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abstract

 

�

 

-Scorpion toxins shift the voltage dependence of activation of sodium channels to more negative
membrane potentials, but only after a strong depolarizing prepulse to fully activate the channels. Their receptor
site includes the S3–S4 loop at the extracellular end of the S4 voltage sensor in domain II of the 

 

�

 

 subunit. Here,
we probe the role of gating charges in the IIS4 segment in 

 

�

 

-scorpion toxin action by mutagenesis and functional
analysis of the resulting mutant sodium channels. Neutralization of the positively charged amino acid residues in
the IIS4 segment by mutation to glutamine shifts the voltage dependence of channel activation to more positive
membrane potentials and reduces the steepness of voltage-dependent gating, which is consistent with the pre-
sumed role of these residues as gating charges. Surprisingly, neutralization of the gating charges at the outer end
of the IIS4 segment by the mutations R850Q, R850C, R853Q, and R853C markedly enhances 

 

�

 

-scorpion toxin ac-
tion, whereas mutations R856Q, K859Q, and K862Q have no effect. In contrast to wild-type, the 

 

�

 

-scorpion toxin
Css IV causes a negative shift of the voltage dependence of activation of mutants R853Q and R853C without a de-
polarizing prepulse at holding potentials from 

 

�

 

80 to 

 

�

 

140 mV. Reaction of mutant R853C with 2-aminoethyl
methanethiosulfonate causes a positive shift of the voltage dependence of activation and restores the requirement
for a depolarizing prepulse for Css IV action. Enhancement of sodium channel activation by Css IV causes large
tail currents upon repolarization, indicating slowed deactivation of the IIS4 voltage sensor by the bound toxin.
Our results are consistent with a voltage-sensor–trapping model in which the 

 

�

 

-scorpion toxin traps the IIS4 volt-
age sensor in its activated position as it moves outward in response to depolarization and holds it there, slowing its
inward movement on deactivation and enhancing subsequent channel activation. Evidently, neutralization of
R850 and R853 removes kinetic barriers to binding of the IIS4 segment by Css IV, and thereby enhances toxin-
induced channel activation.
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I N T R O D U C T I O N

 

Voltage-gated sodium channels are responsible for
the voltage-dependent increase in sodium permeability
and, therefore, play a critical role in the initiation
and propagation of action potentials in excitable cells
(Hodgkin and Huxley, 1952). Sodium channels are
transmembrane proteins composed of a pore-forming 

 

�

 

subunit of 260 kD associated with one or two smaller
auxiliary subunits 

 

�

 

1, 

 

�

 

2, and 

 

�

 

3 (for review see Catter-
all, 2000). The 

 

�

 

 subunit consists of four homologous
domains (I–IV), each containing six transmembrane
segments (S1–S6) and one reentrant segment (SS1/
SS2) connected by internal and external polypeptide
loops (for review see Catterall, 2000). Transmembrane
segments S5 and S6 and the membrane-reentrant seg-
ments SS1 and SS2 form the narrow ion selectivity filter

and the walls of the pore (Noda et al., 1989; Terlau et
al., 1991; Heinemann et al., 1992; Ragsdale et al., 1994).
In response to changes in membrane potential, the S4
segments move outward and act as voltage sensors to
initiate activation (Catterall, 1986; Guy and Seethara-
mulu, 1986; Stühmer et al., 1989; Yang and Horn, 1995;
Yang et al., 1996). The intracellular loop connecting do-
mains III and IV forms the inactivation gate, which me-
diates voltage-dependent inactivation of sodium chan-
nels (Vassilev et al., 1988, 1989; Stühmer et al., 1989;
West et al., 1992). Outward movement of the S4 seg-
ments in domains III and IV is likely to couple activation
to inactivation (Chahine et al., 1994; Ji et al., 1996; Rog-
ers et al., 1996; Sheets et al., 1999), and these S4 seg-
ments are immobilized in their outward positions by fast
inactivation (Cha et al., 1999a; Sheets et al., 2000).

Voltage-gated sodium channels are the molecular tar-
get of several groups of neurotoxins, which bind to spe-
cific receptor sites and strongly alter sodium channel
function (for review see Cestèle and Catterall, 2000).
The voltage-dependent gating of sodium channels is
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specifically modified by binding of polypeptide neuro-
toxins to receptor sites 3 and 4. The 

 

�

 

-scorpion toxins,
sea anemone toxins, and spider toxins bind to receptor
site 3 and slow sodium channel inactivation (Catterall,
1977, 1979; Catterall and Beress, 1978; Nicholson et al.,
1994). Receptor site 4 binds 

 

�

 

-scorpion toxins, which
shift the voltage dependence of activation to more neg-
ative potentials (Cahalan, 1975; Jover et al., 1980; Jai-
movich et al., 1982; Meves et al., 1982; Wang and Stri-
chartz, 1983; Vijverberg et al., 1984; Jonas et al., 1986;
Cestèle et al., 1998). The S3–S4 loops at the extracellu-
lar ends of the S4 segments of domains IV and II are in-
volved, respectively, in the formation of neurotoxin re-
ceptor sites 3 and 4 (Rogers et al., 1996; Cestèle et al.,
1998; Sheets et al., 1999). A voltage-sensor trapping
mechanism was proposed to account for the effects of
these toxins on channel gating (Cestèle et al., 1998).
Binding of 

 

�

 

-scorpion toxins and sea anemone toxins
to receptor site 3 is proposed to slow inactivation by
preventing the normal outward movement of the IVS4
transmembrane segment (Rogers et al., 1996; Sheets et
al., 1999). 

