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Viruses have often evolved overlapping reading frames in order to maximize their coding

capacity. Until recently, the segmented dsRNA genome of viruses of the Orbivirus genus was

thought to be monocistronic, but the identification of the bluetongue virus (BTV) NS4 protein

changed this assumption. A small ORF in segment 10, overlapping the NS3 ORF in the +1

position, is maintained in more than 300 strains of the 27 different BTV serotypes and in more

than 200 strains of the phylogenetically related African horse sickness virus (AHSV). In BTV,

this ORF (named S10-ORF2 in this study) encodes a putative protein 50–59 residues in length

and appears to be under strong positive selection. HA- or GFP-tagged versions of S10-ORF2

expressed from transfected plasmids localized within the nucleoli of transfected cells, unless a

putative nucleolar localization signal was mutated. S10-ORF2 inhibited gene expression, but not

RNA translation, in transient transfection reporter assays. In both mammalian and insect cells,

BTV S10-ORF2 deletion mutants (BTV8DS10-ORF2) displayed similar replication kinetics to wt

virus. In vivo, S10-ORF2 deletion mutants were pathogenic in mouse models of disease.

Although further evidence is required for S10-ORF2 expression during infection, the data

presented provide an initial characterization of this ORF.
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INTRODUCTION

Bluetongue is a haemorrhagic infectious disease of rumin-
ants, transmitted from animal to animal via an insect
vector, Culicoides spp., during a blood meal from viraemic
hosts (Mellor et al., 2009). The disease is caused by Blueton-
gue virus, a member of the Orbivirus genus within the
family Reoviridae. In livestock, bluetongue is predomin-
antly a disease of sheep resulting in severe morbidity
and in some cases high mortality (Mellor et al., 2009).
Infection of other domestic and wild ruminants may
result in clinical disease although infection is often
subclinical or asymptomatic (Barratt-Boyes & MacLachlan,
1995; Caporale et al., 2014; Coetzee et al., 2013; Darpel
et al., 2007; Dercksen et al., 2007; Henrich et al., 2007;
Maclachlan et al., 2009; Mauroy et al., 2008; Meyer
et al., 2009). Traditionally, bluetongue occurred almost
exclusively in tropical and subtropical geographical areas.
However, in the past 20 years there has been an expansion
and incursions of several bluetongue virus (BTV) serotypes

into more temperate areas such as Southern Europe, where
it is now considered enzootic, and Central Europe (Elbers
et al., 2008a, b).

BTV possesses a dsRNA genome consisting of ten segments
that encode seven structural and four non-structural pro-
teins (Belhouchet et al., 2011; Ratinier et al., 2011; Roy &
Noad, 2006). The virus is organized in a double-capsid
structure; VP2 and VP5 make up the outer capsid of the
virus and are involved in virus entry (Gouet et al., 1999;
Grimes et al., 1998; Roy, 2008). VP2 determines the BTV
serotype, of which there are 27 described to date (Huis-
mans & Erasmus, 1981; Jenckel et al., 2015; Kahlon et al.,
1983; Shaw et al., 2013). The viral core is composed of
the inner capsid proteins (VP3 and VP7), the replication
complex (VP1, VP4 and VP6) and the dsRNA genome seg-
ments. Four non-structural viral proteins (NS1–NS4) are
only expressed in infected cells and have essential functions
in virus replication and in modulating host cell responses
to virus infection (Belhouchet et al., 2011; Ratinier et al.,
2011; Roy, 2008).

NS1 enhances viral protein synthesis and forms tubules in
the cytoplasm of infected cells (Boyce et al., 2012; Monas-
tyrskaya et al., 1995; Owens et al., 2004). NS2 is the major
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component of viral inclusion bodies that are readily
observed in BTV-infected cells (Butan & Tucker, 2010;
Kar et al., 2007; Lymperopoulos et al., 2006). NS3 assists
viral egress from infected cells (Beaton et al., 2002; Celma
& Roy, 2009; Doceul et al., 2014; Vitour et al., 2014) and
it has also been suggested to counteract the host innate
immune response by downregulating activation of the
IFN-b promoter in reporter assays (Chauveau et al.,
2013). The most recent BTV protein to be identified was
NS4. The genome of BTV and other orbiviruses was
thought to be monocistronic (i.e. ten genome segments
encoding ten proteins) until the recent characterization
of NS4, which is encoded in the +1 reading frame of seg-
ment 9 (Belhouchet et al., 2011; Firth, 2008; Ratinier et al.,
2011). NS4 localizes within the nucleolus of infected cells
and has been shown to modulate the host IFN response
by favouring viral replication in vitro in cells pre-treated
with type I IFN (Ratinier et al., 2011).

In this study, we show that the BTV genome segment 10 is
also bicistronic and potentially expresses a small protein,
with a putative nucleolar localization that does not, how-
ever, affect either viral replication in vitro or pathogenicity
in vivo in mouse models of bluetongue.

