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Transcription factors (TFs) are the vocabulary that genomes use to regulate gene expression and phenotypes. The interac-

tions among TFs enrich this vocabulary and orchestrate diverse biological processes. Although simple models identify open

chromatin and the presence of TF motifs as the two major contributors to TF binding patterns, it remains elusive what con-

tributes to the in vivo TF cobinding landscape. In this study, we developed a machine learning algorithm to explore the con-

tributors of the cobinding patterns. The algorithm substantially outperforms the state-of-the-field models for TF cobinding

prediction. Game theory–based feature importance analysis reveals that, for most of the TF pairs we studied, independent

motif sequences contribute one or more of the two TFs under investigation to their cobinding patterns. Such independent

motif sequences include, but are not limited to, transcription initiation–related proteins and known TF complexes. We

found the motif sequence signatures and the TFs are rarely mutual, corroborating a hierarchical and directional organiza-

tion of the regulatory network and refuting the possibility of artifacts caused by shared sequence similarity with the TFs

under investigation. We modeled such regulatory language with directed graphs, which reveal shared, global factors that

are related to many binding and cobinding patterns.

[Supplemental material is available for this article.]

Regulatory biomolecules cooperatively decode the human ge-
nome and ultimately orchestrate a variety of tissue-specific cellular
processes. One of the key challenges for understanding the mech-
anisms underlying gene expression and human diseases is how to
analyze and delineate the genome-wide landscape of multiple
characteristic biochemical signatures. An important aspect is the
regulation of transcription factors (TFs), which bind to DNAs
and drive the expression or suppression of genes. TFs do not
work alone; they cooperate and interact with each other and
thus create complex transcription patterns of the genome (Lemon
and Tjian 2000; Perez-Pinera et al. 2013; Li et al. 2014; Ang et al.
2016).

Studying the collaborative patterns of TFs is a much more
complicated problem than characterizing the contributors of a sin-
gle TF binding event, for which open chromatin and the presence
of the TFmotifs have been recognized as the key determinants (Pi-
que-Regi et al. 2011; Neph et al. 2012; Tsompana and Buck 2014).
Naïvely, one might deduce that the main contributors to the
cobinding patterns of a TF pair should be the presence of the
two TF motifs and open chromatin. Yet, empirically many open
questions remain to be investigated: are there other independent
sequence signatures contributing to TF cobinding? If such se-
quence signatures do exist, are they generic for a TF when it is
paired with any other TFs, or are they unique to a specific TF
pair? Are there global, important sequence signatures affecting
many TF cobinding patterns? We attempt to answer these ques-
tions with machine learning and game theoretical approach–
based feature analysis.

The Encyclopedia of DNA Elements (ENCODE) and the NIH
Roadmap Projects have provided invaluable resources of the in
vivo biochemical signatures, including chromatin accessibility
and TF binding. Many exciting computational approaches have

been developed to predict transcription factor binding sites
(TFBSs) and to study what controls the binding patterns (Bulyk
2003; Blanchette et al. 2006; Kumar and Bucher 2016; Chen
et al. 2017; Quach and Furey 2017). However, only a few models
are developed for the prediction of TF cobinding patterns, and
most of them focus on the pairing with a single motif (e.g.,
CTCF [Liu et al. 2016]). Although pioneering works have made
substantial contributions, there is an urgent need to develop a gen-
eralizable model for the prediction of TF-cobinding and identify
key contributors for this process.

This study aims at addressing these questions from amachine
learning perspective. Towards this goal, we developed an algo-
rithm that focuses on dissecting the predictive elements for
genome-wide TF cobinding across diverse cell types based on chro-
matin accessibility, TF bindingmotifs, and gene locations.What is
unique to this model is that not only themotifs of the TF pairs un-
der investigation but also the motifs of other seemingly irrelevant
TFs are considered in building the model. This allows us to further
adopt game theory–based approaches to identify independent
contributors to the binding patterns of a TF pair. Additionally,
we created regulatory graphs based on this feature importance
analysis.

