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High-throughput sequencing technology provides an efficient method for evaluating
microbial ecology. Different bioinformatics pipelines can be used to convert 16S
ribosomal RNA gene amplicon sequencing data into an operational taxonomic unit
(OTU) table that is used to analyze microbial communities. It is important to assess the
robustness of these pipelines, each with specific algorithms and/or parameters, and their
influence on the outcome of statistical tests. Articles with publicly available datasets on the
oral microbiome were searched for, and five datasets were retrieved. These were from
studies on changes in microbiota related to smoking, oral cancer, caries, diabetes, or
periodontitis. Next, the data was processed with four pipelines based on VSEARCH,
USEARCH, mothur, and UNOISE3. OTU tables were rarefied, and differences in a-
diversity and b-diversity were tested for different groups in a dataset. Finally, these results
were checked for consistency among these example pipelines. Of articles that deposited
data, only 57% made all sequencing and metadata available. When processing the
datasets, issues were encountered, caused by read characteristics and differences
between tools and their defaults in combination with a lack of detail in the methodology
of the articles. In general, the four mainstream pipelines provided similar results, but
importantly, P-values sometimes differed between pipelines beyond the significance
threshold. Our results indicated that for published articles, the description of
bioinformatics methods and data deposition should be improved, and regarding
reproducibility, that analysis of multiple subsamples is required when using rarefying as
library-size normalization method.
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INTRODUCTION

The development of massively parallel sequencing technologies
made rapid sequencing of hundreds of samples at unprecedented
depth possible (Schuster, 2008; Caporaso et al., 2011). This
enabled researchers to apply 16S rRNA gene amplicon
sequencing to analyze the composition and dynamics of
complex microbial communities in depth (Woo et al., 2008).
In the past decade, this has provided insights into diverse
microbial communities, ranging from the ocean microbiome
(Moran, 2015; Sunagawa et al., 2015; Mestre et al., 2018) or the
soil microbiome (Fierer, 2017; Bahram et al., 2018; Delgado-
Baquerizo et al., 2021; Xun et al., 2021) to the human
microbiome (Turnbaugh et al., 2007; NIH HMP Working
Group et al., 2009; Crielaard et al., 2011; Cho and Blaser, 2012;
Gilbert et al., 2018).

To date, multiple approaches have been developed to process
16S rRNA gene amplicon sequencing data (Lemos et al., 2017).
The most widely used software tools are USEARCH (Edgar,
2010), VSEARCH (Rognes et al., 2016), QIIME (Caporaso et al.,
2010) [succeeded by QIIME 2 (Bolyen et al., 2019)], and mothur
(Schloss et al., 2009). In addition, interest has grown in high-
resolution clustering and error-correction of the sequences
provided by tools, such as DADA2 (Callahan et al., 2016) and
UNOISE (Edgar, 2016b). During the last years, many other
pipelines combining different tools have been developed, such
as OCToPUS (Mysara et al., 2017), FROGS (Escudié et al., 2018),
PEMA (Zafeiropoulos et al., 2020), AmpliconTagger (Tremblay
and Yergeau, 2019), Natrix (Welzel et al., 2020), and the
MicrobiomeAnalyst platform (Chong et al . , 2020).
Conceptually, the processing pipelines are similar and can be
divided into several steps: (1) paired-read merging; (2) quality
filtering; (3) chimera removal; (4) clustering into operational
taxonomic units (OTUs); and (5) taxonomic classification. After
construction of the OTU table, researchers proceed to analyze
the microbial composition and diversity of the microbial
communities and to further interpret biological phenomena,
for example, the relationship between obesity and gut
microbiota (Komaroff, 2017).

However, algorithms and/or parameters in different
processing pipelines often differ. So far, there is no single gold-
standard pipeline to produce an OTU table (or higher-resolution
count table), which means that both different tools and different
parameters for the same step are being used in different pipelines.

Many existing processing steps have been evaluated, such as
the influence of chimera checking methods (Edgar, 2016a;
Mysara et al., 2017), denoising methods (Bonder et al., 2012;
May et al., 2014), and clustering methods on the OTU table
(Bonder et al., 2012; May et al., 2014; Westcott and Schloss, 2015;
Mysara et al., 2017; Westcott and Schloss, 2017). Another study
has assessed robustness and reproducibility of clustering
methods on OTUs, while varying clustering thresholds
(Schmidt et al., 2015). In addition, entire clustering or
denoising pipelines have also been compared (Westcott and
Schloss, 2015; Mysara et al., 2017; Nearing et al., 2018;
Tremblay and Yergeau, 2019; Prodan et al., 2020). Several of
these studies have shown in detail that both the number and
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composition of OTUs, from the same dataset, depend on the
selected methods.