RESULTS

An additional ORF in BTV genomic segment 10
inhibits gene expression in reporter assays

The starting point of this study was to investigate the role of
NS3/NS3a in the general inhibition of cellular gene
expression. A previous study showed that NS3, besides play-
ing a role in virus trafficking and egress (Beaton et al., 2002;
Celma & Roy, 2009), was also able to inhibit the IFN-b pro-
moter in reporter assays (Chauveau et al., 2012). NS3 trans-
lation initiates from both the first AUG (M1) and the second
one (M14), resulting in two isoforms of the protein, referred
to as NS3 and NS3a (Fig. 1a). Here, we show using reporter
assays that BTV-8 NS3 also inhibits firefly luciferase (FFLuc)
expression driven by the human cytomegalovirus (CMV)
immediate early promoter (pCMV-FFluc) (Fig. 1a, b).
In order to assess the effects of NS3/NS3a on host cell
gene expression, CPT-Tert cells were co-transfected with
pCMV-FFluc together with a series of plasmids expressing
NS3 (pNS3) or NS3a (pNS3a), or expressing NS3 with
the first two (pNS3MutA), three (pNS3MutB), four
(pNS3MutC) or five (pNS3MutD) codons encoding meth-
ionine residues mutated into codons encoding alanine resi-
dues (Fig. 1a and Methods). Reporter gene expression was
significantly reduced in the presence of NS3 and all NS3 vari-
ants but not in the presence of an expression plasmid for the
BTV NS2 protein (pNS2) used as control (1-way ANOVA,
Pv0.0001; Fig. 1b). However, by Western blotting, we
could detect NS3-derived bands in lysates obtained with
cells transiently transfected with pNS3 or pNS3a, but we
were unable to detect any truncated forms of NS3 expressed
from pNS3MutA–D (Fig. 1c).

By computational analyses of BTV-8 segment 10, we noticed
the presence of an alternative reading frame in the +1 pos-
ition compared with the NS3 ORF. It potentially expressed a
polypeptide 59 residues in length (Fig. 1a) that we refer to
from now on as ‘S10-ORF29. We repeated the luciferase
based reporter assays using constructs expressing NS3
(pNS3, which included also S10-ORF2), S10-ORF2 only
(pS10-ORF2), NS3 only by interrupting S10-ORF2
(pNS3DS10-ORF2, pNS3DS10-ORF2s) or none of these
proteins (pDNS3DS10-ORF2) (see Methods). As shown in
Fig. 1d, constructs expressing NS3, S10-ORF2, NS3DS10-
ORF2 and NS3DS10-ORF2s were all able to significantly
decrease reporter gene expression (1-way ANOVA,
Pv0.0001; Fig. 1d). No effect on luciferase activity relative
to empty plasmid control was observed when cells were
transfected with pDNS3DS10-ORF2 or pNS2 expression
constructs. Both NS3 and S10-ORF2 exerted inhibitory
effects on reporter gene expression that were dose dependent
and comparable to each other (Fig. 1e). In addition, the
inhibitory effects of NS3 and S10-ORF2 on gene expression
were not limited to reporter genes driven by the CMV
immediate early promoter but they were equally efficient
with other promoters such as SV40 and IFN-b (1-way
ANOVA, Pv0.0001) (Fig. 1f).

We also assessed whether S10-ORF2 affected protein trans-
lation by co-transfecting CPT-Tert cells with Renilla luci-
ferase RNA and either pS10-ORF2, pNS3 or an empty
plasmid. No inhibitory effect on Renilla luciferase activity
was detected in the presence of BTV S10-ORF2, suggesting
that this protein had little to no effect on cellular trans-
lation. We noticed, however, a statistically significant
decrease of luciferase signal in pNS3 transfected cells,
suggesting that the NS3 inhibitory activity may be at the
translational level (1-way ANOVA, P50.0096) (Fig. 1g).

S10-ORF2 is under strong positive selection and
is maintained in several BTV strains

The data above suggested that segment 10 might encode a
previously uncharacterized functional protein. Interest-
ingly, S10-ORF2 was conserved in more than 300
sequences of BTV segment 10 deposited in GenBank at
the time of this study. We applied different selection ana-
lyses on all the four BTV non-structural proteins and on
S10-ORF2. It was apparent that BTV genes encoding
non-structural proteins NS1, NS2, NS3 and NS4 are
under strong purifying selection with an average dN/dS
ratio below unity (Table 1). S10-ORF2, on the other
hand, appears to be under strong positive selection. NS1,
NS2, NS3 and NS4 have a majority of sites under negative
selection while S10-ORF2 has more than a third of sites
under positive selection (Fig. 2, Table 1). The correspond-
ing gene region of S10-ORF2 in the overlapping NS3 ORF
is under negative selection with the 59-end showing evi-
dence of neutral selection. Thus, there is greater negative
selection for NS3 than for the overlapping region of S10-
ORF2.