Results

Designing a machine learning model to dissect individual

contributors that predict TF cobinding

Our goal is to dissect the individual contributors to TF cobinding,
which include motif locations of the TF pair, other TF sequence
signatures, chromatin accessibility, and gene locations. Our ap-
proach is to first establish a predictive model to predict TF
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cobinding using features extracted from the above data types and
then use game theoretical feature analysis to identify independent
contributions of each feature.

To this end, we first created the gold standard cobinding data
set for training the model. Following one of the mainstream con-
ventions in the TF binding field (Levy and Hannenhalli 2002;
Valouev et al. 2008; Yu et al. 2016), chromosomes are segmented
every 200 bp, with a moving step of 50 bp (Fig. 1A). If a 200-bp re-
gion is boundby two transcription factors at the same time in a spe-
cific cell line as examinedbyChIP-seq experiments, it is defined as a
positive example. Otherwise, the region is considered as a negative

example (Fig. 1A).We carried out the experiments on 13 common-
ly seen and well-studied TFs (ATF3, CTCF, E2F1, EGR1, FOXA1,
FOXA2, GABPA, HNF4A, JUND,MAX, NANOG, REST, and TAF) us-
ing the ENCODE data set (Supplemental Tables S1, S2). The TFs
were chosenby two criteria: belonging to different families grouped
by binding site similarity as defined by sequence homology to a
previously characterized DNA-binding domain (Supplemental
Table S1; Lambert et al. 2018); and having sufficient ChIP-seq
data across ENCODE cell lines for subsequent analysis of TF-TF in-
teractions. A total of 228 TF cobinding profiles involving 56 differ-
ent TF-TF pairs were prepared to train and evaluate the model.
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Figure 1. Machine learning–based method for identifying independent sequence signatures for TF binding and cobinding. (A) Preparing gold standard
co-occupancy profiles from the ChIP-seq data of single TF binding profiles. For each 200-bp genomic interval of interest, it was labeled as ‘cobound’ if the
labels of both TFs at this interval were ‘bound.’ (B) Train-test data partition for cross-chromosome and cross-cell type cases. (C) Crisscross design of model
training and validating. Chromosomes were split into two sets. The blue and red squares represent the chromosome set 1 and set 2, respectively. The start-
ing point of the arrow represents the training data set, and the endpoint of the arrow represents the validation data set. (D) DNase-seq-based features.
Quantile normalization was applied to the original reads to eliminate experimental biases. In the plot, the dashed line is the values after quantile normal-
ization and the solid line is the original reads. (E) DNA sequence and motif-based features. (F ) Distance-to-gene features. Top 20 closest distances to prox-
imal genes are calculated according to GENCODE annotation. (G) Illustration of tree-basedmachine learningmodels. (H) Predictions are continuous values
between 0 and 1, whichwere generated by averaging results from all built models, and SHAP analysis (figure is illustrative only) was used to calculate feature
importance in predicting TF cobinding. (I) Independent sequence signatures affect TF cobinding. (J) Illustration of TF cobinding effector network. Dashed
lines connect TF pairs, and solid arrows connect TF-specific effectors with TF- or TF pair–specific effectors with TF pairs.
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We sought to evaluate the model performance from two as-
pects: (1) cross-cell type predictions, that is, when the binding pat-
tern is known in some cell lines and we have corresponding open
chromatin status in other cell lines sharing the same genomic se-
quence; (2) predictions on new chromosomes, that is, when we
move the model learned from one set of chromosomes to others.
The former is useful for imputing a large amount of cobinding pat-
terns across cell lines. The latter would be useful for studying bind-
ing patterns associated with SNPs or moving to other species.
Toward this goal, we partitioned the chromosomes (Chr) into
the training set (Chr 2, Chr 3, Chr 4, Chr 5, Chr 6, Chr 7, Chr 9,
Chr 10, Chr 11, Chr 12, Chr 13, Chr 14, Chr 15, Chr 16, Chr 17,
Chr 18, Chr 19, Chr 20, Chr 22, andChrX), which are used to eval-
uatemodel performance across cell types in Case 1, and the test set
(Chr 1, Chr 8, and Chr 21), which are used to evaluate model per-
formance across chromosomes in Case 2 (Fig. 1B). This partition
was made following several traditions in the TF-binding field
(Keilwagen et al. 2019; Li et al. 2019). We randomly selected one
cell line as the test cell line for each TF-TF pair and ensured that
the number of test pairs in each cell line did not differ too much
after the random selection.