Here, we focused on the robustness of “final” results, which
means a conclusion drawn from the same sequencing data is
concordant among different processing pipelines [cf. (Schloss,
2018)]. We aimed to evaluate this using several published 16S
rRNA gene amplicon studies and different mainstream pipelines.
We are specifically not evaluating differences in the OTU tables
themselves. We, and several others, have done that in the past
and refer the reader interested in that to the articles cited above.
While different pipelines likely result in different OTU tables due
to their distinct algorithms and parameters, (biological)
conclusions should rather not change. For example, if
microbial profiles differ (significantly) between cases and
controls, this should rather not depend on the pipeline. Thus,
the aim is to look into statistical conclusions based on the
analyses of the microbial profiles originating from several
pipelines run on the same dataset.

To this end, four different pipelines based on VSEARCH,
USEARCH, mothur, and UNOISE3, which are extensively used
for 16S rRNA gene sequence data processing, were implemented;
and publicly available datasets were retrieved and processed with
these pipelines. Our aim is not to perform an exhaustive
comparison of available pipelines. VSEARCH (Rognes et al.,
2016) can be seen as an open-source reimplementation of
USEARCH (Edgar, 2010). Since VSEARCH is used as a
replacement for USEARCH, both tools were included as to see
how their differences affect the final outcome. In addition,
mothur (Schloss et al., 2009) was chosen as an often-used
pipeline with an excellent SOP. Finally, UNOISE3 was selected
as an example of a denoising method. It was found that
UNOISE3 “showed the best balance between resolution and
specificity” (Prodan et al., 2020).

Using the resulting OTU tables, differences in microbial a-
diversity and b-diversity between groups within a study were
evaluated and the results (P-values) compared among the
pipelines, using exactly the same dataset. Since random
subsampling is often used, we also evaluated reproducibility of
results: a collection of subsampled OTU tables was generated as
to compare the distribution of P-values within and between the
pipelines. P-values are used here to illustrate differences among
pipelines and should not be (mis)used to conclude about
scientific importance (Baker, 2016; Wasserstein et al., 2019).
MATERIALS AND METHODS

Dataset Search
Articles on the oral microbiome were searched for, and their
respective datasets were retrieved. To limit the influence of the
16S rRNA region, this study only searched for datasets using the
V4 16S rRNA region, published during the past 5 years (Illumina
MiSeq sequencing). Both sequencing and metadata had to be
publicly available. Initially, articles with deposited datasets were
searched for using the NCBI website as this hosts both PubMed
and the Sequence Read Archive (SRA). PubMed search results
October 2021 | Volume 11 | Article 720637
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were linked to SRA using LinkOut (not possible anymore in the
new PubMed). However, many articles that deposited data in the
SRA, with article title and DOI, were lost in this process due to
incomplete linking between these databases. Therefore, studies
were searched for using Google Scholar with the following query
(February 9, 2019): intitle:oral 16S “V4 region” OR “V4 variable
region” OR “V4 hypervariable region” “accession OR SRA.” The
final papers were screened on reported P-values for comparisons:
at least one test on the microbiome data had to report a P-value
between 0.0001 and 0.05. Finally, sequencing data and metadata
were downloaded from the NCBI.

Pipelines
Four different processing pipelines were built to produce OTUs
tables: a mothur pipeline [version 1.41.3], a VSEARCH [version
2.11.0-linux-x86_64], a USEARCH [version 11.0.667_
i86linux32], and a UNOISE3 [version 11.0.667_i86linux32]
pipeline. Figure 1 presents an overview of the four pipelines,
and Supplementary Table 1 lists their details. In general, each
pipeline used the standard commands with either default or
otherwise well-accepted parameters. For mothur, we followed
the MiSeq Standard Operation Procedure (https://www.mothur.
org/wiki/MiSeq_SOP, d.d. 2019-01-24). We only changed the
value of maxlength in screen.seqs from 275 to 258 as the V4
region has a small length variation and as to use the same value
in all four pipelines. In the VSEARCH, USEARCH, and
UNOISE3 pipelines, the reads were merged and quality-filtered
per sample and then combined into one file. In the (32-bit)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
USEARCH/UNOISE3 pipelines, (64-bit) VSEARCH was used to
dereplicate these quality-filtered sequences. Since the read
lengths in the different studies differed (250 nt, but 150 nt in
dataset 4 only), during merging a maximum of 10% mismatches
in the overlap region was used.

Analysis of OTU Tables
Statistical analyses were conducted with R [version 3.5.1, (R Core
Team, 2018)] and the R packages microbiome [version 1.4.2,
(Lahti and Shetty, 2017)], phyloseq [version 1.26.0, (McMurdie
and Holmes, 2013)], and vegan [version 2.5-4, (Oksanen et al.,
2019)]. The Mann-Whitney test was applied to test for
differences in a-diversity (Shannon diversity index) between
two different sample types, while differences in b-diversity were
assessed using PERMANOVA (adonis, Bray-Curtis distance,
9999 permutations). Spearman’s rank correlation coefficient
was used to correlate the Shannon diversity index between
different pipelines. To evaluate the similarity between OTU
tables (mothur only), a Procrustes Analysis and Mantel test
were conducted with QIIME v1.9.1 (Caporaso et al., 2010)
using the Bray-Curtis distance and 999 permutations.