Alternative reading frame in BTV genome segment 10
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Phylogenetic analysis showed that NS3 and S10-ORF2
sequences from BTV cluster into four distinct clades
(Fig. 3a). As the reporter assays shown in Fig. 1 were under-
taken with the S10-ORF2 from the North European strain
of BTV-8, we performed reporter assays using S10-ORF2
from four other BTV strains (BTV-1, BTV-23, BTV-25 and

BTV-26), representing the four distinct phylogenetic groups
of NS3, to determine if there was functional conservation
(Fig. 3a, b). Despite sequence variability, all the S10-ORF2
sequences tested retained the ability to inhibit gene expression
in reporter assays at levels comparable to the BTV-8 S10-
ORF2 (1-way ANOVA, Pv0.0001; Fig. 3c).
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Fig. 1. Identification of a functional ORF in BTV-8 segment 10. (a) Schematic representation of BTV-8 segment 10. The 59
and 39 UTRs are in black, the potential methionine (AUG) start codons within the NS3 ORF (red) prior to the first transmem-
brane domain are indicated above the ORF. The S10-ORF2 is indicated in blue along the potential start codons. (b) Effect of
NS3 and NS3 mutants in reporter assays as described in Methods. Values (%) relative to the pCI control are plotted. (c)
Western blot assessing the expression of NS3, NS3A and NS3 mutants in transfected CPT-Tert cells. (d) Effect of S10-
ORF2 on luciferase activity. CPT-Tert cells were co-transfected with constructs expressing either NS2, NS3, S10-ORF2 or
deletion versions of these along with pCMV-FFluc. Values (%) relative to the pCI control are plotted. (e) Dose dependent
effect of S10-ORF2 and NS3 expression on luciferase activity. CPT-Tert cells were transfected as in (d) but with varying
quantities of the NS3 or S10-ORF2 plasmids. (f) Influence of S10-ORF2 on reporter expression under the control of different
promoters (CMV, SV40 and IFN-b). (g) Effect of S10-ORF2 and NS3 expression on Renilla luciferase expression from an
in vitro transcribed mRNA. Values (%) are relative to the pCI control. (b-g) Error bars represent the SD from three indepen-
dent experiments.
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We then assessed the orbivirus sequences deposited in Gen-
Bank for a coding region equal to or greater than 40 resi-
dues in length; we found that the S10-ORF2 ORF was
maintained in African horse sickness virus (AHSV) as
well as other viruses transmitted by midges and ticks,
including in Kemerovo, Pata and Great Island viruses
(Table 2). The S10-ORF2 ORF was not maintained in
other orbiviruses such as equine encephalosis virus (EEV)
or epizootic hemorrhagic disease virus (EHDV).

Protein encoded by the S10-ORF2 localizes to the
nucleolus in transfected cells

We next analysed the localization of S10-ORF2 within trans-
fected cells by confocalmicroscopy. SheepCPT-Tert cellswere
transiently transfected with a plasmid expressing S10-ORF2
tagged with an HA epitope at its N- or C-terminus (pHA-
S10-ORF2 and pS10-ORF2-HA, respectively). We observed
that S10-ORF2 localized to the nucleus, and more specifically
to the nucleolus, as it co-localized with the B23 nucleolar pro-
tein (Fig. 4). To ensure that the nucleolus localization of S10-
ORF2was not due to its passive diffusion through the nuclear
pores (given the small size of this protein),we fused S10-ORF2
with green fluorescent protein (GFP) at its C-terminal end
(pS10-ORF2-GFP). S10-ORF2–GFP also localized in the
nucleolus (Fig. 4a).We thendeleted a putative nucleolar local-
ization signal (NoLS) in S10-ORF2 (Fig. 4b) by substituting
amino acid residues 40–44 (HKRRR) into alanine residues
(AAAAA) (Scott et al., 2011). Disruption of these residues
altered the localization of the resulting S10-ORF2 mutant
(S10-ORF2DNoLS), which was observed to be dispersed
widely in the cytoplasm and nucleus of the transfected cell
(Fig. 4b). In addition, S10-ORF2DNoLS did not inhibit gene
expression in reporter assays (Fig. 4c).

A rabbit polyclonal antiserum raised against recombinant
S10-ORF2 unfortunately was not able to detect expression
of this protein in either BTV infected cells or in cells trans-
fected with pS10-ORF2 or pS10-ORF2HA by either West-
ern blotting or immunofluorescence (data not shown).
We therefore derived a specific reporter construct of the
size of BTV segment 10 (pS10-NLuc), in order to experi-
mentally test whether the S10-ORF2 can be translated
within the context of segment 10 (Fig. 5). This plasmid
included the 59 terminal 164 nt of segment 10 fused to

the luciferase (nanoluc) gene followed by the 39 terminal
145 nt of segment 10. pS10-Nluc has a T7 promoter and
RNA transcribed in vitro from this plasmid is identical in
length (and shares the same 59 and 39 termini) to wt
BTV-8 Seg10 (Fig. 5a). RNA of pS10-Nluc is expected to
encode the first 48 residues of NS3 and also (in the +1
ORF) the N-terminal 19 residues of S10-ORF2 fused to
nanoluc. Importantly, the luciferase gene used for this con-
struct does not contain its own start codon so that its trans-
lation is expected to initiate from either M1 or M10 of
S10-ORF2. Using reporter assays, we have indeed detected
luciferase expression (103- to 104-fold above background)
in CPT-Tert cells transfected with in vitro transcribed RNA
from pS10-NLuc (Fig. 5b), suggesting that the S10-ORF2
can be translated within the context of segment 10.

