differentiating the two experimental groups.

Figure 4B and C, respectively, shows the aggregate control and ASD data for the implicit and 
explicit causal inference task (with each panel showing different visual reliabilities). In the implicit 
task (Figure 4B, top panel), allowing only for a difference in the choice parameters (lapse rate, bias, 
and pchoice; magenta) between the control and ASD cohorts, could only partially account for observed 
differences between these groups (explainable variance explained, EVE=0.91, see Supplementary file 
4). Instead, differences between the control and ASD data could be better explained if the prior prob-
ability of combining cues, pcommon, was also significantly higher for ASD relative to control observers 
(Figure 4D, p=4.5 × 10–7, EVE=0.97, ∆AIC between model varying only choice parameters vs. choice 
and inference parameters = 1 × 103). This suggests the necessity to include pcommon as a factor globally 
differentiating between the neurotypical and ASD cohort.

For the explicit task, different lapse rates and biases between ASD and controls could also not 
explain their differing reports (as for the implicit task; EVE = 0.17). Differently from the implicit task, 
however, we cannot dissociate the prior probability of combination (i.e. pcommon) and choice biases, 
given that the report is on common cause (Figure 4A, see Methods and Supplementary file 4 for 
additional detail). Thus, we call the joint choice and inference parameter pcombined (this one being a joint 
pcommon and pchoice). Allowing for a lower pcombined in ASD could better explain the observed differences 
between ASD and control explicit reports (Figure 4C; EVE = 0.69, ∆AIC relative to a model solely 
varying lapse rate and bias = 1.3 × 103). This is illustrated for the ASD aggregate subject relative to 
the aggregate control subject in Figure 4D (p=1.8 × 10–4). Under the assumption that an observer’s 

https://doi.org/10.7554/eLife.71866
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Figure 4. Causal inference modeling of implicit and explicit spatial tasks. (A) Generative models of the causal inference process in the two tasks 
(implicit task in left and explicit task in right). The subject makes noisy sensory measurements (X) of the veridical cue locations (‍ϵ‍ and combines them 
with their prior belief to obtain their percept (S). To do so optimally, the subject first must infer whether signals came from the same cause (C) and 
thereby determine if it is useful to combine the information from the two cues for inferring the trial category (D). The causal inference process is shared 

Figure 4 continued on next page
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expectation for cues to come from the same cause (pcommon) is formed over a long timescale, and hence 
is the same across the implicit and explicit tasks, we can ascribe the differing pattern of results in the 
tasks (i.e. increased pcommon in ASD in the implicit task, yet a decreased pcombined in the explicit task) to 
differences in the choice bias (i.e. the added component from pcommon to pcombined). This bias may in 
fact reflect a compensatory strategy by ASD observers since we found their pcommon (uncorrupted by 
explicit choice biases) to be roughly three times as large as that of the aggregate control observer 
(Figure 4D).

Next, we fit the model to individual subject data (as opposed to the aggregate) and obtained 
full posterior estimates over all model parameters for individual observers. We fit the model jointly 
to unisensory and causal inference tasks, such that we can constrain the sensory parameters by the 
observed unisensory data (Figure 1). The causal inference model provided a good and comparable fit 
for both ASD and control subjects (Figure 4E) with the model explaining more than 80% of explain-
able variance in all but one subject (Figure 4E, blue dot). Figure 4—figure supplements 3–6 show 
individual data for two representative control (Figure 4—figure supplements 3 and 4) and two ASD 

between the two tasks but the subject infers Dimp (side of the tone) in the implicit task and Dexp (number of causes for the sensory observations) in 
the explicit task. (B) Aggregate data (dots) and model fits (lines) in the implicit task (the visual reliability varies from high to low from left to right). The 
causal inference model is fit to the control aggregate subject and different set of parameters are varied to match the autism spectrum disorder (ASD) 
subject data (see main text). See Figure 4—figure supplement 12 for a fit to the same data while (1) allowing all parameters free to vary, (2) allowing 
the same parameter as here to vary, but fitting to visual reliabilities separately, or (3) doing both (1) and (2). Of course, these result in better fits, but 
this is at the expense of interpretability in that they are inconsistent with the empirical data. (C) Same as (B) but fits are to the explicit spatial task. See 
Figure 4—figure supplement 13 for the equivalent of Figure 4—figure supplement 12, for the implicit task. Data (dots) are slightly different from that 
in Figures 2 and 3 because in the previous figures data was first averaged within subjects, then psychometric functions were fit, and finally estimates of 
bias were averaged across subjects. Here, data is first aggregated across all subjects and then psychometric fits are done on the aggregate. Importantly, 
the difference between ASD and control subjects holds either way. Error bars are 68% CI (see Supplementary file 4 for additional detail regarding 
deriving CIs for the amalgamated subject). (D). ASD subjects have a higher p-common for the aggregate subject in the implicit task but seemingly 
compensate in the explicit task where they show a lower aggregate p-common and choice bias. (E). The causal inference model provides an equally 
good fit (quantified by explainable variance explained), a measure of goodness of fit appropriate for noisy, as opposed to noiseless data (Haefner and 
Cumming, 2008) for control and ASD subjects. (F) Individual ASD (red) subjects have a higher p-common on average for the implicit task (in agreement 
with the aggregate subject) but (G) show no significant difference in the combined p-common and choice bias for the explicit task due to considerable 
heterogeneity across subjects. Subjects were included in the single-subject modeling effort if they had participated in Experiment 1 (and thus we had 
an estimate of their sensory encoding) in addition to the particular task of interest. That is, for panel (F), we included all participants taking part in 
Experiments 1 and 2. This included participants deemed poor in Experiment 1, given our attempt to account for participant’s behavior with the causal 
inference model. For panel (G), we included all participants taking part in Experiments 1 and 3. Individual subject error bars are 68% CI, while group-
level error bars are 95% CI (see Supplementary file 4 for additional detail regarding statistical testing). CDF = cumulative density function. 

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Flowchart detailing steps in fitting procedure.

Figure supplement 2. Fit to aggregate data for the implicit causal inference task, allowing sensory uncertainty and choice parameters to vary but fixing 
the inference parameter pcommon (shown in pink).