 

�

 

-Scorpion toxins shift the voltage depen-
dence of activation to more negative potentials only af-
ter a strong depolarizing prepulse, indicating that in-
teraction of 

 

�

 

-scorpion toxins with receptor site 4 is de-
pendent on activation of the channels. Since the IIS4
segment moves outward during activation, the toxins
are proposed to bind to newly accessible residues in the
IIS3–S4 loop and the extracellular end of the IIS4 seg-
ment during the conditioning prepulse, trapping IIS4
in an outward, activated position. Voltage-sensor trap-
ping favors sodium channel activation and causes the
negative shift in the voltage dependence of activation
characteristic of 

 

�

 

-scorpion toxins.
In this paper, we demonstrate that neutralization of

the two outermost arginine residues of the IIS4 voltage
sensor markedly enhances 

 

�

 

-scorpion toxin effects on
sodium channels. This effect is proposed to result from
an increase in mobility of the IIS4 segment within the
membrane. Our results reveal crucial roles of the two
first arginines of the IIS4 segment in voltage-depen-
dent activation, 

 

�

 

-scorpion toxin action, and stabiliza-
tion of the IIS4 segment within the membrane.

 

M A T E R I A L S  A N D  M E T H O D S

 

Materials

 

�

 

-Scorpion toxin Css IV was purified from the venom of 

 

Centru-
roides suffusus suffusus

 

 (Martin-Eauclaire et al., 1987). 2-Ami-
noethyl methanethiosulfonate hydrobromide (MTSEA*) and
2-(trimethylammonium)ethyl methanethiosulfonate bromide
(MTSET) were purchased from Toronto Research Chemicals
Inc. Restriction endonucleases and other molecular biology re-

agents were purchased from New England Biolabs and Boeh-
ringer Mannheim. pCDM8 vector and the MC1061 

 

Escherichia coli

 

bacterial strain were purchased from Invitrogen. Human embry-
onic kidney tsA-201 cells, a simian virus (SV-40) large T-antigen–
expressing derivative of HEK-293 cells, were provided by Dr. Rob-
ert Dubridge (Cell Genesis, Foster City, CA). cDNA encoding rat
Na

 

v

 

1.2a 

 

�

 

 subunits (Auld et al., 1990; Goldin et al., 2000) in the
pCDM8 vector was used for expression.

 

Site-directed Mutagenesis

 

Mutations R850Q, R853Q, K859Q, and K862Q were produced us-
ing an M13 construct containing a XmaI-SphI fragment (nt 541–
1,897) of the Na

 

v

 

1.2a cDNA. Uracil-containing mutagenesis tem-
plate was prepared from this construct and oligonucleotide-
directed mutagenesis was performed using the dut

 

�

 

 ung

 

�

 

 selection
procedure (Kunkel, 1985). Mutations made in the M13 construct
were confirmed by sequencing, excised by restriction at the sites
XmaI-SphI and isolated by low melting point agarose gel electro-
phoresis and Prep-a-gene (BioRad Inc.). Fragments were then
subcloned into the Na

 

v

 

1.2a sodium channel cDNA in pCDM8.
The mutations were confirmed in the final constructs by DNA se-
quencing using the ABI Prism dye terminator cycle sequencing
kit (Perkin-Elmer Applied Biosystems). Mutations R850C, R853C,
and R856Q were amplified by PCR in an 800-bp cDNA fragment
from the XmaI site to the SphI site and were subcloned into the
Na

 

v

 

1.2a cDNA in pCDM8. To facilitate the screening of the
clones, a silent HinfI site was introduced along with the mutation.
All clones were sequenced through the entire PCR fragment.

 

Transient Expression in tsA-201 Cells

 

The tsA-201 cells were maintained at 37

 

�

 

C in 10% CO

 

2

 

 in
DMEM/Ham’s F12 medium (GIBCO BRL and Life Technolo-
gies) supplemented with 10% FBS (Gemini Biological Products),
20 

 

�

 

g/ml penicillin, and 10 

 

�

 

g/ml streptomycin (Gemini Bio-
logical Products). TsA-201 cells were transiently cotransfected
with cDNAs for the channel 

 

�

 

 subunit and pEBFP-N1 vector en-
coding the enhanced green fluorescent protein (CLONTECH
Laboratories, Inc.) using calcium phosphate precipitation (Jor-
dan et al., 1996). Successfully transfected cells were detected by
fluorescence microscopy.

 

Electrophysiological Recording and Analysis

 

Whole-cell sodium currents were recorded from tsA-201 cells ex-
pressing Na

 

v

 

1.2a wild-type or mutant sodium channel 

 

�

 

 subunits.
The external recording solution consisted of the following (in
mM): 150 NaCl, 10 Cs-HEPES, 1 MgCl

 

2

 

, 2 KCl, and 1.5 CaCl

 

2

 

, pH
7.4. The internal recording solution consisted of the following (in
mM): 190 

 

N

 

-methyl-

 

d

 

-glutamine, 10 HEPES, 4 MgCl

 

2

 

, 10 NaCl,
and 5 EGTA, pH 7.4. Patch electrodes were pulled from 75-

 

�

 

l mi-
cropipette glass (VWR Scientific) and were fire-polished before
use. Electrode resistances were typically 1.5–2.5 m

 

�

 

 in the bath.
Recordings were obtained using a patch-clamp amplifier (model
Axopatch 200B; Axon Instruments, Inc.). Voltage pulses were ap-
plied and data were acquired using pClamp6 software (Axon In-
struments Inc.). Linear leak and capacitance currents have been
subtracted using an online P/

 

�

 