S10-ORF2 is dispensable for BTV replication in
mammalian cells and is not an IFN antagonist

In order to determine the role of S10-ORF2 during virus
replication, we rescued by reverse genetics two BTV-8
S10-ORF2 deletion mutants: BTV8DS10-ORF2 and
BTV8DS10-ORF2s. Both mutants induced plaques similar
to those induced by wt BTV-8 (Fig. 6a). The migration
profiles of the dsRNA genome of BTV8DS10-ORF2 and
BTV8DS10-ORF2s were comparable to wt BTV-8 and
sequence analysis revealed that there were no reversions
or compensatory mutations within segment 10 (data not
shown). We then carried out a series of virus replication
assays in different cells, which included sheep CPT-Tert,
primary ovine endothelial (ovEC) and fibroblast cells
(ovFib), human A549 and culicoides KC cells. There was
no significant difference in the replication kinetics of the
S10-ORF2 deletion mutants in either CPT-Tert cells,
which are IFN incompetent, or in ovine primary cells
and the human A549 cell line. There was also no significant
difference in the replication kinetics of all the viruses in the
insect KC cell line. Although both BTV8DS10-ORF2 and
BTV8DS10-ORF2s displayed consistently relatively lower
titres than those reached by BTV-8 wt at 48 h post infection
(p.i.) the difference had disappeared at 72 h p.i. (Fig. 6b).

As S10-ORF2 had the ability to shut down gene expression
in reporter assays and localized to the same cellular com-
partment as NS4, we investigated whether it acted to sup-
press the IFN response during BTV infection. We carried
out interferon protection assays using wt BTV-8 and the
BTV-8 S10-ORF2 mutants (BTV8DS10-ORF2 and
BTV8DS10-ORF2s) (Fig. 6c) and found that all viruses
induced the synthesis of similar amounts of IFN in infected
primary endothelial cells, suggesting that S10-ORF2 does
not regulate the type I induction pathways (Fig. 6c).

S10-ORF2 mutant viruses are lethal in
experimental mouse models of disease

Wenext assessedwhether S10-ORF2 had an influence onBTV
induced pathogenicity in vivousing establishedmousemodels

Table 1. Selection pressure analysis on the ORFs of non-
structural proteins of bluetongue virus

Protein Sequences

analysed

(n)

Size

(aa)

dN/dS Positively

selected

Negatively

selected

NS1 170 553 0.0767374 1 430

NS2 329 355 0.107094 0 224

NS3 330 230 0.0745804 0 174

NS4 159 78 0.109711 0 42

S10-ORF2 314 59 6.98739 21 1

Alternative reading frame in BTV genome segment 10
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of disease (Calvo-Pinilla et al., 2009; Caporale et al., 2011;
Franchi et al., 2008; Janowicz et al., 2015). NIH-Swiss mice
(3- to 4-day-old) were infected intracerebrally with 300
p.f.u. of either wt BTV-8, BTV8DS10-ORF2 or BTV8DS10-
ORF2s (Fig. 6d). In parallel, adult 129sv IFNAR(2/2) (n55)

mice were infected intraperitoneally with 100 p.f.u. of the
same viruses in each group (Fig. 6e). The experiment was per-
formed twice using virus stocks produced independently. All
mock-infected animals survived for the entire course of the
experiment. As expected, in both experiments wt BTV-8
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induced lethal disease in approximately 90 % of the infected
mice by day 8–10 p.i. BTV8DS10-ORF2 and BTVDS10-
ORF2s- infected animals showed essentially the same
phenotype as the mice infected with wt virus. BTVDS10-
ORF2s-infected animals appeared to have a slightly more
rapid onset of disease (log rank test P50.0024 in experiment
1 and P50.0014 in experiment 2), although these small
differences are of no apparent biological significance (Fig. 6d).
BTV-8, BTV8DS10-ORF2 and BTV8DS10-ORF2s induced
lethal disease in 100 % of 129sv IFNAR(2/2) mice between
days 6 and 8 p.i. in both experiments.