Random subsampling was used to normalize unequal sample
depth (library size). The subsampling depth for each dataset was
determined such that most samples remained in the analysis,
while adhering to minimum of around 2,000 reads/sample. In
addition, as sample depths depend slightly on the pipeline, the
subsampling depth was chosen such that the OTU tables from
the different pipelines contained the same samples. To assess the
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FIGURE 1 | Overview of the four pipelines compared in this study. See Supplementary Table 1 for details.
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reproducibility of statistical tests, 1,000 random subsamples of
the same OTU table were analyzed.
RESULTS

Different publicly available datasets on the oral niche were
searched for and processed with the VSEARCH, USEARCH,
mothur, and UNOISE3 pipelines. During processing, different
issues were encountered with specific datasets and pipelines that
had to be addressed first. Next, the influence of the pipelines
on diversity comparisons and reproducibility of results
were evaluated.

Dataset Search
The literature search returned 60 articles of which, upon
inspection, many did not satisfy our criteria (see Dataset
Search in Materials and Methods). Out of 53 articles that
included an accession number to, for example, NCBI’s SRA or
the European Nucleotide Archive, 45 studies actually deposited
the raw data, while only 30 included the metadata in the database
or in the article. Finally, 11 studies remained that used the V4 16S
rRNA region and were related to the oral niche (19 studies were
excluded: 14 studies used the V3-V4 region, 1 study used the V1-
V2 region, 1 study the V1-V3 region, 3 studies on gut only).
Based on screening with the P-value criterion, five oral
microbiome studies were selected from these 11 studies. This
criterion was used to restrict our analyses, since results would
unlikely differ for more extreme P-values.

These datasets passing all criteria were the following. Dataset
1 (Stewart et al., 2018) was a study on the effects of tobacco
smoke and electronic cigarette vapor exposure on the oral and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
gut microbiota. Dataset 2 (Schmidt et al., 2014) was on the
relation between oral cancer and oral microbiota, and dataset 3
(Gomez et al., 2017) on the influence of host genetics on caries
using monozygotic and dizygotic twins. Dataset 4 (Xiao et al.,
2017) studied the impact of diabetes on the oral microbiota using
mice, while dataset 5 (Chen et al., 2018) investigated the effects of
periodontitis and its treatment on oral microbiota. Table 1
shows an overview of these datasets. The raw read lengths
were 250 nt, and, for dataset 4 only, 150 nt.

Data Processing
Although it seemed straightforward to process the retrieved
sequence data with one of the pipelines, several unexpected
issues were encountered that were related to the sequence data
in combination with a specific pipeline. The read pairs of dataset
2 could not be merged by VSEARCH and dataset 4 lost 57%
sequences in the mothur pipeline. In addition, mothur could not
cluster the sequences of datasets 3 and 4 into OTUs on our
compute nodes (64 Gb RAM, 16 core CPU: E5-2650 v2 2.60
GHz) within the imposed time limit of 120 h. Finally, the
deposited data of dataset 5 consisted of already merged
read pairs.

Therefore, the processing of these datasets was slightly altered
to address these issues. In dataset 2, the tail of the reverse reads
contained approximately 100 bp low-quality bases (Q <= 2)
preventing the read pairs to be merged by VSEARCH. However,
USEARCH merged these reads, because the used version
automatically trims these low-quality tails (Q <= 2) before
merging (Q <= 2, min. length 64 nt). Therefore, we pre-filtered
dataset 2 using Trimmomatic v.0.38 (Bolger et al., 2014) with
“TAIL:3 MINLEN:64” and used this filtered data as input for
all pipelines.
TABLE 1 | Overview of the five used datasets.

Dataset Accession Study
size

Selected
depth

Species Sample type Sample types

Dataset 1
(Stewart et al.,
2018)

PRJNA413706 90 9,500 Human Saliva, buccal swabs,
feces

Electronic cigarette users, tobacco smokers, and matched
controls

Dataset 2
(Schmidt et al.,
2014)

PRJEB4953 83 22,000 Human Buccal swabs Oral cancer, precancer, and healthy controls

Dataset 3
(Gomez et al.,
2017)

PRJNA383868* 484 2,800 Human Plaque Twins, healthy or with enamel or dentin caries

Dataset 4
(Xiao et al., 2017)

SRP108800 81 1,900 Mouse Saliva, feces Normoglycemic, diabetic, and diabetic IL-17A antibody-
treated mice

Dataset 5
(Chen et al., 2018)