TF co-occupancy is a much less explored field than single TF
binding. With very limited prior experience in feature engineer-
ing, we consider it logical to adapt the feature engineering meth-
ods based on the state-of-the-field in the TF binding field. Open
chromatin and motifs are two widely accepted factors that affect
TF binding (Zhou and Liu 2004; Pique-Regi et al. 2011; Schmidt
et al. 2017). Proximity to genes is another important factor, with
some disagreement between studies (Chen et al. 2020). For the
completion of the study, we considered all three of these. Based
on several previous studies (Kelley et al. 2016; Li and Guan
2019a; Li et al. 2019; Kelley 2020), we first used long-range
DNase-seq-based features to capture open chromatin long-dis-
tance information. Moving windows of 200 bp in size, with a
step of 50 bp until 1500 bp, are included as features (Fig. 1D).
Additionally, the variability of open chromatin signals was sug-
gested to be informative for TF binding (Pique-Regi et al. 2011;
Davie et al. 2015; Schmidt et al. 2017; Li et al. 2019). Thus, we
used the maximum, minimum, average DNase signals in each of
the 200-bp regions as additional features. To capture and correct
for the DNA position biases, we also used the difference between
the DNase value and the average value across all cell lines. Then,
we scanned TF motifs along DNA sequences and used the top
four sequence similarity scores in each 200-bp region as the mo-
tif-based features. Again, we took motifs that are even not within
200 bp under consideration (up to −750 to 750 bp) in order to
study the effect of other TF signatures in cobinding (Fig. 1E).
Finally, we used the closest distances to the 20 proximal genes as
the distance-to-gene features, as previous studies suggested that
TF binding is closely related to the positioning of open reading
frames (Fig. 1F; Clements et al. 2007; Maienschein-Cline et al.
2012; Ezer et al. 2014). This resulted in a total of 526 features, for
each TF-TF-cell line combination, which were nested trained
with XGBoost (Fig. 1C,G; see Methods), a classical classifier used
for TF binding predictions to build models for TF cobinding.

Robust performance in predicting the rare events of TF cobinding

across cell types and in previously unseen genome sequences

This algorithm demonstrated strong predictive performance when
evaluated on the testing data set covering 56 TF pairs. We first cal-
culated the area under the receiver operating characteristic curve

(AUROC) to evaluate the model performance (Fig. 2A,D;
Supplemental Table S3). The median AUROC of cross-cell line pre-
dictions is 0.998 in 56 TF pairs, and the range of our prediction
AUROCs is between 0.986 and 0.999. In addition to AUROC, we
further calculated the area under the precision-recall curve
(AUPRC) (Fig. 2B,C,E; Supplemental Table S3; Davis and
Goadrich 2006). Whereas the AUROC baseline is consistently
0.5, the AUPRC baseline is the proportion of positive examples,
which is 0.000504 in our data, because TF co-occupancy is ex-
tremely rare in the human genome. The median of AUPRC was
278 times over the baseline across 56 TF pairs.