DISCUSSION

In this paper we investigated a previously uncharacterized
small ORF in segment 10 of BTV, which overlaps with

the major ORF encoding NS3. In the past few years, a
growing body of evidence has been accumulated on the
biological role of alternative reading frames in various gen-
omes of viruses, bacteria and vertebrates (Bazzini et al.,
2014; Jaber & Yuan, 2013; Mohan & Atreya, 2001; Slavoff
et al., 2013; Storz et al., 2014). Many viruses condense
and conserve the maximum amount of information
within their small genomes through the use of overlapping
genes. Some members of the Reoviridae possess one or
more genomic segments containing two or more ORFs
(Guzmán et al., 2007; Suzuki et al., 1996; Voon et al.,
2011). The mechanism of translation initiation and
expression of these gene products occurs through both
leaky scanning and scanning independent mechanisms
(Belli & Samuel, 1993; Firth & Brierley, 2012; Racine
et al., 2007). Until recently, the genome segments of

150

BTV-8NET

20 40

(a)

(b)

(c)

BTV-8NET

BTV-23
BTV-1RSA

BTV-25
BTV-26

BTV-2
5

BTV-1RSA

BTV-23

BTV-26

S10-ORF2NS3

-

pS10-ORF2
100

50

pCI
pNS2

BTV-1
BTV-8

BTV-2
3

BTV-2
5

BTV-2
6

P
e
rc

e
n
ta

g
e
 r

e
la

ti
ve

 t
o
 p

C
I

Fig. 3. Phylogenetic analysis of NS3 and S10-ORF2 in BTV. (a) Unrooted maximum-likelihood tree of BTV NS3 (left) and
S10-ORF2 (right). Bar corresponds to 10 nucleotide changes for the equivalent branch length. Bootstrap value51000. (b)
Alignment of representative BTV strains of the four different phylogenetic groups identified. Conserved amino acids (.) and
deletions (-) are indicated. (c) Reporter assays as described in Fig. 1 legend using plasmids expressing S10-ORF2 from
different BTV serotypes. Values relative to the pCI-empty control (black) set at 100 % are plotted. Error bars represent the
SD from three independent experiments.

Alternative reading frame in BTV genome segment 10

http://jgv.microbiologyresearch.org 3285



orbiviruses were thought to be monocistronic. We and
others have identified and characterized NS4, a non-
structural protein of 77–79 amino acid residues in length
modulating the IFN system (Belhouchet et al., 2011;
Firth, 2008; Ratinier et al., 2011). Both ORFs are present
in a +1 reading frame compared with the main ORFs in
segment 9 and 10, respectively.

A recent bioinformatics study identified the overlapping
ORF in BTV segment 10 by scanning viral sequences for
regions with strong signals of synonymous constraints
within the NS3 ORF (Sealfon et al., 2015). These findings
were based on the assumption that the rates of synonymous
substitutions are lower in regions of the genome with
overlapping functional elements (e.g. overlapping ORFs,
secondary structures).

S10-ORF2 is conserved in more than 350 segment 10
sequences of BTV strains that have been deposited in Gen-
Bank. Further, S10-ORF2 ORF is also maintained in AHSV
and a few other (but not all) orbiviruses. The conservation
of an overlapping short ORF in distinct phylogenetically
related viruses suggests that this is a bona fide ORF.
We propose that S10-ORF2 is evolutionarily advantageous
for some orbiviruses given the degree of conservation in
BTV and AHSV.

S10-ORF2 appears to be the protein with the highest
number of residues under positive selection among all
the BTV non-structural proteins, suggesting that it may

tolerate amino acid changes that do not affect its overall
function and may permit adaptation to new conditions
in the host cell. Sealfon and colleagues also identified a pre-
dicted putative RNA structure that could explain the bias
observed between the numbers of non-synonymous and
synonymous substitutions within the S10-ORF2 coding
sequence (Sealfon et al., 2015). We can neither rule out
nor confirm the presence of important RNA secondary
structures in this region from the data obtained in our
in vitro and in vivo experiments. Conflicting selection
pressure of overlapping proteins has previously been
observed in retroviruses and papillomaviruses (Hughes &
Hughes, 2005; Hughes et al., 2001). Often this is character-
ized by high non-synonymous changes (positive selection)
associated with one gene, while the second gene is associ-
ated with high rates of synonymous change (purifying or
negative selection). Positive selection on the S10-ORF2
gene may be driving purifying selection on the overlapping
region of NS3, or vice versa, purifying selection on NS3
may favour positive selection on S10-ORF2.

It is tempting to speculate that S10-ORF2 is a fifth non-
structural protein of BTV (NS5), given its localization in
the nucleolus of cells transfected with expression plasmids
encoding tagged versions of this protein. Unfortunately, we
have not been able to produce an antibody that recognizes
this protein (by various immunoassays) even in cells transi-
ently transfected with S10-ORF2 expression plasmids. How-
ever, our assays in cells transfected with RNA recapitulating

Table 2. Analysis of the +1 ORF overlapping the NS3 ORF in various orbiviruses

Orbivirus Sequences analysed (n) Sequences with

ORF $40 codons (%)