4 subtraction paradigm. Css IV,
MTSEA, and MTSET were dissolved in the extracellular solution
at the final concentration. Css IV was applied to cells using fast lo-
cal perfusion of the cell with background perfusion of the cham-
ber; MTSEA and MTSET were added to the extracellular solution
in the recording bath. All experiments were performed at room
temperature. Conductance-voltage (activation) curves were de-
rived from peak sodium current versus voltage measurements ac-
cording to: G 

 

�

 

 I/(V 

 

�

 

 V

 

R

 

) where I is the peak current, V is the

 

*

 

Abbreviations used in this paper:

 

 MTS, methanethiosulfonate; MTSEA,
2-aminoethyl methanethiosulfonate hydrobromide; MTSET, 2-(tri-
methylammonium)ethyl methanethiosulfonate bromide.
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test voltage, and V

 

R

 

 is the apparent reversal potential. Normalized
conductance-voltage and inactivation curves were fit with a Boltz-
mann relationship of the form 1/{1 

 

	

 

 exp[(V

 

1/2

 

 

 

�

 

 V)/k]} or with
the sum of two such expressions, where V

 

1/2

 

 is the voltage for half-
maximal activation or inactivation, and k is a slope factor with the
dimensions of millivolts.

 

R E S U L T S

 

Effects of Mutations of the Gating Charges in Domain II on 
Activation and Inactivation

 

Previous studies have demonstrated the important role
of the positively charged amino acid residues of the S4
segments in the voltage-dependent gating of sodium
channels (Stühmer et al., 1989; Chen et al., 1996; Kontis

et al., 1997; Groome et al., 1999). To examine the im-
portance of the gating charges of the IIS4 segment on

 

�

 

-scorpion toxin action, we constructed mutants in
which each of the five arginine and lysine residues in
IIS4 were mutated to glutamine. In the absence of
toxin, analysis of the conductance-voltage relationships
for the wild-type and mutant sodium channels showed a
positive shift in the activation curve for R850Q, R853Q,
R856Q, K859Q, and K862Q of 3 to 16 mV (Fig. 1 and
Table I). Thus, each mutation had effects that opposed
voltage-dependent channel activation. In addition, sub-
stitutions of R850, R853, R856, and K859 by glutamine
reduced the steepness of the activation curve, as ex-
pected for neutralization of the gating charges of the so-
dium channel. Therefore, these positively charged resi-
dues are likely to move outward through the membrane
electric field during activation and contribute to the
electrostatic driving force for channel gating.

Measurements of steady-state inactivation for Na

 

v

 

1.2a,
R850Q, and R853Q using 150-ms prepulses under con-
trol conditions indicate that these mutations do not sig-
nificantly modify the voltage of half-maximal inactiva-
tion when compared with wild-type sodium channels
(Fig. 1 B and Table I), despite the difference in voltage
dependence of activation. On the other hand, muta-
tions R856Q, K859Q, and K862Q cause small but signif-
icant positive shifts in the voltage dependence of steady-
state inactivation (Fig. 1 B and Table I). These data
agree with previous results implicating the IIS4 segment
in activation, rather than inactivation (Chen et al., 1996;
Kontis et al., 1997; Cha et al., 1999a), and suggest that
outward movement of the IIS4 segment during activa-
tion is only weakly coupled to inactivation

 

.

 

Effects of Css IV on Mutant Sodium Channels with 
Neutralized Gating Charges in Transmembrane
Segment IIS4

 

As previously described for the wild-type Na

 

v

 

1.2a chan-
nels (Cestèle et al., 1998), treatment with 200 nM Css IV

Figure 1. Effects of the neutralization of each of the positive
charges of the IIS4 segment of rat brain Nav1.2a sodium channel.
Voltage dependence of activation (A) and inactivation (B) for
wild-type Nav1.2a, R850Q, R853Q, R856Q, K859Q, and K862Q.
Conductance-voltage curves were determined as described in ma-
terials and methods. Inactivation curves were determined using
150-ms-long prepulses to the indicated potentials followed by test
pulses to 0 mV.

 

T A B L E  I

 

Voltage Dependence of Na

 

v

 

1.2a and Mutants
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n
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n
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�
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�
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�
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�
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�
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initially has no effect on channel activation, as measured
by the voltage dependence of the conductance-voltage
curve at a holding potential of �100 mV (Fig. 2 A). How-
ever, after a 1-ms depolarization to 	50 mV, Css IV in-
duced a negative shift in the voltage dependence of acti-
vation of a fraction of the sodium channels (Fig. 2 A;
Cestèle et al., 1998). Similar results are observed for the
mutants R856Q, K859Q, and K862Q (Fig. 2, D–F). In
contrast, the neutralization of either of the two outer-
most positive charges (R850 and R853) of the IIS4 seg-
ment strongly altered the effect of Css IV. For R850Q,
Css IV caused no shift in activation without a prepulse,
but the prepulse induced a much larger shift of the acti-
vation curve to more negative membrane potentials, and
the voltage dependence of activation of nearly all of the
sodium channels was shifted (Fig. 2 B). More remark-
ably, for the mutant R853Q, Css IV caused a substantial
negative shift in the activation of a large fraction of the
sodium channels without a depolarizing prepulse and
depolarization caused a further shift (Fig. 2 C). The abil-
ity of Css IV to induce a negative shift in the voltage de-
pendence of activation without a depolarizing prepulse

suggests that toxin binding by itself is sufficient for the
IIS4 segment of R853Q channels to adopt an outward,
activated position at the resting potential. Evidently, neu-
tralization of the two outermost arginine residues, R850
and R853, favors voltage-sensor trapping by �-scorpion
toxins, whereas substitutions of other positively charged
residues in IIS4 do not.