Figure supplement 3. Data from a single, representative control subject.

Figure supplement 4. Data from another single, representative control subject.

Figure supplement 5. Data from a single, representative autism spectrum disorder (ASD) subject.

Figure supplement 6. Data from another single, representative autism spectrum disorder subject.

Figure supplement 7. Goodness of fit of alternative models for the implicit and explicit spatial causal inference task.

Figure supplement 8. Illustration of the alternative models fits to implicit causal inference model data.

Figure supplement 9. Illustration of the alternative models fits to explicit causal inference model data.

Figure supplement 10. Causal inference modeling of temporal, simultaneity judgment task.

Figure supplement 11. Lapse rate and lapse bias for aggregate and individual subjects during the implicit and explicit spatial tasks.

Figure supplement 12. Fit to aggregate data for the implicit causal inference task, given that all parameters are free to vary (A), the different visual 
reliabilities are fit separately (B) or both of the above (C).

Figure supplement 13. Fit to aggregate data for the explicit causal inference task, given that all parameters are free to vary (A), the different visual 
reliabilities are fit separately (B) or both of the above (C).

Figure 4 continued

https://doi.org/10.7554/eLife.71866


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Noel, Shivkumar, Dokka et al. eLife 2022;11:e71866. DOI: https://doi.org/10.7554/eLife.71866 � 12 of 25

subjects (Figure 4—figure supplements 5 and 6), while highlighting all the data that constrained 
the model fits (audio localization, visual localization at three reliabilities, forced fusion task at three 
reliabilities, as well as implicit and explicit causal inference). Overall, both groups were heterogeneous 
(Figure 4F and G). Nonetheless, in agreement with the aggregate data, individuals with ASD had a 
higher prior probability of common cause than control subjects (Figure 4F) during the implicit task 
(p=0.02), where pcommon can be estimated independently from pchoice. When estimating pcombined (i.e. the 
combination of pcommon and pchoice) for the explicit task (Figure 4G), the parameter estimates extracted 
from the individual fits suggested no difference between ASD and control subjects (p=0.26), although 
numerically the results are in line with the aggregate data, suggesting a lower pcombined in ASD than 
control (see inter-subject variability in Figure 4F and G). Importantly, the aggregate and single subject 
fits concord in suggesting an explicit compensatory mechanism in individuals with ASD, given that 
pcommon is higher in ASD than control (when this parameter can be estimated in isolation) and a measure 
corrupted by explicit choice biases (i.e. pcombined) is not. Individual subjects’ pcommon and pcombined as esti-
mated by the model did not correlate with ASD symptomatology, as measured by the AQ and SCQ 
(all p>0.17). Exploration of the model parameters in the ‘poor performers’ did not suggest a system-
atic difference between these subjects and other vis-à-vis their causal inference parameters.

Last, we consider a set of alternative models that could in principle account for differences in 
behavior across the aggregate control and ASD cohorts. The first alternative (alternative A) was a 
forced fusion model where all parameters were fit to the ASD aggregate subject, but pcommon was fixed 
to a value of 1. Thus, under this account the ASD subject always combines the cues irrespective of the 
disparity between them. Alternative B was a no fusion model, the opposite to Alternative A, where 
now all parameters were fit to the ASD aggregate subject, but pcommon was fixed to a value of 2. Alter-
native C had a lapse rate but no lapse bias. Last, alternative D allowed only the choice parameters 
to vary between control and ASD, but no inference or sensory parameter. For the implicit task, lapse 
rate, bias, and pchoice were allowed to vary. For the explicit task since pchoice trades off with pcommon, only 
lapse rate and bias were allowed to vary.

We performed model comparison using AIC and Figure 4—figure supplement 7 shows this metric 
for the ASD aggregate subject relative to the causal inference model where we vary choice and infer-
ence parameters (i.e. the model used in Figure 4. Lower AIC indicates a better fit). Figure 4—figure 
supplement 8 and Figure  4—figure supplement 9 show the original (choice and inference) and 
alternative fits, respectively, to implicit and explicit spatial causal inference tasks. For the implicit task, 
varying sensory and choice parameters, as opposed to inference parameters, results in a worse quality 
fit. Interestingly, alternative A (forced fusion) is a considerably better model than alternative B (forced 
segregation). Together, this pattern of results suggests that choice and inference (and not choice and 
sensory) parameters distinguish between ASD and control subjects in the implicit causal inference 
task. Likewise, these results further corroborate the conclusion that ASD subjects favor an internal 
model where integration outweighs segregation (AIC alternative A<AIC alternative B), yet there is 
not a complete lack of causal inference in ASD, given that alternative A is inferior to the model where 
pcommon is less than 1. In other words, individuals with ASD do perform causal inference, but they give 
more weight to integration (vs. segregation) compared to neurotypical subjects. For the explicit task, 
the alternative models considered performed worse than allowing the choice and inference parame-
ters to vary (main model used in Figure 4).

For completeness, we fit the causal inference model to data from the simultaneity judgment task 
(see Figure 4—figure supplement 10 and Supplementary file 5), given that this task constitutes a 
large portion of the literature on multisensory impairments in ASD (see e.g. Feldman et al., 2018). 
However, in this task, given its explicit nature, it is also not possible to dissociate pchoice and pcommon (as 
for the explicit spatial task), and even more vexingly, given that reliabilities were not manipulated (as 
is typical in the study of multisensory temporal acuity, see Nidiffer et al., 2016, for an exception), it is 
also difficult to dissociate the pchoice from lapse parameters with a reasonable amount of data. We also 
explore the impact of lapse rates and biases and their differences across ASD and control subjects in 
Figure 4—figure supplement 11.