AUG position (nt) Number of codons

Bluetongue virus 379 100 108 or 135 59–50

African horse sickness virus 230 100 59 or 60 60–83

Epizootic hemorrhagic disease virus 22 36.3 106 or 124 40–50

Equine encephalosis virus 27 14.8 204 52

Kemerovo virus 1 100 89 62

Great Island virus 1 100 235 54

Pata virus 1 100 145 53

Umatilla virus 1 100 303 45

Heramatsu virus 1 100 243 40

Palyam virus 1 0 ND –

Eubanangee virus 1 0 ND –

Lebombo virus 1 0 ND –

Orungo virus 1 0 ND –

Wallal virus 2 0 ND –

Warrego virus 2 0 ND –

Corriparta virus 1 0 ND –

Mobuck virus 1 0 ND –

Peruvian horse sickness virus 1 0 ND –

Sathuvachari virus 1 0 ND –

Yunnan orbivirus 1 0 ND –

St Croix River virus 1 0 ND –

Tribec virus 1 0 ND –

Wad Medani virus 1 0 ND –

ND, None detected.
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the same length and genetic organization of BTV-8 segment
10 (and expressing the luciferase gene fused to the 59 terminal
S10-ORF2) suggest that thisORF can be translatedwithin the

context of segment 10. Definitive proof that BTV and other
members of the Orbivirus genus express S10-ORF2 in vivo
remains to be obtained.
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In this study we have shown that S10-ORF2 was dispens-
able for virus replication, as BTV S10-ORF2 deletion
mutants replicate as efficiently as wt BTV in both immor-
talized cell lines and in primary cell cultures from sheep. In
addition, S10-ORF2 does not seem to provide a replication
advantage to BTV in a cell line derived from Culicoides, nor
affect viral virulence in experimental models of disease.
BTVDS10-ORF2s infection of NIH-Swiss mice resulted in
moderately accelerated death of the infected animals. How-
ever, our experience with these experimental models lead
us to interpret these results cautiously, even if the differ-
ences noted are statistically significant (Caporale et al.,
2011; Janowicz et al., 2015; Ratinier et al., 2011).

Interestingly, S10-ORF2 appears to localize in the nucleolus
of cells transfected with expression plasmids tagged with an
HA epitope or fused to GFP. Hence, it appears that S10-
ORF2 has the same cellular localization as BTV NS4 and
it is tempting to speculate that these two viral proteins
may have a synergistic function. We established that NS4

counteracts the antiviral response of the host in cells pre-
treated by type I IFN (Ratinier et al., 2011) and modulates
the host IFN response by inhibiting cellular transcription
(Ratinier and others, unpublished data). However, despite
an inhibitory effect of S10-ORF2 on the IFN-b promoter in
a plasmid DNA based reporter assay, BTVS10-ORF2 dele-
tion mutants induced amounts of type I IFN similar to
those of wild-type BTV in infected cells. Indeed, in our
reporter assays, S10-ORF2 appears to inhibit the activity
of various promoters, suggesting that this protein could
modulate cellular transcription rather than targeting the
IFN-b promoter. The presence of a NoLS may suggest
that BTV S10-ORF2 has evolved specific nucleolar func-
tions. The nucleolus is a dynamic structure with multiple
functions including ribosome subunit biogenesis,
mediation of cell-stress responses and regulation of cell
growth (Burger & Eick, 2013; Farley et al., 2015). Viral pro-
teins have been shown to interplay with the apoptotic path-
way, cell cycle modulation, cellular signalling pathways,
inhibition of transcription by RNA polymerase I or gene
silencing (Aminev et al., 2003; Emmott & Hiscox, 2009;
Rawlinson & Moseley, 2015). However, in some cases,
proteins can be ‘captured’ within the nucleolus by long
non-coding in RNAs ‘nucleolar detention centres’ (Lam
& Trinkle-Mulcahy, 2015). Hence, a protein localized in
the nucleolus may not necessarily have a function related
to this cellular compartment. Notably, transient expression
of S10-ORF2DNoLS did not inhibit gene expression in
reporter assays. Future studies of the interaction of S10-
ORF2 with the nucleolus may provide insight into the
role of this protein during infection. Ultimately, experi-
mental infections of sheep and culicoides midges with
S10-ORF2 deletion mutants might help to shed some
light on the functional significance of S10-ORF2 in BTV
replication and transmission.

METHODS

Cells. HEK-293T, A549 and BSR cells (a clone of BHK21 kindly
provided by Karl Conzelmann) were grown in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 10 % FBS. CPT-Tert
cells, an immortalized sheep choroid plexus cell line, were propagated
in Iscove’s modified Dulbecco’s medium (IMDM) supplemented with
5 % FBS (Arnaud et al., 2010). Primary ovine endothelial (ovEC) cells
were obtained as previously described (Varela et al., 2013). Ovine
primary fibroblasts were isolated from ears obtained post-mortem by
standard procedures. All mammalian cell lines were cultured at 37 uC
in a 5 % CO2 humidified atmosphere, with the exception of ovEC,
which were maintained in a low oxygen incubator (37 uC, 5 % CO2

and 3 % O2). KC cells, from Culicoides sonorensis (Wechsler et al.,
1989), were grown in Schneider’s insect medium supplemented with
10 % FBS and grown at 28 uC.