Effects of Cysteine Substitution and Reaction 
with Methanethiosulfonate (MTS) Reagents
at Positions 850 and 853

To further examine the role of the two outermost
arginines of the IIS4 segment in the activation process
of sodium channels as well as in the mechanism of ac-
tion of �-scorpion toxins, we replaced the two outer-
most arginine residues by cysteine. Those mutants al-
lowed us to use cysteine-modifying MTS reagents to
chemically modify the channel at these positions. This
method has been extensively used to monitor the
movement of the S4 segments during activation and
the inactivation gate during inactivation of voltage-
gated sodium channels (Yang and Horn, 1995; Yang et

Figure 2. Activity of Css IV on mutant sodium channels with neutralized positive charges in segment IIS4. Conductance-voltage relation-
ships measured as described in materials and methods in control (closed circles) or in the presence of 200 nM Css IV without (open cir-
cles) or with (open squares) a 	50 mV, 1–ms prepulse that preceded the test pulse by 61 ms for wild-type Nav1.2a (A), R850Q (B), R853Q
(C), R856Q (D), K859Q (E), and K862Q (F) sodium channels. The holding potential was �100 mV. The insets show sodium current
traces evoked by a test pulse to �65 mV before and after a prepulse to 	50 mV in the presence of Css IV.
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al., 1996, 1997; Kellenberger et al., 1996; Mitrovic et al.,
1998; Vedantham and Cannon, 1998).

Neutralizing R850 or R853 by substitution with cys-
teine reduced the slope of the activation curve and
shifted the voltage of half activation by 5–12 mV in the
depolarizing direction (Fig. 3 and Table I). Compared
with glutamine substitution, neutralization of R850 and
R853 by cysteine substitution induces a 2–3-mV addi-
tional positive shift in the voltage dependence of activa-
tion (Table I). We studied the modification of the mu-
tants R850C and R853C by MTSEA and MTSET. These
two reagents covalently modify accessible cysteinyl sulf-
hydryl groups by the transfer of a positively charged,
substituted amino group, but MTSEA is smaller and
can reach less accessible sites of reaction. Our experi-
ments were performed by adding MTSET or MTSEA to
the extracellular recording solution, allowing modifica-
tion of the cysteine residues by MTS reagents at the
resting membrane potential. Modification of cysteine
residues in S4 segments by the MTS reagents is fast and
complete under similar conditions (Mitrovic et al.,
1998). Treatment with MTS reagents had no effect on
wild-type sodium channels (unpublished data). Modifi-
cation of R850C by MTSEA or MTSET caused a 6.5- or
16.9-mV negative shift in the voltage dependence of ac-
tivation, respectively, thereby partially or fully reversing
the effect of neutralization of this arginine residue
(Fig. 3 A). Surprisingly, modification of R853C with
MTSEA caused a 15.7-mV positive shift of the conduc-
tance-voltage relationship (Fig. 3 B). In contrast, expo-
sure of R853C to MTSET had no effect on the voltage-
dependent properties of R853C, presumably because
R853C was inaccessible to this relatively large reagent
(Fig. 3 B). These data indicate that restoration of the
positive charge of R850C by MTSEA or MTSET favors

activation of the sodium channels at more negative
potentials, and are consistent with restoration of
charge providing increased electrostatic driving force
for movement of IIS4 to its outward, activated position.
On the other hand, modification of R853C by MTSEA
shifts activation to more positive potentials and, there-
fore, favors the resting position of IIS4. The side chain
produced when MTSEA reacts with R853C may be too
large, have the incorrect shape, or induce an inappro-
priate conformation to allow the IIS4 segment to move
outward easily upon depolarization and, therefore, may
inhibit the activation process.

Effects of Css IV on R850C-MTSET and R853C-MTSEA

Because R850C-MTSET and R853C-MTSEA have activa-
tion curves that are strongly shifted relative to wild-type
Nav1.2a or the unmodified cysteine-containing chan-
nels, they represent powerful tools for elucidating the
relationship between the voltage dependence of chan-
nel gating and the ability of �-scorpion toxins to trap

Figure 3. Modification of R850C and R853C sodium channels
by MTSEA and MTSET. Conductance-voltage relationships for
R850C (A) and R853C (B) in control and after modification by
MTSEA or MTSET. The data were fit with a Boltzmann relation-
ship with V1/2 � �24.1 
 0.1 mV, k � 6.8 mV for R850C (n � 11);
V1/2 � �30.5 
 0.3 mV, k � 7.8 mV for R850C-MTSEA (n � 9);
V1/2 � �39.9 
 0.5 mV, k � 6.3 mV for R850C-MTSET (n � 18);
V1/2 � �31.7 
 0.2 mV, k � 7.1 mV for R853C (n � 12); V1/2 �
�16.1 
 0.3 mV, k � 7.7 mV, for R853C-MTSEA (n � 11); and
  V1/2 � �29.6 
 0.2 mV, k � 7.4 mV for R853C-MTSET (n � 9).