SRP075100 238 7,900 Human Saliva, plaque Chronic periodontitis patients and periodontally healthy adults
Dataset 1 consisted of 90 samples from 30 participants: 10 tobacco smokers (TS), 10 electronic cigarette (EC) users, and 10 non-smoking controls. Fecal, saliva, and buccal swab
samples were collected from each individual. Dataset 2 contained 83 samples divided over three groups: oral cancer (Cancer, n=21; Contralateral normal, n=19), precancer (Precancer,
n=13; Contralateral normal, n=11), and healthy (lateral tongue, n=9; Floor of mouth, n=10) persons. For dataset 3, metadata included 485 dental plaque samples (484 twins and 1
singleton; dizygotic n=280; monozygotic n=205), while this singleton (1061.1_RD1) was not present in the SRA (*accessions: SRR5467515–SRR5467785 and SRR5467788–
SRR5468062). In addition, eight samples did not include zygotic information. Finally, 271 dizygotic (DZ) and 205 monozygotic (MZ) samples remain. Samples from MZ/DZ twins were
compared according to caries status: without dental caries (Health) or enamel/dentin caries, or treated caries. Dataset 4 contained 81 samples (45 oral swab samples and 36 fecal
samples, which should be oral swab samples). Normoglycemic (Pre−Diab NG) and diabetes-prone mice (Pre−Diab DB) before and after (Diab NG; Diab DB) the development of
hyperglycemia were sampled. In the oral swab samples, Normal refers to mice that received oral bacterial from normoglycemic mice, Diabetic to mice that received oral bacterial from
diabetic mice, and Diabetic + IL17 to the mice treated with IL-17A antibodies and oral bacterial from diabetic mice. Dataset 5 comprised 238 samples collected from periodontal healthy
individuals and chronic periodontitis patients: D1P (diseased/pre-treatment plaque n=96), D2P (diseased/post-treatment plaque n=19), HP (healthy plaque n=42), D1S (diseased/pre-
treatment saliva n=45), D2S (diseased/post-treatment saliva n=18), and HS (healthy saliva n=18).
October 2021 | Volume 11 | Article 720637
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From dataset 4, many sequences were removed after the
mothur screen.seqs command on the aligned sequences, in
which the sequences are required to span at least the V4
region (from 1968 to 11550) in the alignment. Manual
inspection showed that many sequences ended one position
early and that the first base call after the V4 (806R) reverse
primer was absent. Therefore, for dataset 4 only, the value of the
end parameter in this screen.seqs command was changed from
11,550 to 11,549 to avoid losing 57% of the sequence data.

In addition, both datasets 3 and 4 contained many singletons.
This caused the OTU clustering to fail in mothur. Therefore,
singletons were removed from datasets 3 and 4 in the mothur
pipeline (split.abund, cutoff=1). For dataset 3, it was also possible
to generate an OTU table with cluster.split (taxlevel=2,
cutoff=0.03). To evaluate the difference between these two
OTU tables (i.e., from cluster.split or singletons removed), they
were compared. Spearman’s correlation of the Shannon
diversities (R = 0.9895, P-value < 2.2e-16), Procrustes Analysis
(M^2 = 0.01; p < 0.001), and the Mantel test (r = 0.98837, P-
value = 0.001) showed that the OTU tables were very similar.
Since dataset 4 could not be processed with cluster.split within
the wall-time limit of 120 h, no comparison could be made and
the dataset with singletons removed was used.

After the modifications described above, all five datasets were
processed with all four pipelines. The total numbers of raw,
merged, quality-filtered reads, and reads mapped to the OTU
table are summarized in Supplementary Table 2. For dataset 4,
the OTU table from mothur contained only 69% of sequences of
the table from the other pipelines. This turned out to be caused
by the removal of non-bacterial sequences (chloroplast,
mitochondria, unknown, archaea, eukaryota) in the SOP
mothur pipeline. Since only dataset 4 contained many non-
bacterial sequences, for all pipelines applied to dataset 4, OTUs
classified as non-bacterial were removed as to make a
fair comparison.

Robustness of Results
For each of the datasets, OTU tables were generated by the
different pipelines. The fraction of quality-filtered mapped reads
represented in the OTU table was similar (datasets 1, 2, 3, 5
combined: average 0.95, standard deviation 0.023; dataset 4:
average 0.60, standard deviation 0.0018; Supplementary
Table 2). However, within a dataset, the number of OTUs
depended on the pipeline, where the mothur pipeline
generated most OTUs. Next, OTU tables were rarefied to avoid
the influence of sample depth differences within one dataset
(Table 1), and the general similarity among these tables from the
pipelines was compared using Spearman’s rank correlation of the
Shannon diversity index. All correlations were high, ranging
from 0.94 to 1.0 (P-values < 2.2e-16).

To evaluate the robustness of a-diversity results, the Shannon
diversity indices of two different sample types present in the
dataset (the original study) were compared for the different
pipelines (Mann-Whitney test; single subsampled OTU table).
A heatmap (Supplementary Figure 1A) shows the resulting P-
values, most of which were similar to the original results. Since
conclusions, thus biological inferences, are more likely to depend
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
on data processing details when P-values are closer to the
significance threshold, we zoomed in on the eight comparisons
that had a P-value below 0.05.

Using the significance threshold of 0.05, five comparisons
resulted in identical biological conclusions, while there were
three conflicts between the four pipelines (Figure 2A).
Recently, studies proposed to lower the significance threshold
to 0.005, which would “immediately improve the reproducibility
of scientific research” (Benjamin et al., 2018; Ioannidis, 2018).
When the significance threshold was lowered to 0.005, one
conflict remained.