Viruses. BTV-8 was rescued by reverse genetics as described pre-
viously (Boyce et al., 2008; Ratinier et al., 2011). BTV8DS10-ORF2
was rescued by reverse genetics as above with the exception that the
plasmid containing segment 10 used in reverse genetics contained
M1A and M10A substitutions within the S10-ORF2 ORF. BTV-
8DS10-ORF2s was obtained as above but the S10-ORF2 ORF was
interrupted by a premature stop codon in position 23, in addition to
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Fig. 5. Expression of S10-ORF2 in the context of BTV genome
segment 10. (a) Schematic representation of the RNA derived by
in vitro transcription of pS10-Nluc. (b) Luciferase assays were
carried out in CPT-Tert cells transfected with RNA derived from
in vitro transcription of T7 plasmids containing either wt BTV-8
genome segment 10 (S10 wt) or S10-Nluc. Luminescence is
expressed in log10 relative light units (RLU). Values shown are
the mean of three independent experiments (P,0.0001). Error
bars represent the SD from three independent experiments.
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the M1A and M10A substitutions. Care was taken not to alter the NS3
ORF in BTV8DS10-ORF2 and BTV-8DS10-ORF2s.

Plasmids. pCMV-FFluc (Palmarini et al., 2000), pGL3-control
(Promega) and p125-Luc (a kind gift from Takashi Fujita)
(Yoneyama et al., 1996) express firefly luciferase (FFLuc) under the
control of the immediate early human cytomegalovirus (CMV),
simian virus 40 (SV40) or the IFN-b promoters. pRL-TK (Promega)
constitutively expresses Renilla luciferase under the control of the
CMV immediate early promoter and was used to generate T7 tran-
scripts. pFlag-CARD is an expression vector for the CARD domains of
RIG-I and has been described previously (Versteeg et al., 2013).

Expression plasmids (pCI, Promega) for the BTV-8 NS3 (pNS3) and
S10-ORF2 (pS10-ORF2) proteins were obtained by standard pro-
cedures. Expression plasmids for NS2 of BTV-10 (NC006007), S10-
ORF2 of BTV-1 (JX680466), BTV-23 (JQ086280), BTV-25
(EU839846) and BTV-26 (JN255162) were synthesized commercially
(Genscript). Expression plasmids for mutated versions of the BTV-8
NS3 were obtained by site-directed mutagenesis. Plasmids expressing
NS3 mutants included: pNS3a (includes the M1A mutation),
pNS3MutA (M1A and M14A), pNS3MutB (M1A, M14A and M45A),
pNS3MutC (M1A, M14A, M45A and M49A) and pNS3MutD (M1A,
M14A M45A, M49A and M61A). To generate the pNS3DS10-ORF2
construct, the first two codons encoding methionine residues of the
S10-ORF2 (M1 and M10) were mutated into codons encoding
threonine residues. These mutations left the NS3 ORF unaltered.
We also generated an additional S10-ORF2 mutant, pNS3DS10-
ORF2s, which contained an early stop codon at amino acid residue
L23 of S10-ORF2 in addition to the M1T and M10T substitutions.
Finally, pDNS3DS10-ORF2 contained the mutations of pNS3MutD
and pNS3DS10-ORF2. Plasmids used for the rescue of BTV-8 by
reverse genetics have been described previously (Ratinier et al., 2011).
Expression plasmids for BTV-8 S10-ORF2 tagged with either an HA
epitope at the carboxyl- or amino-terminal domain, or GFP at the
carboxyl-terminal (pS10-ORF2-HA, pHA-S10-ORF2 and pS10-
ORF2-GFP, respectively) were obtained by standard cloning pro-
cedures. pHA-S10-ORF2 was mutated by site-directed mutagenesis to
disrupt the predicted nucleolar localization sequence (pHA-S10-
ORF2DNoLS). Amino acid residues in positions 42–46 (HKRRR) of
the BTV-8 S10-ORF2 were all substituted into alanine residues
(AAAAA) in pHA-S10-ORF2DNoLS.

pS10-NLuc was constructed by standard cloning procedures and
includes a T7 promoter, followed by the 59 terminal 164 nt of BTV-8
segment 10 fused to the luciferase (nanoluc) gene (missing its own
start codon) and the 39 terminal 145 nt of segment 10. The backbone
of the pS10-NLuc plasmid (including the position of the T7 pro-
moter) is identical to the plasmids used for the rescue of BTV-8 by
reverse genetics (Ratinier et al., 2011).

Antibodies. Antisera against the BTV NS3 and NS2 proteins were
previously described (Ratinier et al., 2011). Antibodies against B23
(Sigma), c-tubulin (Sigma) and HA (Abcam) were obtained com-
mercially. HRP-labelled antibodies against rabbit and mouse IgGs
(GE Healthcare) and secondary antibodies labelled with Alexa Fluor
488 or Alexa Fluor 594 (Invitrogen, Molecular Probes) were all pur-
chased commercially.