Discussion
We presented individuals with ASD and neurotypical controls with audio-visual stimuli at different 
spatial or temporal disparities, and measured their unisensory spatial discrimination thresholds, their 
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 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Noel, Shivkumar, Dokka et al. eLife 2022;11:e71866. DOI: https://doi.org/10.7554/eLife.71866 � 13 of 25

implicit ability to perform optimal cue combination, and their implicit and explicit tendency to deduce 
different causal structures across cue disparities. The results indicate no overall impairment in the 
ability to perform optimal multisensory cue integration (Ernst and Banks, 2002). These observations 
generalize a previous report (Zaidel et al., 2015) and suggest that across domains (visuo-vestibular 
in Zaidel et al., 2015 audio-visual here), optimal cue combination is intact in ASD. Instead, we found 
that even at large spatial disparities, individuals with ASD use information from one sensory modality 
in localizing another. That is, in contrast to neurotypical controls, individuals with ASD behaved as if 
they were more likely to infer that cues come from the same rather the different sources. This suggests 
that the well-established anomalies in multisensory behavior in ASD - e.g., biases (see Baum et al., 
2015 and Wallace et al., 2020, for reviews) – may not be due to a dysfunctional process of multisen-
sory integration per se, but one of impair causal inference.

The juxtaposition between an impaired ability for causal inference yet the presence of an intact 
ability for optimal cue combination may suggest a deficit in a specific kind of computation and point 
toward anomalies in particular kinds of neural motifs. Indeed, an additional algorithmic component in 
causal inference (Körding et al., 2007) relative to optimal cue combination models (Ernst and Banks, 
2002) is the presence of non-linear operations such as marginalization. This operation corresponds to 
‘summing out’ nuisance variables, allows for non-linearities, and may be neurally implemented via divi-
sive normalization (see Beck et al., 2011 for detail on marginalization and the relationship between this 
operation and divisive normalization). In fact, while not all proposed neural network models of causal 
inference rely on divisive normalization (see Cuppini et al., 2017; Zhang et al., 2019 for networks 
performing causal inference without explicit marginalization), many do (e.g. Yamashita et al., 2013; 
Yu et al., 2016). Divisive normalization is a canonical neural motif (Carandini and Heeger, 2011), i.e., 
thought to operate throughout the brain, wherein neural activity from a given unit is normalized by the 
joint output of a normalization neural pool. Thus, the broad anomalies observed in ASD may be under-
pinned by an alteration in a canonical computation, i.e., causal inference, which in turn is dependent 
on a canonical neural motif, i.e., divisive normalization. Rosenberg et al., 2015, suggested that anom-
alies in divisive normalization – specifically a reduction in the amount of inhibition that occurs through 
divisive normalization – —can account for a host of perceptual anomalies in ASD, such as altered local 
vs. global processing (Happé and Frith, 2006), altered visuo-spatial suppression (Foss-Feig et al., 
2013), and increased tunnel vision (Robertson et  al., 2013). This suggestion – from altered divi-
sive normalization, to altered marginalization, and in turn altered causal inference and multisensory 
behavior – is well aligned with known physiology in ASD and ASD animal models showing decrease 
GABAergic signaling (Lee et al., 2017; Chen et al., 2020), the comorbidity between ASD and seizure 
activity (Jeste and Tuchman, 2015), and the hypothesis that ASD is rooted in an increased excitation-
to-inhibition ratio (i.e. E/I imbalance; Rubenstein and Merzenich, 2003).

A second major empirical finding is that individuals with ASD seem to explicitly report common 
cause less frequently than neurotypical controls. Here we demonstrate a reduced tendency to explic-
itly report common cause during small cue disparities, across both spatial and temporal disparities 
(also see Figure 2—figure supplement 2E-G for corroborative evidence during a motion processing 
task). This has previously been observed within the temporal domain (Noel et  al., 2018b; Noel 
et al., 2018a), yet frequently multisensory simultaneity judgments are normalized to peak at ‘1’ (e.g. 
Woynaroski et al., 2013; Dunham et al., 2020), obfuscating this effect. To the best of our knowl-
edge, the reduced tendency to explicitly report common cause across spatial disparities in ASD has 
not been previously reported. Further, it is interesting to note that while ‘temporal binding windows’ 
were larger in ASD than control (see Feldman et al., 2018), ‘spatial binding windows’ were smaller in 
ASD relative to control subjects. This pattern of results highlights that when studying explicit ‘binding 
windows’, it may not be sufficient to index temporal or spatial domains independently, but there 
could potentially be a trade-off. More importantly, the reduced tendency to overtly report common 
cause across spatial and temporal domains in ASD (even when implicitly they seem to integrate more, 
and not less often) is indicative of a choice bias that may have emerged as a compensatory mecha-
nism to their increased implicit tendency to bind information across sensory modalities. This specu-
lation is supported by formal model fitting, where the prior probability of combination (p-common) 
was larger at the (aggregate) population level in the ASD than the control subjects in implicit tasks 
(where p-common may be independently estimated), yet a combined measure of p-common and a 
choice bias (these not being dissociable in explicit tasks such as spatial or temporal common cause 
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reports) that was reduced (in the aggregate) or not significantly different (in the individual subject 
data) between ASD and control individuals. The presence of this putative compensatory mechanism 
is important to note, particularly when a significant fraction of the characterization of (multi)sensory 
processing in ASD relies on explicit tasks. Further, this finding, highlights the importance in charac-
terizing both implicit and explicit perceptual mechanisms – particularly when framed under a strong 
theoretical foundation (Ernst and Banks, 2002; Körding et al., 2007) and using model-based anal-
yses (e.g. Lawson et al., 2017; Lieder et al., 2019) – given that explicit reports may not faithfully 
reflect subjects’ percepts.

Last, it is also interesting to speculate on how an increased prior probability of integrating cues, 
and the presence of a compensatory mechanism, may relate to ASD symptomatology. Here we did 
not observe any reliable correlation between symptomatology and either psychophysical measures 
or model parameter estimates. However, it must be acknowledged that while the overall number of 
participants across all experiments was relatively large (91 subjects in total), our sample sizes within 
each experiment were moderate (~20 subjects per group and experiment), perhaps explaining the 
lack of any correlation. Regardless, it is well established that beyond (multi)sensory anomalies (Baum 
et  al., 2015), individuals with ASD show inflexible and repetitive behaviors (Geurts et  al., 2009) 
and demonstrate ‘stereotypy’, self-stimulatory behaviors thought to relieve sensory-driven anxiety 
(Cunningham and Schreibman, 2008). The finding that individuals with ASD do not change their 
worldview (i.e. from integration to segregation, even at large sensory disparities) may result in sensory 
anomalies and reflect the slow updating of expectations (Vishne et al., 2021). Thus, anomalies in 
causal inference may have the potential of explaining seemingly disparate phenotypes in ASD – anom-
alous perception and repetitive behaviors. Similarly, we may conjecture that stereotypy is a physical 
manifestation of a compensatory mechanism, such as the one uncovered here. Stereotypy could result 
from attempting to align incoming sensory evidence with the (inflexible) expectations of what that 
sensory input ought to be.