Figure 4. Activity of Css IV on MTS-modified R850C and R853C
sodium channels. Conductance-voltage relationships for R850C-
MTSET (A and B) or R853C-MTSEA (C and D) in the presence of
200 nM Css IV without (A and C) or with a 	50 mV, 1–ms prepulse
preceding the test pulse (B and D). Data were fit with Boltzmann re-
lationships with (A) V1/2 � �25.6 
 0.8 mV, k � 10.2 mV for R850C-
Css IV (n � 4) and �46.3 
 0.6 mV, k � 9.8 mV for R850C-MTSET-
Css IV; (B) with V1/2 � �54.3 
 0.9 mV, k � 12.3 mV for R850C-Css
IV (n � 6), and �57.1 
 0.9 mV, k � 9.6 mV for R850C-MTSET-Css
IV (n � 4); (C) V1/2 � �44.8 
 0.5 mV, k � 9.7 mV for R853C-
Css IV (n � 7), �20.1 
 0.7 mV, k � 7.1 mV for R853C-MTSEA-Css
IV (n � 3); (D) V1/2 � �49.0 
 0.7 mV, k � 8.8 mV for R853C-Css
IV (n � 6); �28.0 
 1.01 mV, k � 12.6 mV for R853C-MTSEA-Css IV
(n � 3). The toxin-free curves in A and C are repeated from Fig. 3.
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the IIS4 segment in its activated position. Therefore,
we analyzed the effects of 200 nM Css IV on R850C-MT-
SET and R853C-MTSEA (Fig. 4, A–D).

For R850C without MTSET modification, 200 nM Css
IV causes a negative shift in the conductance-voltage re-
lationship of a small fraction of sodium channels in the
absence of a depolarizing prepulse (Fig. 4 A). Although
R850C-MTSET channels have a negative voltage depen-
dence of activation (Fig. 3), treatment with 200 nM Css
IV causes an additional negative shift of activation of a
similar small fraction of the sodium channels (Fig. 4
A). Comparison of the effects of Css IV on unmodified
R850C channels and R850C-MTSET channels shows
that they are similar in magnitude, but shifted in abso-
lute voltage dependence by the �17-mV difference in
voltage-dependent activation between the two chan-
nels. Thus, the negative shifts of activation caused by
modification by MTSET and modification by Css IV are
additive and independent. Consistent with this, depo-
larizing prepulses in the presence of Css IV cause a
larger negative shift in the activation curves for R850C
and R850C-MTSET, and the voltage dependence of a
large fraction of the modified channels is shifted (Fig. 4
B). Thus, modification by MTSET causes a negative
voltage shift in sodium channel activation, but once
channels are fully modified after a depolarizing pre-
pulse, the effects of Css IV are similar before and after
treatment with the MTS reagent.

Effects of MTSEA modification of R853C were quite
different. For unmodified R853C channels, a prepulse
was not required to observe a substantial shift in the ac-
tivation curve for nearly all of the sodium channels us-
ing 200 nM Css IV (Fig. 4 C). However, after modifica-
tion with MTSEA, a prepulse was required to observe a
strongly shifted activation curve (Fig. 4, C and D). This
result contrasts with those for unmodified R853Q and
R853C sodium channels where the prepulse was not re-
quired to observe the complete shift in the activation
curve (Figs. 2 C and 4 C). Thus, MTSEA modification
of R853C markedly inhibited the effects of Css IV on
R853C sodium channels and restored the requirement
for a prepulse for Css IV to cause a negative shift in the
voltage dependence of activation. Restoration of the
positive charge by reaction with MTSEA may stabilize
the IIS4 segment in an inward position by restoring
ionic interactions.

Voltage Dependence of Wild-Type and Mutant Sodium 
Channels with IIS4 Segments Trapped in Their 
Activated Position by Css IV

Although the wild-type and mutant sodium channels
studied here had different voltage dependence of acti-
vation (V1/2 from �16 to �39 mV; Table I and Fig. 3),
successful modification by Css IV shifted the voltage de-
pendence of these sodium channels to approximately

the same position on the voltage axis (Fig. 5). This
is most clearly illustrated for the channels that are
strongly shifted to a more negative activation curve after
a depolarizing prepulse in the presence of Css IV (i.e.,
R850Q, R853Q, R850C, and R850C-MTSET; Fig. 5).
The activation curves for these toxin-modified channels
are all similar, within the experimental error for mea-
surements of the voltage dependence of activation and
fits to the sum of two Boltzmann functions (Fig. 5).
When only a fraction of the channels are shifted nega-
tively by a prepulse in the presence of toxin (e.g., WT),
the activation curves are well-fit with two Boltzmann
components: a negative one having approximately the
same voltage dependence as the fully shifted activation
curves and a positive one resembling unmodified chan-
nels (Fig. 5). Thus, approximately the same negative
voltage dependence is attained by these toxin-modi-
fied channels, whether their activation curves are rela-
tively positive or negative under control conditions
and whether their activation curves are fully (R850Q,
R853Q, R850C, and R850C-MTSET) or partially (WT)
shifted by the prepulse in the absence of toxin (Fig. 5).
Exceptions to this rule are presented by toxin-modified
R853C and R853C-MTSEA, whose voltage dependence

Figure 5. Voltage dependence of Css IV-trapped sodium chan-
nels. Mean conductance-voltage relationships of Nav1.2, R850C/Q,
R850C-MTSET, R853C/Q, and R853C-MTSEA in the presence of
200 nM Css IV after a 	50 mV, 1 ms–prepulse. The solid lines
through the data are fits to a sum of two Boltzmann relationships.
The voltage dependence of the positive component was fixed to
the half activation and slope values obtained from fits of the con-
trol channels to a single Boltzmann as shown in Table I. The volt-
age for half activation (V1/2), slope factors (k), and the fraction of
the total represented by the negative, toxin-shifted, component
(Aneg) in these fits were the following: for Nav1.2a, V1/2 � �62.9
mV, k � 8.93 mV, Aneg � 0.13; for R850C, V1/2 � �57.4 mV, k � 7.9
mV, Aneg � 0.77; for R850C MTSET, V1/2 � �65.1 mV, k � 6.0 mV,
Aneg � 0.64; for R850Q, V1/2 � �62.6 mV, k � 10.88 mV, Aneg �
0.70; and for R853Q, V1/2 � �67.0 mV, k � 6.80 mV, Aneg � 0.76.
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of activation is not as negatively shifted by Css IV. Never-
theless, our results overall indicate that, once wild-type
and most mutant sodium channels are successfully mod-
ified by toxin binding alone or in response to a depolar-
ization, the channels adopt the same or similar toxin-
modified conformation for wild-type, mutants, and MTS-
modified mutants, perhaps having the IIS4 segment in
its outward, activated position bound to Css IV.