Similarly, as to assess the robustness of between-group
differences, the microbial profiles of the two groups of sample
types were subjected to PERMANOVA (Bray-Curtis distance;
Supplementary Figure 1B). In most cases, the P-values were
similar among the different pipelines and to the original results.
Of the 28 comparisons (Supplementary Figure 1B), 17 groups
had P-values below 0.05 (Figure 2B). Similar to the a-diversity
tests, lowering the significance threshold improved robustness.
However, at any significance threshold, differences between
pipelines, here on the same data, can appear (Figure 3).

In some cases, published results differed from ours, which can
also be related to a different distance metric used (datasets 1 and
2 did not use Bray-Curtis). As an example, we take dataset 1,
which was processed by the authors using USEARCH (Stewart
et al., 2018). In our study, the P-values for the fecal microbiota of
controls (Con) versus electronic cigarettes (EC) users slightly
depended on the pipeline (P-value range: 0.03–0.07). However,
the much higher P-value reported by the authors was related to
the weighted UniFrac distance metric. Indeed, when using the
OTU table provided by authors, all PERMANOVA (Bray-Curtis)
results became very similar (Supplementary Figure 1B).

Reproducibility of Results
This study also evaluated the reproducibility, defined here as “re-
analysis with exactly the same pipeline and same dataset
supports an identical conclusion.” To this end, each OTU table
was subsampled 1,000 times, and statistical tests were done as
above, for each of the 1,000 tables, thus providing 1,000 P-values
(boxplots in Figure 3). Since the P-value ranges for a given
pipeline can cross a significance threshold (e.g., Figure 3-1B) or
can be large (Figure 3-2D), care should be taken with reporting
results (publication bias).

Subsampling datasets with a large standard deviation in
sample depths can lead to a larger variation in test results. For
example, within dataset 4, the P-value distribution for UNOISE
of the first comparison (Figure 3-2D; Diab NG vs DB; range:
0.0001–0.0012) differed from other three (e.g., Oral swab normal
vs Diabetic+IL17: 0.001–0.004). In the first comparison, the
median depths of the groups differed a lot (7,666 vs 52,512); in
the latter, they were much closer (11,387 vs 11,572). Thus, when
subsampling, results can show more variation since random
subsamples vary more when subsample depth is low compared
to the sample depth and/or when there is a bias in sample depth
between groups. However, this argument does not hold for, for
example, dataset 5: D2P vs HP and D1P vs HP. Here, all three
sample groups have very similar medians. However, variability
October 2021 | Volume 11 | Article 720637
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can also be caused by biological differences as well as sample size
differences (D2P: 19, D1P: 96, HP: 42 samples). As to exclude
biological and other differences between samples, dataset 1 was
subsampled at a lower depth to illustrate the increased variability
using the same data (Supplementary Figure 2). Not surprisingly,
a lower subsampling depth results in higher variability of
test results.
DISCUSSION

It is difficult to make research sufficiently transparent and
reproducible, especially in interdisciplinary fields such as
microbiome studies (Schloss, 2018). In this study, we evaluated
the robustness and reproducibility of 16S rRNA gene amplicon
studies using four mainstream pipelines.

It was not straightforward to reprocess or reproduce results of
these studies. During our literature search, we encountered many
articles with no or incomplete data availability, even though an
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
accession number was provided: only 57% provided sequencing
data and metadata. In addition, while correct and complete
descriptions of methods and metadata are crucial, they are
often not provided in sufficient detail. Although unclear
descriptions of processing methods were not such an issue in
this work, since we used our own pipelines, phrases like “reads
were quality-filtered” or “clustered using UCLUST” are much
too imprecise.

Due to (implicit) differences between tools used for the
pipelines, we sometimes had to adapt a pipeline to the data at
hand (see Data Processing in Results). For example, in dataset 4,
about 35% of the sequences was taxonomically classified as
chloroplast (40% as non-bacterial). However, in the
corresponding article (QIIME 1 was used), we did not
explicitly find that these sequences were removed, although
that seemed to be the case (Supplementary Figure 3). Clearly,
each dataset requires specific steps, also with respect to quality
filtering, and it is important to be aware of differences among
tools (even related ones as USEARCH and VSEARCH, or
different versions of the same tool).
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FIGURE 2 | Overview of P-values of the five datasets sorted on decreasing average P-value. The first number before the colon indicates the dataset. Cluster.split is
an alternative mothur pipeline used only for dataset 3. (A) P-values of Mann-Whitney tests on the Shannon diversity index (a-diversity) and (B) P-values of PERMANOVA
(Bray-Curtis distance, b-diversity) tests between two sample types. In (A), at a threshold of 0.05, once VSEARCH differed from the other pipelines, once USEARCH, and
once mothur and USEARCH differed from VSEARCH and UNOISE3. At a threshold of 0.005, there was one conflict (USEARCH). In (B) at 0.05, there were four conflicts:
once mothur and UNOISE3 were the same, but differed from USEARCH and VSEARCH, once UNOISE3, once USEARCH, once VSEARCH.
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The pipelines resulted in a different number of OTUs, which
is not surprising. Nearing et al. (2018) reported that several
denoising pipelines largely influenced a-diversity (observed
OTUs) and possibly impact results based on a-diversity, while
the weighted b-diversity metrics (Bray-Curtis, weighted
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
UniFrac) were very similar among different pipelines. When
comparing the results of tests on diversity, i.e., the distribution of
P-values between pipelines and within a pipeline (Figures 2, 3),
tests on a-diversity (Shannon) seem to show a larger variation
than on b-diversity (Bray-Curtis, PERMANOVA).
A