In conclusion, by leveraging a computational framework (optimal cue combination and causal infer-
ence; Ernst and Banks, 2002; Körding et al., 2007) and systematically measuring perception at each 
step (i.e. unisensory, forced cue integration, and causal inference) across a range of audio-visual multi-
sensory behaviors, we can ascribe anomalies in multisensory behavior to the process of inferring the 
causal structure linking sensory observations to their hidden causes. Of course, this anomaly results 
in perceptual biases (see the current results and Baum et al., 2015 for an extensive review), but the 
point is that these biases are driven by a canonical computation that has gone awry. Further, given the 
known E/I imbalance in ASD (Rubenstein and Merzenich, 2003; Lee et al., 2017; Chen et al., 2020) 
and the fact that causal inference may require marginalization but optimal cue combination does not 
(Beck et al., 2011), we can speculatively suggest a bridge from neural instantiation to behavioral 
computation; E/I imbalance may disrupt divisive normalization (neural implementation), which leads 
to improper marginalization (algorithm) and thus altered causal inference (computation) and multisen-
sory perception (biases in behavior) in ASD.

Materials and methods
Participants
A total of 91 adolescents (16.25±0.4 years; 20 females) took part (completely or partially) in a series 
of up to five behavioral experiments (four audio-visual and presented in the main text, in addition to 
a visual heading discrimination task presented in the Supplementary Materials). Forty-eight of these 
were neurotypical controls. Individuals in the control group (16.5±0.4 years; 13 females) had no diag-
nosis of ASD or any other developmental disorder or related medical diagnosis. These subjects were 
recruited by flyers posted throughout Houston. The other 43 participants (16.0±0.5 years; 7 females) 
were diagnosed as within ASD. The participants with ASD were recruited through several sources, 
including (1) the Simons Simplex Collection families, (2) flyers posted at Texas Children’s Hospital, 
(3) the Houston Autism Center, and (4) the clinical databases maintained by the Simons Foundation 
Autism Research Initiative (SFARI). All participants were screened at enrollment with SCQ (Rutter 
et al., 2003) and/or the AQ (Baron-Cohen et al., 2001) to afford (1) a measure of current ASD symp-
tomatology and (2) rule out concerns for ASD in control subjects. There was no individual with ASD 
below the recommended SCQ cutoff, and only 2 (out of 47) control subjects above this cutoff (Surén 
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et al., 2019). Similarly, there was almost no overlap in ASD and control AQ scores (with only 3 out 
of 47 control individuals having a higher AQ score than the lowest of the individuals with ASD). All 
individuals with ASD were above the AQ cutoffs recommended by Woodbury-Smith et al., 2005 and 
Lepage et al., 2009 (respectively, cutoff scores of 22 and 26), but not by Baron-Cohen et al., 2001 
(cutoff score of 36). Inclusion in the ASD group required that subjects have (1) a confirmed diagnosis of 
ASD according to the DSM-5 (American Psychiatric Association, 2013) by part of a research-reliable 
clinical practitioner and (2) no history of seizure or other neurological disorders. A subset of the indi-
viduals with ASD were assessed by the Autism Diagnostic Observation Schedule (ADOS-2, Lord 
et al., 2012), and no difference was observed in the AQ, SCQ, or psychometric estimates between 
individuals with ASD with and without the ADOS assessment (all p>0.21). Similarly, the intelligence 
quotient (IQ) as estimated by the Wechsler Adult Intelligence Scale (WAIS) was available for a subset 
of the ASD participants (n=10, or 22% of the cohort), whose average score was 103±9 (S.E.M.), this 
being no different from the general population (which by definition has a mean of 100). All subjects 
had normal visual and auditory acuity, as characterized by parents’ and/or participants’ reports. For 
each of the five psychophysics experiments, we aimed at scheduling approximately 25–30 participants 
per group, in accord with sample sizes from previous similar reports (Dokka et al., 2019; Noel et al., 
2018b). Data were not examined until after data collection was complete. The study was approved 
by the Institutional Review Board at the Baylor College of Medicine (protocol number H-29411) and 
written consent/assent was obtained.

Experimental materials and procedures
Experiment 1: Audio-visual spatial localization; maximum-likelihood estima-
tion (implicit)
Thirty-one ASD (age = 15.2±0.4 years) and 34 control (16.1±0.4 years) subjects participated in this 
experiment. As expected, the SCQ (ASD = 17.1±0.75; control = 4.8±0.5; t-test: t63=–13.31, p<0.0001) 
and AQ scores (ASD = 31.2±1.7; control = 15.3±1.5; t41=–6.61, p<0.0001) of the ASD group were 
significantly greater than that of the control group.

Subjects performed a spatial localization task of auditory, visual, or combined audio-visual stimuli. 
A custom-built setup comprising of (1) an array of speakers and (2) a video projection system deliv-
ered the auditory and visual stimuli, respectively. Seven speakers (TB-F Series; W2-852SH) spaced 3° 
apart were mounted on a wooden frame along a horizontal line. A video projector (Dell 2,400 MP) 
displayed images onto a black projection screen (60 × 35°) that was mounted over the speaker array. 
This arrangement allowed presentation of the visual stimulus precisely at the location of the auditory 
stimulus, or at different locations on the screen. The auditory stimulus was a simple tone at 1200 Hz. 
The visual stimulus was a white circular patch. Reliability of the visual stimulus was manipulated by 
varying the size of the visual patch such that reliability inversely varied with the patch size (Alais and 
Burr, 2004). Three levels of visual reliability were tested: high (higher reliability of visual vs. auditory 
localization), medium (similar reliabilities of visual and auditory localization), and low (poorer reliability 
of visual vs. auditory localization). For high and low visual reliabilities, the patch diameter was fixed for 
all participants at 5 and 30°, respectively. For medium reliability, the patch diameter ranged from 15 
to 25° across subjects. In all conditions (audio-only, visual-only, or combined audio-visual), the auditory 
and/or visual stimuli were presented for 50 ms (and synchronously in the case of combined stimuli). 
Stimuli were generated by custom MATLAB scripts employing the PsychToolBox (Kleiner et al., 2007; 
Noel et al., 2022).