Luciferase assays. CPT-Tert cells were transfected with pCMV-
FFluc (100 ng), pGL3-control (100 ng) or p125Luc (50 ng) and ex-
pression plasmids for wt or mutant forms of NS2, NS3 and S10-ORF2
(400 ng). When using p125Luc, CPT-Tert cells were concurrently
transfected with 50 ng of pFlag-CARD. Dose–response experiments
were carried out by transfecting 10 to 400 ng of the expression
plasmids pNS3, pS10-ORF2, pNS3DS10-ORF2 and pNS3DS10-
ORF2s. A similar procedure was performed to co-transfect 5 ng
of in vitro transcribed RNA expressing Renilla luciferase and the

indicated expression plasmids. CPT-Tert cells were transfected with
an equivalent number of RNA molecules (2|1011) of either wt
BTV-8 S10 or S10-NLuc generated by in vitro transcription. For all
the experiments, cells were lysed 22 h post-transfection and firefly,
Renilla and nanoluc luciferase activities were measured in a lumin-
ometer (20/20, Glomax) using Luciferase Assay System (Promega) as
recommended by the manufacturers. The percentage of luciferase was
determined by assigning the luciferase activity (expressed as relative
light unit, RLU) detected in control cells (co-transfected with an
empty pCI plasmid) as 100 %. To minimize the possibility that
transfection efficiency affected the variability of the data, all experi-
ments were conducted in triplicate, three independent times with two
individual preparations for each plasmid.

Virus replication curves. To compare the replication kinetics of wt
BTV-8 and BTV-8 mutants, monolayers of CPT-Tert were infected at
an m.o.i. of 0.001 while KC and primary fibroblast/endothelial cells
were infected at an m.o.i. of 0.01, and supernatants were harvested at
24, 48 and 72 h p.i. All supernatants were clarified by low-speed
centrifugation to remove cellular debris. Cell-free titres were deter-
mined by end point dilution analysis on BSR cells and expressed as
log10(TCID50 ml21). Each experiment was performed three times,
each time in duplicate, using two different virus stocks for each virus.

Western blotting. Protein expression was assessed from total cell
lysates by SDS PAGE and Western blotting using the various antisera
indicated in the Antibodies section and as previously described
(Varela et al., 2013).

Immunofluorescence and confocal microscopy. CPT-Tert cells
were transfected with pHA-S10-ORF2, or pS10-ORF2-HA, pS10-
ORF2-GFP or pS10-ORF2DNoLS. At 24 h post-transfection, cells were
analysed by immunofluorescence and confocal microscopy as previously
described (Caporale et al., 2009).

Interferon protection assay. Interferon protection assays were
performed as previously described in OvEC cells (Varela et al., 2013).

Bioinformatic analyses. Sequences for the BTV non-structural
proteins where downloaded from NCBI (29 March 2015). Sequences
for each ORF were aligned using MAFFT (Katoh et al., 2005) and
duplicate sequences, sequences containing gaps or missing start/stop
codons were removed from each alignment. We performed a sub-
stitution model selection in Datamonkey (Pond & Frost, 2005). The
mean number of non-synonymous and synonymous substitutions per
site was determined using the SLAC algorithm (Kosakovsky Pond &
Frost, 2005). Site-specific selection pressures were also measured
using the fixed-effect likelihood (FEL) method (Kosakovsky Pond &
Frost, 2005) and the Fast Unconstrained Bayesian AppRoximation
(FUBAR) method (Murrell et al., 2013). For the phylogenetic analysis,
320 sequences of BTV segment 10 containing a complete NS3 ORF
were extracted from GenBank using CLC Genomics Workbench
software and used to estimate maximum-likelihood trees using
RaxML 8.1.17 (Stamatakis, 2014). Nucleotide sequence alignments
were performed using MUSCLE (Edgar, 2004).

In vivo pathogenesis studies. Animal experiments were carried out
at the Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise ‘G.
Caporale’ (Teramo, Italy) in accordance with local and national
approved protocols regulating animal experimental use (protocol no.
11427/2012) as previously described (Caporale et al., 2011). Study 1.
Litters of three- to four-day-old NIH-Swiss mice (n510–15) were
inoculated intracerebrally with 300 p.f.u. of wt BTV-8 and BTV-8
mutants, as indicated in the Results. A litter (n515) was inoculated
with tissue culture media as a mock-infected control. Mice were killed
at 14 days p.i., or earlier if showing severe clinical signs of disease.
Study 2. Age-matched adult transgenic mice, deficient in the type I

M. Stewart and others

3290 Journal of General Virology 96



interferon (IFNa-b) receptor [129sv IFNAR(2/2)] were inoculated
intraperitoneally with either 100 p.f.u. of wt BTV-8 or BTV-8
mutants, as indicated in the Results. Mice (n55) inoculated intra-
peritoneally with mock-infected tissue culture media were used as
negative controls.

Statistical analysis. Statistical analysis of the data was performed
using GraphPad Prism.
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