A

B

B

D E

C

C

FIGURE 3 | Panel 1 shows the distribution of P-values of Mann-Whitney tests on the Shannon diversity index between the indicated two sample types for 1,000
random subsamples in (A) dataset 1, (B) dataset 4, and (C) dataset 5. Panel 2 shows the distribution of P-values of PERMANOVA (Bray-Curtis distance) tests for
1,000 random subsamples in datasets 1 to 5 (A–E). Cluster.split is an alternative mothur pipeline used only for dataset 3 (C).
October 2021 | Volume 11 | Article 720637

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Kang et al. Reprocessing Publicly Available Datasets
Irrespective of the above, some differences related to tests on
a-diversity were initially unexpected, such as between
USEARCH and VSEARCH (e.g., Shannon diversity in
Figure 2A, datasets 1 and 5). Since VSEARCH can be seen as
an open-source USEARCH, it was hypothesized that this
difference was caused mainly by the different method of
chimera checking in these pipelines: USEARCH performs this
during clustering, while with VSEARCH this was done before
clustering (uchime_denovo). To analyze this, dataset 1 was
processed with a VSEARCH pipeline in which the chimera-
checking method was replaced by USEARCH (cluster_otus).
Indeed, now the test results were more similar to those of
USEARCH (Supplementary Figure 4). Thus, in this case, the
results for Shannon diversity seem to be sensitive to chimera-
detection methods. According to a previous study, different
chimera-detection methods influenced the accuracy of
clustering (May et al., 2014). The result of this study further
demonstrated that differences in chimera-checking methods also
affected robustness. For these datasets, DADA2, which has a
different chimera-checking method, can also show differences
due to false positive chimeras (Edgar, 2016b).

The ranges of P-values, based on the 1,000 subsampled OTU
tables, sometimes exceeded a significance threshold. This showed
that when OTU tables are rarefied, reproducibility can be
affected. A P-value of 0.06 does not really differ from 0.04 [cf.
(Halsey et al., 2015)], and larger differences occur using exactly
the same data (Figure 3). At lower subsampling depth, with
respect to the median sample depth of a group, and/or when
depths have large standard deviation, reproducibility can
decrease. Especially in such cases, given rarefying is the chosen
normalization method, multiple randomly subsampled OTU
tables should be evaluated, and the median P-value be used.

Here, rarefying, which is still very often used, was applied to
normalize library size. The comparison of normalization
methods was beyond the scope of this study, but we note that
different methods are available [proportion, CSS, log-ratio,
TMM, cf. Weiss et al. (2017)]. While McMurdie and Holmes
(2014) stated rarefying should not be used to detect differentially
abundant species and better be generally avoided, Weiss et al.
(2017) later reported that rarefying itself seemed not to increase
false discovery rates of many differential abundance-testing
methods, and even lowered the false discovery rate when the
average library size for groups differed a lot (~10×). While it is
not straightforward which normalization method should best be
used, even though data normalization methods now receive
ample attention, we should not forget “subsampling” occurs
several times during experimental procedures, ranging from
biological sampling, dilution of DNA for amplicon PCR, to
generating the equimolar mix for sequencing.

Irrespective of the normalization technique, care should be
taken with PERMANOVA. As stated with its introduction
(Anderson, 2001), calculating all possible permutations usually
is unrealistic, considering computational time. However,
increasing the number of permutations improves the precision
of the P-value (Anderson, 2001). With a lower number of
permutations (e.g., 999 instead of 9,999), the range of P-values
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
(using same OTU table) increases, which can affect
reproducibility. This then shows that the permutation space is
too undersampled and the number of permutations should be
increased (cf. page 37 in Anderson, 2001). Thus, PERMANOVA
should be repeated as to check the P-value varies little.

This study did not evaluate the differences caused by the use
of different diversity indices (e.g., species richness, Chao1
richness, Shannon index) or distance metrics [(weighted)
UniFrac, Bray-Curtis, Jaccard], since these are different
downstream choices. When evaluating results from published
studies, we should remember that different a-diversity indices or
b-diversity metrics can lead to different conclusions. However,
here, the focus was on whether different conclusions would result
from different amplicon processing pipelines.

Although QIIME 1 also was often used, it has not been
supported since 2018, and we did not include it as to keep
comparisons concise. In addition, based on previous studies, the
default QIIME 1 pipeline has higher error rates due to chimeras
and higher amount of spurious OTUs comparing with others
(Mysara et al., 2017; Prodan et al., 2020). We, therefore, only
compared VSEARCH, USEARCH, mothur, and UNOISE3 in
this article as example pipelines, to limit variations and maintain
focus, but note that QIIME 2 also supports a VSEARCH pipeline.