Accessibility of the IIS4 Segment in R853C Sodium Channels

The R853C mutant is modified by binding of Css IV at
the holding potential of �100 mV, since a strong shift in
the voltage dependence of activation is observed imme-
diately on the application of Css IV. To test whether it
might be possible to reverse effects of this mutation on
Css IV action by using a strongly hyperpolarizing holding
potential, we analyzed the effects of Css IV on R853C by
measuring the threshold currents elicited by a test pulse
at �65 mV when the holding potential was maintained
at �100, �120, and �140 mV. In the absence of Css IV,
no sodium current is activated at �65 mV in this mutant
(Figs. 3 B and 4 C). Transfected cells were exposed to
200 nM Css IV for 2 min at the holding potential. A sub-
sequent test pulse to �65 mV resulted in an inward so-
dium current that was as large as that normally observed

at this potential in the current-voltage curve (Fig. 6,
A–C). Thus, R853C renders IIS4 directly accessible for
voltage-sensor trapping by the toxin, and hyperpolariz-
ing the membrane potential to �120 or �140 mV is not
sufficient to prevent toxin action. This result indicates
that neutralization of R853C alters the accessibility of
IIS4 to the toxin at all membrane potentials positive to
�140 mV. Modification of R853C with MTSEA prevents
this change in accessibility of IIS4. When R853C-MTSEA
is exposed to 200 nM Css IV using the same holding po-
tential protocol, the test pulse to �65 mV does not result
in sodium current, even when the membrane potential
is maintained at �100 mV (Fig. 6 D). These data rein-
force the hypothesis that modification of R853C by
MTSEA stabilizes the IIS4 segment in an inward posi-
tion, thus, altering dramatically its accessibility to the
toxin and preventing voltage-sensor trapping.

Toxin-induced Tail Current Reflects Voltage-Sensor Trapping

If the IIS4 segment is trapped in its outward, activated
position by binding of Css IV, the toxin would be
expected to induce long-lasting tail currents due to
slowed deactivation and inward movement of the
trapped voltage sensor. In fact, Css venom induces
long-lasting tail currents after depolarizing pulses (Ca-
halan, 1975). Tail currents were recorded after a 28-ms
test pulse to �20 mV for Nav1.2a, R850Q/C, and
R853Q/C in the absence or in the presence of 200 nM
Css IV. This long depolarizing pulse allows complete in-
activation of the wild-type channels. Therefore, repo-
larization is not followed by tail currents in the absence
of Css IV because one or more of the S4 voltage sensors
must deactivate before recovery from inactivation al-
lows current flow (Kuo and Bean, 1994). In the pres-
ence of 200 nM Css IV, a novel inward tail current is ob-
served upon repolarization for all the channels studied
(Fig. 7 A), even though all of the channels are inacti-
vated by the end of the depolarizing pulse. The toxin-
induced tail current is larger for the glutamine-sub-
stituted channels, R850Q and R853Q (Fig. 7 A). In
contrast, the toxin-induced tail currents for R850C
and R853C are similar in magnitude to the wild-type
Nav1.2a channels (Fig. 7 A). Despite the increased mag-
nitude of the tail currents in the glutamine-substituted
mutants, all of the toxin-induced tail currents for
Nav1.2a and the Q and C mutants have the same time
course, as illustrated by superimposition of the current
traces (Fig. 7 B). Analysis of the peak toxin–modified
tail current as a function of repolarization potential
showed that tail currents are not observed positive to
�90 mV and increase steeply with hyperpolarization
(Fig. 7 C). This voltage dependence is similar for wild-
type and mutant channels, but it differs from tail cur-
rents that would be measured in unmodified channels
after short depolarizations due to closing of open, non-

Figure 6. Effects of MTSEA on Css IV-induced threshold sodium
currents of mutant R853C. R853C currents elicited by a single test
pulse to �65 mV were measured 2 min after introduction of 200
nM Css IV into the bath at a holding potential of �100 (A), �120
(B), or �40 mV (C). (D) R853C-MTSEA currents recorded in the
same way with a holding potential of �100 mV.
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inactivated channels. In that case, tail currents would
be observed at all potentials, becoming smaller with de-
polarization toward the reversal potential, and then in-
creasing again at very positive voltages. The voltage de-
pendence of the toxin-induced tail currents likely re-
flects inactivation at potentials more positive than �90
mV. Thus, the increase in the amplitude of the toxin-
induced tail current with hyperpolarization can be at-
tributed to both an increase in the fraction of conduct-
ing channels created by reversal of inactivation as well
as to an increase in the driving force for sodium entry.
Evidently, trapping the IIS4 segment in its activated po-
sition is sufficient to slow sodium channel deactivation
and to produce large tail currents through sodium
channels that are not inactivated.