Subjects were seated 1 m from the speaker-array with their chins supported on a chinrest and 
fixated a central cross. Subjects performed a single-interval, two-alternative-forced-choice spatial 
localization task. In each trial, they were presented with either an auditory, visual, or combined audio-
visual stimulus (Figure 1A). They indicated if the auditory and/or visual stimulus were located to the 
left or right of straight forward by button-press. The spatial locations of the stimuli were varied in steps 
around straight forward. In single-cue auditory and combined conditions, the auditory stimulus was 
presented at one of the seven locations: 0,±3,±6, and ±9° (positive sign indicates that the stimulus 
was presented to the right of the participant). By contrast, the visual stimulus could be presented 
at any location on the screen. Specifically, in the single-cue visual condition, the visual stimulus was 
presented at ±20, ±10, ±5, ±2.5, ±1.25, ±0.65, ±0.32, and 0°. In the combined condition, auditory 
and visual stimuli were either presented at the same spatial location (Figure 1, top panel; Δ=0°) or 
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at different locations separated by a spatial disparity Δ=±6° (Figure 1A, bottom panel; positive Δ 
indicates that the auditory stimulus was located to the right of the visual stimulus). For trials in which 
there was a spatial conflict, a mean stimulus location was defined. The auditory and visual stimuli were 
presented on either side of this mean stimulus location at an angular distance of Δ/2. For Δ=6°, the 
mean stimulus was located at –12, –9, –6, –3, 0, 3, and 6°. For Δ=–6°, the mean stimulus was located 
at –6, –3, 0, 3, 6, 9, and 12°. Each subject performed a total of 1680 trials (auditory condition = 7 stim-
ulus locations × 15 repetitions; visual condition = 14 stimulus locations × 15 repetitions × 3 visual cue 
reliabilities; and combined auditory-visual condition = 7 stimulus locations × 3 reliabilities × 3 conflict 
angles × 15 repetitions). All conditions were interleaved.

For each subject, visual cue reliability, stimulus condition, and spatial disparity, psychometric func-
tions were constructed by plotting the proportion of rightward responses as a function of stimulus 
location. These data were fit with a cumulative Gaussian function using psignifit, a MATLAB package 
that implements the maximum-likelihood method (Wichmann and Hill, 2001). The psychometric 
function yields two parameters that characterize participants’ localization performance: bias and 
threshold. Bias (μ) is the stimulus value at which responses are equally split between rightward and 
leftward. A bias close to 0° indicates highly accurate localization. The threshold is given by the SD 
(σ) of the fitted cumulative Gaussian function. The smaller the threshold, the greater the precision of 
spatial localization. The bias and threshold values estimated from these psychometric functions were 
used to test the predictions of optimal cue integration. The psychometric fitting could not estimate 
auditory thresholds for six ASD subjects, whose report did not vary as a function of auditory stimuli 
location. These subjects were not included in the remaining analyses reported in the main text.

Based on unisensory localization, we may derive predictions for the combined case, given optimal 
cue combination by maximum-likelihood estimation (Ernst and Banks, 2002; Hillis et al., 2002; Alais 
and Burr, 2004; Kersten et al., 2004). First, assuming optimal cue combination, the threshold in the 
combined auditory-visual condition (σcom) should be equal to:

	﻿‍
σcom =

√
σ2

aσ
2
v

σ2
a+ σ2

v ‍�
(1)

with σa and σv being the thresholds in the unisensory auditory and visual localization, respectively. 
Second, the weight assigned to the visual cue in combined audio-visual stimuli (see Ernst and Banks, 
2002 and Alais and Burr, 2004, for detail) should vary with its reliability. Specifically, as visual cue 
reliability decreases, the visual weight will also decrease. The visual weight, wv, is predicted to be:
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and in turn the auditory cue weight (wa) is computed as 1 − wv.

Experiment 2: Audio spatial localization with disparate visual cues; causal 
inference (implicit)
Twenty-two ASD (age = 17.32±0.57 years) and 15 control (age = 16.86±0.55 years) subjects partic-
ipated in this experiment. As expected, the SCQ (ASD = 16.42±1.12; control = 5.06±0.65; t-test: 
t35=7.84, p<0.0001) and AQ scores (ASD = 31.95±1.76; control = 13.76±1.61; t35=7.21, p<0.0001) of 
the ASD group were significantly greater than that of the control group.

The task and stimuli employed here were identical to the audio-visual localization experiment 
described above, except that a larger range of spatial disparities were employed. The disparity 
between cues (∆) could take one of nine values: 0, ±3, ±6, ±12, and ±24°. Each ∆ was presented 8 
times at each of the 7 speaker locations, and at each visual cue reliability, resulting in a total of 1512 
trials (9 spatial disparities × 7 speaker locations × 3 reliabilities × 8 repetitions). Subjects indicated if 
the auditory stimulus was located to the right or left of straight ahead. Subjects were informed that 
the flash and beep could appear at different physical locations. All conditions were interleaved, and 
subjects were required to take breaks and rest after each block.

For each subject, audio-visual disparity (∆), and visual cue reliability, psychometric functions were 
constructed by plotting the proportion of rightward responses as a function of the true auditory 
stimulus location. As for the audio-visual localization task described above, data were fitted with 
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a cumulative Gaussian function. An auditory bias close to 0° indicates that the subject was able to 
discount the distracting influence of the visual cues and accurately localize the audio beep. Data 
from one ASD subject was excluded from this analysis as the subject was unable to perform the task 
even when auditory and visual stimuli were co-localized (∆=0°). In eight ASD subjects, psychometric 
functions could not fit into the data even at the highest disparity (∆ = ±24°) during high reliability, as 
subjects’ estimates were ‘captured’ by the visual cues. The remaining data from these subjects were 
included in the analyses.