The model represents a substantial improvement over the
previous work, whose test set was limited to CTCF-associated TF
pairs but could nevertheless serve as a benchmark for this study
(Liu et al. 2016). In this benchmark work, Liu et al. focused on
distinguishing between TF-TF cobinding and single TF binding
events. Although our model was not directly designed for this
purpose, it can still predict such events, as single-binding events
were also used as negatives when we constructed the gold stan-
dard. In the test set cell line-TF pair combination, we selected
the evaluation chunks limited to the single-bound and cobound
intervals, for the CTCF-associated pairs shared between our study
and their study on four cell lines (A549, H1-hECS, HepG2, and
K562). Compared with the AUROC values of 0.80, 0.79, 0.68,
and 0.80 in the previous research, our method reached AUROC
values of 0.8724, 0.8245, 0.8039, and 0.9211, and AUPRC
0.2367, 0.2365, 0.0955, and 0.2438, respectively, on this evalua-
tion (Fig. 2K). This improvement in performance might come
from the extraction of maximal, minimal, and variance of the
DNase features and long-range features, which are additional in
this study. Of note, differentiating cobinding and single-binding
events is a much more challenging task, explaining why these
AUROCs are comparably lower than the global AUROCs, and
the model presented in this paper was not designed for that
purpose.

We also benchmarked with two existing software: TACO and
coTRaCTE (Jankowski et al. 2014; van Bömmel et al. 2018). Both
are unsupervised methods. Both TACO and coTRaCTE make pre-
dictions for a subset of the chromosome and do not consider the
regions that are not open. Thus, for a comprehensive comparison,
we compared both on their restricted subset, as well as the whole
genome by assuming all nonpredicted sites are zero. For the re-
stricted subset of the chromosomes, TACO’s AUROC is 0.49867
and AUPRC is 0.01103; for the method presented in this study
on the same region, the values are 0.857 and 0.061. For
coTRaCTE, its performance was AUROC=0.68450 and AUPRC=
0.08259. The comparison highlights the importance of supervised
learning in cobinding prediction.

Next, we tested the model on its ability to make predictions
on the three held-out chromosomes (Chr 1, 8, and 21) on test
cell lines. We obtained AUROCs with a range from 0.985 to
0.9995, with an average value of 0.997 (Fig. 2F,I; Supplemental
Table S4). For the AUPRCs, the improvement of our predictions
over the baseline ranges from 155× to 1759× (Fig. 2G,H,J;
Supplemental Table S4). Compared with cross-cell line prediction,
the cross-chromosome performance can reach equally high
AUROC values (difference less than 0.001) and even better
AUPRCs. Compared with single-bound examples, no-bound ex-
amples were easier to separate (Supplemental Table S5). For sin-
gle-bound, the average AUROC and the average AUPRC are
0.817 and 0.336 for cross-cell type evaluation, and 0.820 and
0.348 for cross-chromosome evaluation. For no-bound, the
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average AUROC and the average AUPRC are 0.998 and 0.411 for
cross-cell type evaluation, and 0.998 and 0.403 for cross-chromo-
some evaluation.

Of note, predicting cobinding in previously unseen genome
sequences is often considered a much more difficult task than
making predictions for a chunk of sequence that already occurs
in the training set (i.e., cross-cell line predictions). We compared
the performance of these two situations (Fig. 2L,M) and found a
strong correlation, indicating that the performance could depend
on intrinsic difficulties in the TF pair rather than the sequence. In
fact, the performance is almost indistinguishable compared to
cross-cell line predictions.

To evaluate the individual contribution of each type of fea-
ture, we separately evaluated model performance by including
only DNase, only sequence motif, and only distance to genes, as
well as a model with motif and gene distance (but excluding
DNase) (Fig. 3). DNase is by far the most predictive feature, as it re-
flects chromatin status and achieves a cross-cell type AUROC of
0.995 and AUPRC of 0.149. The cross-chromosome AUROC is
0.995 and AUPRC is 0.148 (Fig. 3C). Removing DNase, but retain-
ing the other two, we obtained the cross-cell type AUROC of
0.9450 and AUPRC of 0.0573. The cross-chromosome AUROC is
0.943 and AUPRC is 0.0553 (Fig. 3A). Motif-based features make
the second most important contribution: the cross-cell type
AUROC is 0.941 and AUPRC is 0.0492. The cross-chromosome
AUROC is 0.940 and AUPRC is 0.0470 (Fig. 3D). Gene distance-
based features are the least important: the cross-cell type AUROC
is 0.773 and AUPRC is 0.00577. The cross-chromosome AUROC
is 0.7620 and AUPRC is 0.00572 (Fig. 3B).