In general, results of the four pipelines were robust and
reproducible, with some conflicts around the 0.05 threshold
(Figure 2). The choice of 0.05 as P-value threshold was
arbitrary, and it was proposed to lower the P-value threshold
to 0.005 to “improve reproducibility of scientific research”
among studies (Benjamin et al., 2018; Ioannidis, 2018).
However, a different, sometimes related, pipeline for the same
dataset (study) resulted in different P-values. Although we
cannot conclude that a lower threshold should be used, we
should keep in mind that P-values just below 0.05 may not be
very robust or reproducible, and a lower threshold also comes at
a cost (Di Leo and Sardanelli, 2020). Irrespective of the used
thresholds, we recommend that real P-values are always reported
(not as: “P<0.05”).

In our limited exploratory analysis, we did not find that
clustering methods consistently differed to the denoising
method. With the introduction of UNOISE, Robert Edgar
stated, “I suggest you try both. If a biological conclusion is
different, then you should worry that neither result is
trustworthy” (Edgar, 2019). Yet, it is important to realize that
using the same sequencing data, (1) results among pipelines can
differ; (2) it will often not be straightforward to uncover why
specific differences occur; (3) generally a single pipeline is used,
so differences will remain unnoticed. In addition, other measures
than P-values can be considered as these show large sample-to-
sample variability and have other issues (Halsey et al., 2015;
Wasserstein et al., 2019). Nevertheless, a discussion on the use P-
values is beyond the scope of this article, and there is no
consensus this subject (Halsey et al., 2015; Ioannidis, 2018;
Ioannidis, 2019; Wasserstein et al., 2019; Di Leo and
Sardanelli, 2020).

In summary, we conclude the following: Sequencing data and
metadata should be properly deposited and journals should
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check if data have actually been made publicly available. Not
surprisingly, different pipelines can lead to different statistical
conclusions; thus, methods should be described in detail and
include software versions, algorithms, and parameters used.
While “the only direct protection [to the threat of selection
bias] must come from standards for reproducible research
(Ioannidis, 2019)”, microbiome research and its data processing
highly depend on wet- and dry-lab technology, and even if
standards would exist, they would repeatedly (need to) change
(Amaral and Neves, 2021). This means that more care should be
taken to share methods and (raw) data.
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Versatile Open Source Tool for Metagenomics. PeerJ 4, e2584. doi: 10.7717/
peerj.2584

Schloss, P. D. (2018). Identifying and Overcoming Threats to Reproducibility,
Replicability, Robustness, and Generalizability in Microbiome Research. mBio
9, e00525–e00518. doi: 10.1128/mBio.00525-18

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B.,
et al. (2009). Introducing Mothur: Open-Source, Platform-Independent,
Community-Supported Software for Describing and Comparing Microbial
Communities. Appl. Environ. Microbiol. 75, 7537–7541. doi: 10.1128/
AEM.01541-09

Schmidt, B. L., Kuczynski, J., Bhattacharya, A., Huey, B., Corby, P. M., Queiroz, E.
L., et al. (2014). Changes in Abundance of Oral Microbiota Associated With
Oral Cancer. PLoS One 9, e98741. doi: 10.1371/journal.pone.0098741
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
Schmidt, T. S. B., Matias Rodrigues, J. F., and von Mering, C. (2015). Limits to
Robustness and Reproducibility in the Demarcation of Operational Taxonomic
Units. Environ. Microbiol. 17, 1689–1706. doi: 10.1111/1462-2920.12610

Schuster, S. C. (2008). Next-Generation Sequencing Transforms Today's Biology.
Nat. Methods 5, 16–18. doi: 10.1038/nmeth1156

Stewart, C. J., Auchtung, T. A., Ajami, N. J., Velasquez, K., Smith, D. P., de la
Garza, R.2nd, et al. (2018). Effects of Tobacco Smoke and Electronic Cigarette
Vapor Exposure on the Oral and Gut Microbiota in Humans: A Pilot Study.
PeerJ 6, e4693. doi: 10.7717/peerj.4693

Sunagawa, S., Coelho, L. P., Chaffron, S., Kultima, J. R., Labadie, K., Salazar, G.,
et al. (2015). Structure and Function of the Global Ocean Microbiome. Science
348:1261359. doi: 10.1126/science.1261359

Tremblay, J., and Yergeau, E. (2019). Systematic Processing of Ribosomal RNA
Gene Amplicon Sequencing Data. Gigascience 8, giz146. doi: 10.1093/
gigascience/giz146

Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C. M., Knight, R., and
Gordon, J. I. (2007). The Human Microbiome Project. Nature 449, 804–810.
doi: 10.1038/nature06244

Wasserstein, R. L., Schirm, A. L., and Lazar, N. A. (2019). Moving to aWorld Beyond
"P < 0.05". Am. Statistician 73 (sup1), 1–19. doi: 10.1080/00031305.2019.1583913