As an initial quantification of localization estimates, and putative differences in audio-visual biases 
between the groups, a third-order regression model of the form: y = a0 + a1∆ + a2∆2 + a3∆ American 
Psychiatric Association, 2013 was fitted to the auditory bias as a function of ∆ and visual cue reli-
ability. Coefficient a1 represents how sensitive the bias is to changes in ∆ - larger a1 indicates a greater 
change in the bias for a given change in ∆. Coefficient a2 indicates if the dependence of bias on ∆ is 
uniform for positive and negative ∆ values. Importantly, coefficient a3 generally represents how the 
bias changes at large ∆ values – negative a3 indicates a saturation or a decrease in the bias at large ∆. If 
subjects perform causal inference (Körding et al., 2007), we expect a saturation or even a return to no 
bias at large ∆. Furthermore, partial R2 values associated with a1, a2, and a3 describe the contribution of 
each term in explaining the total variance. ASD and control subjects’ data was well-explained by the 
third-order regression model (ASD: R2=0.93±0.04; control: R2=0.88±0.03). A mixed-effects ANOVA 
with group, ∆, and visual cue reliability as factors compared the bias, threshold, and parameters of the 
regression model for the ASD and control groups.

Experiment 3: Audio-visual common source reports under spatial disparities 
(Explicit)
Twenty-three23 ASD (age = 16.14±0.51 years) and 24 control (age = 17.10±0.42 years) subjects partic-
ipated in this experiment. Six other ASD subjects were screened for this experiment, but showed poor 
auditory localization (c.f. Experiment 1). The SCQ (ASD = 16.91±0.83; control = 5.04±0.47; t-test: 
t57=11.46, p<0.0001) and AQ scores (ASD = 30.77±1.60; control = 15.18±1.60; t41=6.42, p<0.0001) of 
the ASD group were significantly greater than that of the control group.

The auditory and visual stimuli presented in this task were identical to those employed in Exper-
iment 2. Each ∆ was presented 7 times, at each of seven speaker locations, and at each visual cue 
reliability, resulting in a total of 1323 trials (9 spatial disparities × 7 speaker locations × 3 reliabili-
ties × 7 repetitions). Subjects indicated via button-press if the auditory and visual cues originated 
from a common source or from different sources. The exact instructions were to “press the ‘same 
source’ key if auditory and visual signals come from the same source, and press the ‘different sources’ 
key if auditory and visual signals come from different sources.” All conditions were interleaved, and 
subjects were required to take breaks and rest after each block. Before the start of the main experi-
ment, subjects participated in a practice block to familiarize themselves with the stimuli and response 
buttons. The response buttons (one for ‘same source’ and the other for ‘different sources’ were the 
left and right buttons of a standard computer mouse. Reports from eight ASD subjects did not vary 
with ∆, and thus their data was excluded from the main analyses).

For each subject, audio-visual disparity (∆), and visual cue reliability, the proportion of common 
source reports was calculated. A mixed-effects ANOVA with group as the between-subjects factor, 
along with ∆ and visual cue reliability as within-subjects factors compared the proportion of common 
source reports in 26 control and 25 ASD subjects.

Further, to quantify putative differences in how ASD and control subjects inferred the causal rela-
tionship between auditory and visual stimuli, Gaussian functions were fit to the proportion of common 
source reports as a function of ∆ (e.g. Rohe and Noppeney, 2015). These fits yielded three param-
eters of interest: (1) amplitude (tendency to report common cause when maximal), (2) mean (spatial 
disparity at which auditory and visual cues are most likely considered to originate from a common 
cause), and (3) width (spatial disparity range over which subjects are likely to report common cause).

Experiment 4: Audio-visual common source reports under temporal dispari-
ties (Explicit)
Twenty-one ASD (age = 15.94±0.56 years) and 19 control (age = 16.3±0.47 years) subjects partici-
pated in this task. As expected, ASD subjects had significantly higher SCQ (ASD: SCQ = 18.31±1; 
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control: SCQ = 4.92±0.73; t-test: t32=–9.41, p<0.0001) and AQ (ASD: AQ = 32.76±1.58; control: 
AQ = 14.58±1.15; t-test: t32=7.43, p<0.0001) scores than the control subjects. Subjects viewed a 
flash and heard an audio beep (same stimuli as in Experiments 1, 2, and 3) presented centrally either 
at the same time or at different asynchronies. Twenty-three different temporal disparities (∆) were 
presented: 0, ±10, ±20, ±50, ±80, ±100, ±150, ±200, ±250, ±300, ±500, and ±700 ms (positive ∆s 
indicate that flash led the auditory stimulus). Subjects indicated if the flash and beep were synchro-
nous (exact instruction: ‘appeared at the same time’) or asynchronous (‘appeared at different times’) 
via button press on a standard computer mouse. Each ∆ was presented 25 times in random order.

Proportion of synchronous reports at each ∆ was calculated. A Gaussian function was fit to the 
proportion of synchronous reports as a function of ∆ (ASD: R2=0.86±0.05; control: R2=0.94±0.01). 
The Gaussian fits yielded three parameters that characterized subjects’ performance: (1) amplitude 
(representing the maximum proportion of synchronous reports), (2) mean (representing the ∆ at which 
subjects maximally perceived the flash and beep to be synchronous), and (3) width (representing the 
range of ∆ within which subjects were likely to perceive the auditory and visual stimuli to co-occur in 
time).

A mixed-effects ANOVA with group as the between-subjects factor, and temporal disparity (∆) 
as a within-subjects factor compared the proportion of synchronous reports. Similarly, independent-
samples t-tests compared the parameters of the Gaussian fits between the groups.

Experiment 5: Visual heading discrimination during concurrent object 
motion
Fourteen ASD and 17 control subjects (ASD: 15.71±0.5 years; control: 16.3±0.6 years) participated in 
this task. The ASD group had significantly higher SCQ (ASD: 16.71±1.36; control: SCQ = 7.35±1.12; 
p<0.0001) and AQ scores (ASD: AQ = 33.78±2.20; control = 11.79±2.35, p<0.0001) than the control 
group. Details of the apparatus and experimental stimuli have been previously described (Dokka 
et al., 2019).