We also benchmarked with logistic regression and compared
the model performance (Fig. 3E). For the logistic regression model
with full features, the cross-cell type AUROC is 0.613 andAUPRC is
0.000612. The cross-chromosome AUROC is 0.622 and AUPRC is
0.000716. The adoption of the XGBoost model contributes to
the improvement of the performance.

The above-described algorithm has practical application to
differentiate TF cobinding status and predict TF cobinding sites, es-
pecially given the large amount ofmissingness in the ENCODE da-
tabase. The predictions made by this algorithm are capable of
differentiating TF cobinding versus single TF binding events and,
certainly, versus nonbinding events, as has been demonstrated
in the performance analysis in previous paragraphs (AUROCs).
Here, we used some intervals from JUND-MAX in cell line K562
in the cross-cell line experiment to illustrate this point (Fig. 4).
We were able to distinguish these three cases with the prediction
values of 0.9938 for the cobinding case (Fig. 4A), 0.8174 for the sin-
gle-binding case (Fig. 4B), and 0.1851 for the no-binding case (Fig.
4C). These results indicate that the algorithm leverages both TF
motif sequences and chromosome accessibility to predict TF
cobinding.

Game theoretical approach–based analysis suggests

widespread, strong, and independent sequence signatures

related to TF cobinding patterns

The above model is unique in that not only the motif presence of
the TF pair under investigation is used as a predictive feature but
also the seemingly irrelevant motifs of different TFs. This allows

E

F

BA C D

I

K ML

JG H

Figure 2. Cross-cell type and cross-chromosome evaluation of TF cobinding predictions. (A) The ROC curves of predicting cross-cell type TF cobinding.
The brown lines are ROC curves of the logistic regression model. (B) The PR curves of predicting cross-cell type TF cobinding. The brown lines are PR curves
of the logistic regression model. The dashed line with AUPRC of 0.000612 is the average AUPRC of the logistic regression. (C ) The AUPRCs of cross-cell type
predictions of 56 TF-TF pairs in 10 cell types. (D,E) The cross-cell type AUROCs and AUPRCs of 56 TF-TF pairs. Different colors indicate different cell types. All
cell lines represented in the figure are testing cell lines. (F–J) Represent cross-chromosome evaluations. (K) AUROC comparison of our method (y-axis) and a
previous work (x-axis) (Liu et al. 2016). The cross-cell type predictions of ATF3-CTCF on cell lines A549, H1-hECS, HepG2, and K562 are compared. (L) The
AUROC and (M) the AUPRC comparison of cross-cell type (x-axis) and cross-chromosome (y-axis) predictions.
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us to investigate the determinants of transcription factor co-occu-
pancy beyond what is already known: open chromatin and the
presence of motifs. A technical challenge in finding independent
contribution is addressed by a recent advance in game theory ap-
plication: an improved SHapley Additive exPlanations (SHAP)
analysis (Fig. 1H,I; Shapley 1988; Lundberg et al. 2018).
Mimicking the process of finding out the contribution of football
players in a game, this analysis assigns the independent contribu-
tion of each of the features considering the context and the exis-
tence of other features. This is more appropriate than direct
correlation analysis where correlations do not conclude contribu-
tion but could be a consequence of shared patterns with another
important feature.

First, we analyzed the 526 features encompassing open chro-
matin (DNase), TF motif presence, other TF sequence signature,
and gene location (Fig. 5A,B; Supplemental Fig. S1). We found
that DNase and the presence of TF motifs under investigation are
globally the most important factors, and the proximity to gene lo-
cation plays a small role. Additionally, the DNase and TF features
that are closer to the center of the 200-bp chunk would be more
important (Fig. 5C–E).