D I S C U S S I O N

Gating Charges in the IIS4 Segment of Sodium Channels

The activation process of sodium channels corresponds
to a voltage-driven transition from a resting, closed con-
formation to an open conformational state, which is
accompanied by the translocation of several positive
charges outward across the membrane (Hodgkin and
Huxley, 1952; Armstrong, 1981). The S4 segments have
been proposed to serve as voltage sensors, moving out-
ward to initiate channel activation (Catterall, 1986; Guy
and Seetharamulu, 1986). Consistent with this idea,
mutation of the positive charges in S4 segments re-
duces the steepness of voltage-dependent activation
(Stühmer et al., 1989), and covalent modification ex-
periments show that S4 segments move outward during
the activation process (Yang and Horn, 1995; Yang et
al., 1996, 1997). Recent studies with fluorescently la-
beled S4 segments suggest that they also undergo a ro-
tation and possible tilt, in response to depolarization
(Cha et al., 1999b; Glauner et al., 1999).

Comparison of the voltage dependence of gating of so-
dium channels having mutations in each of the five posi-
tively charged amino acid residues in segment IIS4 indi-
cates that all five mutations affect activation gating. Neu-
tralization of each of the five positive charges shifts the
voltage dependence of activation in the positive direc-
tion. Moreover, the slope of the activation curve was re-
duced by neutralization of R850, R853, R856, and K859.
Neutralization of K862 did not have an effect on the
steepness of the activation curve. These results are consis-
tent with the idea that R850, R853, R856, and K859 all
move outward through the membrane electric field as
the sodium channel activates. However, these charges are
not equally important for activation gating. Neutraliza-
tion of K859 produced the largest shift in the voltage de-
pendence of activation, whereas neutralization of R856
has the smallest effect (Fig. 1 and Table I; Kontis et al.,
1997). These results indicate that neutralization of the
positive gating charges in these positions in wild-type so-
dium channels stabilizes the resting state of the channel
relative to the open state. This presumably results from
an increase in the electrostatic driving force necessary to
push the IIS4 segment outward, but steric effects of these
neutralizing mutations cannot be excluded.

Neutralization of the Two Outermost Arginines of the IIS4 
Segment Favors Voltage-Sensor Trapping by Css IV

Bound �-scorpion toxins induce only a partial shift of
the activation curve of wild-type sodium channels, even
after a strong depolarizing prepulse, as indicated by the
biphasic activation curves for wild-type channels (Ca-
halan, 1975; Jover et al., 1980; Jaimovich et al., 1982;
Meves et al., 1982; Wang and Strichartz, 1983; Vijver-
berg et al., 1984; Jonas et al., 1986; Cestèle et al., 1998;

Figure 7. Css IV-induced tail currents. (A) Whole-cell currents elic-
ited by a 28-ms test pulse to �20 mV followed by a repolarization to
�150 mV from a holding potential of �100 mV in the presence of
200 nM Css IV for wild-type Nav1.2a, R850Q, R853Q, R850C, and
R853C sodium channels. Each trace was normalized to the maxi-
mal amplitude of the peak sodium current. Each trace is an aver-
age of at least four recordings. (B) Comparison of the time course
of the Css IV-induced tail currents for Nav1.2a, R850Q, and R853Q.
The data were normalized to the maximal amplitude of the toxin-
induced tail current. (C) Amplitude of the toxin-induced tail cur-
rent as a function of the repolarization potential for Nav1.2a (black
circle), R850Q (open triangle), and R853Q (open square) sodium
channels in the presence of 200 nM Css IV. 
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Tsushima et al., 1999). The biphasic curves for activa-
tion in the presence of the �-scorpion toxin are pro-
posed to be due to the trapping of the IIS4 segment of
a fraction of sodium channels in an outward position
by binding the extracellular end of the S4 segment to
the previously bound toxin in its receptor site, which
includes the IIS3–S4 extracellular loop (Cestèle et al.,
1998). In the experiments presented here, analysis of
mutations that neutralize each of the five positive
charges of the IIS4 voltage sensor indicates that �-toxin
action can be strongly enhanced by substitution of the
two outermost arginines by glutamine or cysteine. The
increase in �-toxin activity is not caused by a general
enhancement of activation, since the neutralization of
R850 or R853 favors the resting state of the channels by
shifting the voltage dependence of activation toward
more positive potentials (Stühmer et al., 1989; Kontis
et al., 1997; present study). These two sets of results im-
ply that neutralization of R850 and R853 reduces the
energy barrier for trapping the IIS4 segment in its out-
ward position by binding of �-scorpion toxin while in-
creasing the electrostatic force required to drive the
IIS4 segment outward on depolarization.

Neutralization of R850 and R853 Increases the Mobility of 
IIS4 Segment within the Membrane

We interpret the enhanced effects of Css IV on activa-
tion of R850C/Q and R853C/Q in terms of a role for
these two amino acid residues in stabilizing the posi-
tion of the IIS4 segment with respect to interactions
with Css IV. The ability of Css IV to shift the voltage de-
pendence of activation of R853C/Q in the negative di-
rection without a depolarizing prepulse supports the
idea that this mutation increases the mobility of the
IIS4 segment, allowing the toxin to induce IIS4 move-
ment without depolarization. We consider two mecha-
nisms that may contribute to this stabilizing influence
of R850 and R853.

First, it is possible that these neutralizing mutations
increase the mobility of the IIS4 segment in the pres-
ence of Css IV because the normal positive charges at
these positions make unfavorable electrostatic interac-
tions with the amino acid residues in the strongly posi-
tively charged toxin. Neutralization of these charges
may enhance �-toxin action by removing this unfavor-
able electrostatic interaction, allowing easier outward
movement of the IIS3–S4 loop and the IIS4 segment.
This would promote more effective interaction with the
bound Css IV toxin and more complete shift of the volt-
age dependence of activation.