In brief, subjects viewed lateral movement of a multipart spherical object while presented with a 
3D cloud of dots mimicking forward translation (Figure 2—figure supplement 2A). The multipart 
object moved rightward or leftward within a fronto-parallel plane at five peak speeds: 0.07, 0.13, 0.8, 
2.67, and 5.33 m/s. Implied self-motion consisted of a single interval, 1 s in duration, during which the 
motion stimulus followed a smooth Gaussian velocity profile (displacement = 13 cm; peak velocity = 
0.26 m/s). Heading was varied in discrete steps around straight forward (0°), using the following set 
of values: 0, ±5, ±10, ±15, ±20, ±25, and ±45° (positive value indicates rightward heading). In one 
session, subjects indicated if they perceived the object to be stationary or moving in the world. In 
another session, subjects indicated if their perceived heading was to the right or left of straight ahead. 
In each session there were a total of 130 distinct stimulus conditions (2 object motion directions × 5 
object motion speeds × 13 headings) and each condition was presented 7 times. All stimulus condi-
tions were interleaved in each block of trials.

Heading discrimination performance was quantified by fitting psychometric curves for each object 
motion direction and speed (Dokka et al., 2019). These fits yielded parameters that characterize the 
accuracy and precision of heading perception: bias and threshold. For statistical analyses, the bias 
measured with leftward object motion was multiplied by –1, such that expected biases were all posi-
tive (Dokka et al., 2019). To quantify the differences in the heading bias between groups, a third-order 
regression model of the form: y = b0 + b1X + b2X2 + b3X3, where X is the sign consistent logarithm of 
object motion speed was fitted to the heading bias. We compared the linear (b1), quadratic (b2), and 
cubic (b3) coefficients along with their corresponding partial R2 values between groups, similar to the 
analyses performed on the auditory bias in the audio-visual localization tasks.

Causal Inference Modeling
We modeled subject responses using a causal inference model (Figure 4A) where the observer has to 
infer whether two sensory cues (auditory and visual) come from the same or separate causes(s), and 
use this information to either integrate or not information from these cues. In each trial, we assume 
that the subject’s observations of the auditory and visual location (denoted ‍Xa‍ and ‍Xv‍) are the exper-
imenter defined veridical values (denoted by ‍ϵa‍ and ‍ϵv‍) corrupted by sensory noise with variances ‍σ

2
a‍ 

and ‍σ
2
v ‍ ,
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We assume that subjects have a good estimate of their sensory uncertainties (over lifelong learning) 
and hence the subject’s estimated likelihoods become,
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where ‍Sa‍ and ‍Sv‍ denote the inferred location of auditory and visual stimuli. The subject’s joint prior 
over the cue locations is parameterized as a product of three terms which reflect:

(a) ‍fnatural
(
Sa, Sv

)
‍ : the subject’s natural prior over the unisensory cue locations. For example, 

subjects may have a prior that sensory cue locations are more likely to occur closer to midline as 
compared to peripheral locations. We model this component of the prior as normal distributions 
where the mean and variance are unknown parameters fitted to the data.

	﻿‍
fnatural

(
Sa, Sv

)
= N

(
Sa;µa,σ2

ap

)
N

(
Sv;µv,σ2

vp

)
‍� (7)

(b) ‍fCI
(
Sa, Sv|C

)
‍ : the influence that the inferred cause (C) has on the knowledge of cue locations. In 

our causal inference model ‍Sa‍ is inferred as being equal to ‍Sv‍ if C=1 and independent if C=2.
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(c) ‍ftask
(
Sa|D

)
‍ : the relationship between the inferred trial category (D) and the cue locations.

Implicit task
In the implicit discrimination task, where the trial category corresponds to the side of the auditory cue 
location relative to the midline, ‍Sa‍ is positive if Dimp = 1 and negative if Dimp =-1.
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where H(x) is the Heaviside function (H(x)=1 if x>0 and 0 otherwise).
The product of Equations 7–9, defines the probability over cue locations conditioned on C and 

Dimp in the implicit task as
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which can be succinctly written as
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We parameterize the observer’s priors over Dimp and C as Bernoulli distributions with means ‍pchoice‍ 
and pcommon.

	﻿‍
pimplicit

(
Dimp = 1

)
= Ber

(
Dimp; pimplicit

choice

)
‍� (12)

	﻿‍ p
(
C = 1

)
= Ber

(
C; pcommon

)
‍� (13)
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The posterior probability of the subject inferring the auditory cue to come from the right can be 
obtained by marginalizing over the observer’s belief whether the auditory and visual cue come from 
a single or from separate causes

	﻿‍ pimplicit
(
Dimp = 1|Xa, Xv

)
=
∑

c∈
{

1,2
} pimplicit

(
Dimp = 1|Xa, Xv, C = c

)
p
(
C = c|Xa, Xv

)
‍� (14)

We assume the subject makes their response by choosing the response that has the highest poste-
rior probability. If ‍Rimplicit‍ is the subject response (1 for right and –1 for left), then

	﻿‍
Rimplicit = arg max

d∈
{
−1,1

}pimplicit
(
Dimp = d|Xa, Xv

)
‍�

(15)

Explicit task
We model the explicit task by assuming that the decision maker computes the belief over the trial 
category Dexp using the inferred belief over C, but not exactly equating both (graphical model in 
Figure 4A). This extends earlier approaches (Körding et al., 2007) which equate trial category Dexp 
with C, and additionally allows us to model task specific beliefs about the trial category. As we will 
show later, such a difference in beliefs between Dexp and C is mathematically equivalent to the subject 
making their decision by comparing their belief over C to a criterion different from 0.5.

The subject’s knowledge about the relationship between the trial category and the inferred vari-
able C is parameterized as ‍αtask‍ , as given by Equation 16 and Equation 17

	﻿‍ p
(
C = 1|D = 1

)
= Ber

[
C; pcommon + αtask

(
1 − pcommon

)]
‍� (16)

	﻿‍ p
(
C = 1|D = 2

)
= Ber

[
C; pcommon − αtask

(
pcommon

)]
‍� (17)

For ‍αtask = 0‍ there is no relationship between trial category D and C (e.g. before learning the 
task), and thus the prior over C reduces to ‍pcommon‍. On the other extreme, ‍αtask = 1‍ corresponds to 
complete task-learning, where C and Dexp are identical.