Weiss, S., Xu, Z. Z., Peddada, S., Amir, A., Bittinger, K., Gonzalez, A., et al. (2017).
Normalization and Microbial Differential Abundance Strategies Depend Upon
Data Characteristics. Microbiome 5, 27. doi: 10.1186/s40168-017-0237-y

Welzel, M., Lange, A., Heider, D., Schwarz, M., Freisleben, B., Jensen, M., et al.
(2020). Natrix: A Snakemake-Based Workflow for Processing, Clustering, and
Taxonomically Assigning Amplicon Sequencing Reads. BMC Bioinf. 21, 526.
doi: 10.1186/s12859-020-03852-4

Westcott, S. L., and Schloss, P. D. (2015). De Novo Clustering Methods Outperform
Reference-Based Methods for Assigning 16S rRNA Gene Sequences to
Operational Taxonomic Units. PeerJ 3, e1487. doi: 10.7717/peerj.1487

Westcott, S. L., and Schloss, P. D. (2017). OptiClust, An Improved Method for
Assigning Amplicon-Based Sequence Data to Operational Taxonomic Units.
mSphere 2, e00073–e00017. doi: 10.1128/mSphereDirect.00073-17

Woo, P. C. Y., Lau, S. K. P., Teng, J. L. L., Tse, H., and Yuen, K.-Y. (2008). Then
and Now: Use of 16S rDNA Gene Sequencing for Bacterial Identification and
Discovery of Novel Bacteria in Clinical Microbiology Laboratories. Clin.
Microbiol. Infect. 14, 908–934. doi: 10.1111/j.1469-0691.2008.02070.x

Xiao, E., Mattos, M., Vieira, G. H. A., Chen, S., Correa, J. D., Wu, Y., et al. (2017).
Diabetes Enhances IL-17 Expression and Alters the Oral Microbiome to
Increase Its Pathogenicity. Cell Host Microbe 22, 120–128.e124. doi: 10.1016/
j.chom.2017.06.014

Xun, W., Liu, Y., Li, W., Ren, Y., Xiong, W., Xu, Z., et al. (2021). Specialized
Metabolic Functions of Keystone Taxa Sustain Soil Microbiome Stability.
Microbiome 9, 35. doi: 10.1186/s40168-020-00985-9

Zafeiropoulos, H., Viet, H. Q., Vasileiadou, K., Potirakis, A., Arvanitidis, C.,
Topalis, P., et al. (2020). PEMA: A Flexible Pipeline for Environmental DNA
Metabarcoding Analysis of the 16S/18S Ribosomal RNA, ITS, and COI Marker
Genes. Gigascience 9, giaa022. doi: 10.1093/gigascience/giaa022

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Kang, Deng, Crielaard and Brandt. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
October 2021 | Volume 11 | Article 720637

https://doi.org/10.1038/nmeth.3288
https://doi.org/10.1001/jama.2018.1536
https://doi.org/10.1080/00031305.2018.1447512
https://doi.org/10.1080/00031305.2018.1447512
https://doi.org/10.1001/jama.2016.20099
http://microbiome.github.com/microbiome
https://doi.org/10.1093/bioinformatics/btu085
https://doi.org/10.1093/bioinformatics/btu085
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.1371/journal.pcbi.1003531
https://doi.org/10.1073/pnas.1802470115
https://doi.org/10.1073/pnas.1802470115
https://doi.org/10.1126/science.aac8455
https://doi.org/10.1093/gigascience/giw017
https://doi.org/10.1093/gigascience/giw017
https://doi.org/10.7717/peerj.5364
https://doi.org/10.1101/gr.096651.109
https://CRAN.R-project.org/package=vegan
https://doi.org/10.1371/journal.pone.0227434
https://www.R-project.org/
https://doi.org/10.7717/peerj.2584
https://doi.org/10.7717/peerj.2584
https://doi.org/10.1128/mBio.00525-18
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1371/journal.pone.0098741
https://doi.org/10.1111/1462-2920.12610
https://doi.org/10.1038/nmeth1156
https://doi.org/10.7717/peerj.4693
https://doi.org/10.1126/science.1261359
https://doi.org/10.1093/gigascience/giz146
https://doi.org/10.1093/gigascience/giz146
https://doi.org/10.1038/nature06244
https://doi.org/10.1080/00031305.2019.1583913
https://doi.org/10.1186/s40168-017-0237-y
https://doi.org/10.1186/s12859-020-03852-4
https://doi.org/10.7717/peerj.1487
https://doi.org/10.1128/mSphereDirect.00073-17
https://doi.org/10.1111/j.1469-0691.2008.02070.x
https://doi.org/10.1016/j.chom.2017.06.014
https://doi.org/10.1016/j.chom.2017.06.014
https://doi.org/10.1186/s40168-020-00985-9
https://doi.org/10.1093/gigascience/giaa022
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles

	Reprocessing 16S rRNA Gene Amplicon Sequencing Studies: (Meta)Data Issues, Robustness, and Reproducibility
	Introduction
	Materials and Methods
	Dataset Search
	Pipelines
	Analysis of OTU Tables

	Results
	Dataset Search
	Data Processing
	Robustness of Results
	Reproducibility of Results

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