To study the contribution of independent sequence signa-
tures, for each TF pair, we calculated the SHAP value for each fea-
ture (Fig. 5F; Supplemental Figs. S2, S3). The original SHAP
values for all motif features are a 416×56 matrix. The 416 rows
come from 13 TFs multiplied by 32, because each TF has a total
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Figure 3. Performance of models with different features. (A) Comparison of performance between model without DNase-based feature and model with
full features. (B) Comparison of performance between model with gene distance–based feature and model with full features. (C) Comparison of perfor-
mance between model with DNase-based feature and model with full features. (D) Comparison of performance between model with sequence motif–
based feature and model with full features. (E) Comparison of performance between logistic regression model with full features and XGBoost model
with full features.
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number of 32 features, depending on their distance to the center of
the chunk under investigation. We took the mean of those 32 fea-
tures for 13 TFs, respectively, and scaled the SHAP values to 0−1 for
each cell line-TF pair combination. An alternative by taking the
maximum values was also investigated, and the patterns are very
similar to taking the mean (Supplemental Fig. S4).

The first most prominent observation is that proximity to an
open chromosome region and the appearance of motifs of the TF
pair are the most important features. For example, for pairs tied
with E2F1, E2F1 and TAF1 are the two most important features
(Fig. 5G). For the effect of TAF1, overall it is a positive indicator
for all E2F1-related pairs (Supplemental Fig. S3). Similarly, for pairs
tied with CTCF, CTCF is the most important feature (Figs. 5H, 6E).
For the DNase-mean and DNase-max features, the central interval
is more important than neighboring intervals when predicting TF
co-occupancy events. Additionally, proximity to genes only con-
tributes to about half of the binding patterns of TF pairs.

However, we also found other irrelevant TF sequence signatures
as significant contributors. In the majority (62.5%) of the TF pairs
we studied, independent motif sequences contribute one or more
TFs under investigation to the TF cobinding patterns. In seven cas-
es among the 56 TF pairs we studied, there exist independent se-
quence signatures that contributed more than both TFs under
investigation. Excluding cases related to FOXA1-FOXA2, which
share great sequence similarity, there remain three cases (Table 2;
Supplemental Fig. S5). Moreover, we found that, for seven pairs
tied with ATF3, the average contribution of JUND is the highest
among those 13 TFs; it is marginally higher than ATF3 itself.
This is a strong piece of evidence of the existence of an indepen-
dent TF-specific effector.

As mentioned above, some of these signatures could be a re-
sult of shared sequences or complementary sequences with the
two TFs under study. For example, FOXA2 is an effector for pairs
tied with FOXA1, and FOXA1 and FOXA2 share similar motifs.

B

A

C

Figure 4. Examples of predicting TF-TF cobinding and un-cobinding events. The comparison of TF binding signals from ChIP-seq (the blue/orange hor-
izontal bar on the top), DNase-seq-based features (the red/blue/green scatter points and lines in themiddle), and TFmotif hits (the blue/orange vertical bars
on the bottom). (A) A cobound (Bound-Bound) case of the JUND-MAX pair in Chromosome 2 between position 8944200 and 8944400 in K562. The red,
blue, and green dots represent the maximum, mean, andminimumDNase-seq values, respectively, in a 200-bp interval. The two bars on the top highlight
the binding locationsMAX and JUND. Our prediction for this interval is ‘cobound’ (0.9938). (B) An un-cobound (Bound-Unbound) case in Chromosome 2
between position 8652400 and 8652600. Specifically, JUND is boundwhileMAX is unbound in this interval. The prediction for this interval is ‘un-cobound’
(0.8174). (C) An un-cobound (Unbound-Unbound) case in Chromosome 2 between 5850900 and 5851100. Both JUND andMAX are unbound. The pre-
diction for this interval is ‘un-cobound’ (0.1851).
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However, many effectors and their TFs do not directly show se-
quence similarity. For example, GABPA is an effector for pairs
EGR1-TF (Fig. 6C), but the motif sequences of GABPA and EGR1
do not share many similarities, nor do they form a protein com-
plex. Thus, some of these sequence signatures seem to speak a lan-
guage other than forming complexes to facilitate certain shared
processes. To investigate the contribution of cobinding in this fea-
ture importance analysis, we calculated two types of peak frac-
tions: fractions in which effectors are bound with TF pairs in the
same bin; and fractions in which effectors are bound with TF pairs
within 300 bp (Fig. 6I; Supplemental Table S6) because a single
binding event will result in consecutive sets of bins annotated to
‘bound.’ The above two criteria are, in fact, quite representative