The prior probability of the subject’s belief over Dexp in the explicit task is parameterized as a 
Bernoulli distribution with mean ‍pchoice‍ as given in Equation 18

	﻿‍
pexplicit

(
D = 1

)
= Ber

(
D; pexplicit

choice

)
‍� (18)

We modeled subject’s belief about the sensory cue locations as the product of two terms: 

‍fnatural
(
Sa, Sv

)
‍ and ‍fCI

(
Sa, Sv|C

)
‍ (Equation 7 and Equation 8)

	﻿‍ pexplicit
(
Sa, Sv|C

)
∝ fnatural

(
Sa, Sv

)
fCI

(
Sa, Sv|C

)
‍�

	﻿‍

pexplicit
(
Sa, Sv|C

)
∝





fnatural
(
Sa, Sv

)
δ
(
Sa − Sv

)
, if C=1

fnatural
(
Sa, Sv

)
, if C=2‍�

(19)

with appropriate normalization constants obtained by integrating over all ‍Sa andSv‍ , we get

	﻿‍

pexplicit
(
Sa, Sv|C

)
=





N
(

Sa;µa,σ2
ap

)
N
(

Sv;µv,σ2
vp

)

N
(
µa;µv,σ2

ap+σ2
vp

) δ
(
Sa − Sv

)
if C=1

N
(

Sa;µa,σ2
ap

)
N
(

Sv;µv,σ2
vp

)
if C=2

‍�

(20)

Our model makes choice ‍Rexplicit‍ = 1 if

	﻿‍ pexplicit
(
D = 1|Xa , Xv

)
> pexplicit

(
D = 2|Xa , Xv

)
‍� (21)

which by Bayes rule reduces to,

	﻿‍
pexplicit

(
Xa , Xv|D = 1

)
pexplicit

choice > pexplicit
(
Xa , Xv|D = 2

) (
1-pexplicit

choice

)
‍� (22)
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where the likelihood over observations is evaluated by marginalizing across inferred sensory loca-
tions using the sensory likelihoods (Equation 5 and Equation 6), i.e.,

	﻿‍
pexplicit

(
Xa, Xv|C = c

)
=
ˆ ˆ

p
(
Xa, Xv|Sa, Sv

)
pexplicit

(
Sa, Sv|C = c

)
dSadSv

‍�
(23)

We can marginalize out C in Equation 22 to get

	﻿‍

pexplicit
choice pexplicit

(
Xa, Xv|C = 1

) [
pcommon + αtask

(
1 − pcommon

)]
+ pexplicit

choice

pexplicit
(
Xa, Xv|C = 2

) [
1 − pcommon − αtask

(
1 − pcommon

)]
>(

1 − pexplicit
choice

)
pexplicit

(
Xa, Xv|C = 1

) [
pcommon − αtask

(
pcommon

)]

+
(

1 − pexplicit
choice

)
pexplicit

(
Xa, Xv|C = 2

) [
1 − pcommon + αtask

(
pcommon

)]
‍�

(24)

By combining terms, Equation 24 can be simplified as

	﻿‍ pexplicit
(
Xa, Xv|C = 1

)
pcombined > pexplicit

(
Xa, Xv|C = 2

)
(1-pcombined)‍� (25)

where ‍pcombined‍ is a function of ‍pcommon‍ , ‍p
explicit
choice ‍ and ‍αtask‍ as given in Equation 26 which cannot 

be individually constrained.

	﻿‍
pcombined = max(0, min(1, pcommon(2pexplicit

choice −1)+αtask[pcommon(1−pexplicit
choice +pexplicit

choice (1−pcommon))]
(2pcommon−1)(2pexplicit

choice −1)+2αtask[pcommon(1−pexplicit
choice )+pexplicit

choice (1−pcommon)]
))

‍�
(26)

We now show that a decision rule as given in Equation 26 is equivalent to a subject making their 
decision by comparing their inferred posterior ‍pexplicit

(
C = 1|Xa, Xv

)
‍ to a criterion t, i.e., ‍Rexplicit‍ =1 if

	﻿‍ pexplicit
(
C = 1|Xa, Xv

)
> t‍� (27)

Or equivalently

	﻿‍ pexplicit
(
C = 1|Xa, Xv

) (
1 − t

)
> pexplicit

(
C = 2|Xa, Xv

)
t‍� (28)

which can be expanded using Bayes rule as given in Equation 29

	﻿‍ pexplicit
(
Xa, Xv|C = 1

) (
1 − t

)
pcommon > pexplicit

(
Xa, Xv|C = 2

) (
t
)

(1 − pcommon)‍� (29)

Comparing Equation 29 to Equation 25, we can relate terms to get

	﻿‍
pcombined =

(
1−t

)
pcommon(

1−t
)

pcommon+
(

t
)(

1−pcommon
)
‍�

(30)

where the criterion t is a function of ‍pcommon‍, ‍p
explicit
choice ‍ and ‍αtask‍ .

We provide further model derivation and fitting details in Supplementary Materials, Supplemen-
tary file 3, Supplementary file 4. We can also similarly derive the causal inference model for the 
simultaneity judgement by modeling the temporal percepts as Bayesian inference and replacing the 
spatial disparities with temporal disparities. Further details are provided in the Supplementary Mate-
rials, (Supplementary file 5).

Last, as a contrast to the causal inference model (and variants thereof, alternatives A–D presented 
in the main text), for explicit tasks we also fit a functional form, specified by a Gaussian (mean and SD 
as free parameters) plus an additive bias (Figure 3—figure supplement 3). We fit this model to the 
spatial common cause reports (Figure 3A) of control subject. Then, we vary the additive bias, b (see 
Figure 3—figure supplement 3), in attempting to account for the ASD data relative to the control. 
Both the fit to the control data, and to the ASD data relative to the control, were better accounted 
for by the causal inference model (which additionally is a principled one), than the functional form.
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