Alternatively, it has been shown for K	 channels that
basic amino acid residues in the S4 segment interact
with acidic residues in the S2 and S3 segments. These
electrostatic interactions are structural constraints that
can stabilize the S4 segments and impede their motion

(Papazian et al., 1995; Planells-Cases et al., 1995; Ti-
wari-Woodruff et al., 1997, 2000; Li-Smerin et al.,
2000). Similarly, R850 and R853 may interact with
acidic amino acid residues localized in the S2 and S3
segments of sodium channels. Neutralization is ex-
pected to abolish these electrostatic interactions and
reduce the kinetic barrier for S4 movement inward or
outward, resulting in a greater mobility of the IIS4 seg-
ment. An increase in the mobility of the IIS4 segment
would contribute to the enhanced effects of �-scorpion
toxin on activation that we have observed. With greater
mobility, the probability that the IIS3–S4 loop and the
IIS4 segment will be exposed at the extracellular sur-
face of the channel by random motions is increased.
Voltage-sensor trapping would be facilitated because
the IIS3–S4 loop and the extracellular end of the IIS4
segment would be more often available to bind to the
toxin, even at negative membrane potentials where the
channel is not activated.

Our results obtained with R853Q/C suggest a domi-
nant role of R853 in stabilizing the position of the IIS4
segment within the membrane, because voltage-sensor
trapping and the resulting negative shift of activation
occur in the absence of a depolarizing prepulse with
these mutations. The voltage-sensor trapping mecha-
nism can also account for the marked effect of MTSEA
on the activation of R853C. We suggest that reaction of
MTSEA with this residue stabilizes the IIS4 segment in
its inward position through steric hindrance and/or
ion pair formation, and thereby impedes movement of
the IIS4 segment. In contrast to the unmodified-R853C
channel, R853C-MTSEA requires a depolarizing pre-
pulse to observe a shift in the activation curve due to
Css IV application, and the voltage dependence of only
a fraction of the sodium channels is shifted. These re-
sults indicate that the modification of R853C by MTSEA
stabilizes the IIS4 segment within the membrane, op-
poses depolarization-induced movement of the IIS4
segment toward the extracellular side of the mem-
brane, and inhibits voltage-sensor trapping by Css IV.

Toxin-induced Tail Currents Caused by Slow Movement of the 
IIS4 Segment

The toxin-induced tail currents observed upon repo-
larization give direct information about the behavior
of the toxin-modified channels. The appearance of
this tail current upon repolarization is a direct conse-
quence of the IIS4 voltage-sensor trapping and its slow
reversal with time after repolarization. The tail currents
of toxin-modified channels are different in waveform
than tail currents of unmodified channels. For unmod-
ified sodium channels, voltage pulses long enough to
allow complete inactivation are not followed by tail cur-
rents because one or more of the S4 voltage sensors de-
activate before the inactivation gate opens to allow cur-
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rent flow (Kuo and Bean, 1994). In contrast, tail cur-
rents of toxin-modified sodium channels rise to a peak
followed by a slow decay, even when the sodium chan-
nels have inactivated completely during the depolariz-
ing pulse. Most models of ion channel gating indicate
that current can flow only when all four S4 segments are
in the activated position (Armstrong, 1981; Groome et
al., 1999). According to these models, the rise of the
tail currents of toxin-modified channels must reflect
reversal of inactivation of sodium channels whose volt-
age sensors are all held in the activated position. Be-
cause Css IV holds the IIS4 segment in the activated
position, we propose that the rapid deactivation of un-
modified sodium channels is mediated by the inward
movement of IIS4. Measurements of movement of the
IIS4 segment fluorescently labeled on a substituted
cysteine residue are consistent with this idea (Cha et
al., 1999a). When inward movement of IIS4 is pre-
vented by binding of Css IV, the inactivation gate in
the intracellular loop between domains III and IV can
reopen faster than deactivation, and tail currents are
observed upon repolarization and reversal of inactiva-
tion. The time course of decay of the toxin-induced
tail current was approximately equal for wild-type and
mutants. This is expected if another S4 segment (per-
haps IVS4, which is responsible for inactivation; Chen
et al., 1996; Ji et al., 1996; Cha et al., 1999a) deacti-
vates with normal kinetics and closes the channel with
IIS4 still trapped in its outward position. Therefore,
the toxin-induced tail currents provide a direct mea-
sure of trapping of the IIS4 voltage sensor in its acti-
vated position.

Alternative Interpretations of the Results

We have interpreted our results in terms of the voltage-
sensor trapping hypothesis presented previously to ex-
plain the actions of �- and �-scorpion toxins (Rogers et
al., 1996; Cestèle et al., 1998). We believe that this sim-
ple model can accommodate all of the results presented
here. However, our results do not constitute proof of
the voltage-sensor trapping model because the data can
also be accommodated by more complex models invok-
ing broader conformational changes in the sodium
channel induced by the mutations and chemical reac-
tions. For example, neutralization of gating charges may
cause conformational changes that alter voltage-depen-
dent activation and �-scorpion toxin action, and reac-
tion of R853C with MTSEA may inhibit channel activa-
tion by altering the conformation of domain II in a way
that prevents normal activation. These alternative inter-
pretations of our results seem unlikely because multiple
ad hoc assumptions are required to explain the results.
Nevertheless, further work will be required to obtain di-
rect proof for the voltage-sensor trapping model for the
action of polypeptide neurotoxins.
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