and generous in considering the contri-
bution of cobinding. The average frac-
tion of peaks that the top effector binds
in the same bin with the TF-TF pair is
0.248. The average fraction of peaks in
which the top effector binds with TF
pairs within 300 bp is 0.490. For exam-
ple, for ATF3-GABPA and effector MAX,
the fraction that MAX bound with
ATF3-GABPA in the same bin is 0.624,
and the fraction that MAX bound with
the pair within 300 bp is 0.893. For
ATF3-TAF1 and effector CTCF, the frac-
tion that CTCF bound with ATF3-TAF1
is 0.124, and the fraction that CTCF
bound with the pair within 300 bp is
0.198. This indicates that combining is
an important mechanism, resulting in
the observed signatures. However, at
the same time, even for the top effectors,
the binding only contributes to an esti-
mated 25% to, atmost, 50% of the times,
indicating that it only partially explains
these sequence signatures. As a matter
of fact, 27.06% of relationships between
a sequence signature and a TF pair are
negative, suggesting that there exist oth-
er mechanisms beyond binding.

Independent sequence signatures can be

categorized into generic, TF-specific, and

TF pair–specific

Such independent contributors of se-
quence signatures reflect, to some extent,
known biology and could be roughly
grouped into three categories, which are
not necessarily mutually exclusive. First,
the sequence signature is related to
many TFs, for example, GABPA is related
to 10 TFs (CTCF-TF, E2F1-TF, EGR1-TF,
FOXA1-TF, FOXA2-TF, HNF4A-TF,
JUND-TF, MAX-TF, REST-TF, and TAF1-
TF) in this study, and JUND is related to
four TFs (ATF3-TF, EGR1-TF, CTCF-TF,
and HNF4A-TF) (Table 1). Certainly, in
this case, JUND has been found to
directly interact with ATF3 (Chu et al.
1994). TAF1 is an effector for pairs

CTCF-TF, E2F1-TF, GABPA-TF, and MAX-TF (Table 1). Transcrip-
tion initiation factor TFIID subunit 1, TAF1, appears in this global
effector list, as the initiation of transcription by RNA polymerase II
requires the coordination of TFIID and the binding of this complex
at the promoter region (Bieniossek et al. 2013). Of note, even
though TAF1 is a global effector, its strength differs for different
TFs, with the strongest in TAF1, E2F1, and GABPA (Fig. 6H). We
term such effectors as generic effectors. Potential important ones
are GABPA, JUND, TAF1, and HNF4A.

Second, for the sequence signature that is related to a partic-
ular TF, no matter what other TF we are studying, we term it a
TF-specific effector (Table 1). To identify a TF-specific effector,
we first calculated the mean of absolute SHAP values of each
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Figure 5. Game theoretical approach–based analysis of determinants of TF cobinding. (A) SHAP values
of DNase-seq-based features (blue), TF motif–based features (dark green), and distance-to-gene features
(light green). DNase-seq-based features play themost important role in all TF-TF pairs. (B) The spatial dis-
tribution of distance-to-gene features. Columns correspond to the top 20 closest distances to proximal
genes and rows are the 56 TF-TF pairs. Distances to proximal genes are more important than those to
distal genes. (C–E) Spatial distributions of DNase-seq-based features. In the heat map, each row corre-
sponds to a TF-TF pair and each column corresponds to one 200-bp genomic interval. Zero represents
the feature calculated from the target interval, and ± represents the upstream/downstream neighboring
intervals. (F) The spatial distribution of TFmotif–based features. Each column is a TF-TF pair and each row
is themotif-based features averaging at one TF. Themotifs-based features for TFs that are the component
of the TF-TF pair have higher contributions. In addition to the component TF, other TF sequences are also
predictive. (G) The SHAP value pattern of TF pairs tied with E2F1. For most pairs, E2F1 motif–based fea-
tures have the highest SHAP values. For E2F1-TAF1, both E2F1 and TAF1 have higher SHAP values than
other TFs. (H) The SHAP value pattern of pairs tied with CTCF. For most pairs, CTCFmotif–based features
have the highest SHAP values. Other TF motifs like NANOG and TAF1 also play an important role.
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effector on pairs that tied with the specific TF. Then, we selected
the top three effectors, excluded the specific TF itself, and identi-
fied the remaining ones as TF-specific effectors. For example,
HNF4A is a TF-specific effector for pairs tied with JUND (Fig. 6D),
and TAF1 is a TF-specific effector for pairs tied with GABPA (Fig.

6B). TFs sharing strong sequence similarity will come out as an ar-
tifact of such TF-specific effector, for example, FOXA2 for FOXA1
and vice versa. Third, the sequence signature that is related to a
particular TF pair, in the sense that it is stronger than any of the
TFs of the pair under study, is termed as a TF pair–specific effector
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Figure 6. Asymmetric regulatory relationships of TF-TF pairs in controlling cobinding. (A) In this network, each node represents a TF or a TF-TF pair. Each
edge that connects a TF and a pair represents the contribution of that TF to the pair when predicting cobinding events. The width and color of an edge
represent the strength of the contribution. (B–E) Directed regulatory networks of TF-TF pairs effectors. In each network, the blue node represents a TF-TF
pair and the light color node represents a TF motif signature. The arrow direction represents the contribution of a TF to a TF-TF pair. The width and color of
an edge represent the strength of the contribution. In B, GABPA, TAF1, and CTCF are the threemost effective effectors for pairs tied with GABPA. In C, JUND,
TAF1, and EGR1 are themost effective effectors for pairs tied with EGR1. In D, JUND is the most dominant effector for pairs tied with JUND. In E, CTCF is the
most dominant effector for pairs tied with CTCF. The four examples show that the contribution of different TF effectors and both pair-relative and pair-
irrelative TFs affect cobinding. (F) Radar plot of effectors strength averaging over pairs. Among the 13 TFs, CTCF, JUND, and TAF1 are the three most con-
tributive effectors compared with other TFs. (G) Asymmetric control heat map. Each cell represents the difference between (1) the contribution of TF1 to
pairs tied with TF2 and (2) the contribution of TF2 to pairs tied with TF1. Positive and negative values are shown in red and blue, respectively. (H)
Contribution of TAF1 is different when predicting the cobinding of pairs tied with different TFs. (I) Peak fractions of TF-specific effectors binding with
TF pairs. Red bars: the fraction of the effector binding in the bins under investigation; blue bars: the fraction of the effector binding within 300 bp of
the bins under investigation.
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(Table 2). For example, HNF4A is the TF pair–specific effector for
FOXA1-REST.We acknowledge this is an extremely stringent crite-
rion, and if we relax it, many more TF pair–specific effectors may
arise, and the full spectrum is provided in Supplemental Figures
S2 and S3.

We found TF-specific and TF pair–specific effectors tend to be
tissue-specific. FOXA2 is a TF that activates liver-specific gene ex-
pression (Tuteja et al. 2008). The cobinding of FOXA2-TAF1 is
linked to the appearance of another tissue-specific transcription
factor, HNF4A, which is critical for liver development (Babeu
and Boudreau 2014; Thakur et al. 2019). Such tissue specificity
seems to be elegantly orchestrated through sequence combina-
tion, in that the HNF4A motif comes out as an important effector
for FOXA1, FOXA2, and TAF1. Similarly, FOXA2 does not appear
as an effector for transcription factors other than FOXA1, which
shares sequence identity with FOXA2.

We acknowledge one potential limitation in the above anal-
ysis: regions bound by a large number of transcription factors

might confound meaningful signals. To examine this effect, we
repeated the above analysis by removing the HOT sites (High-
Occupancy-Target sites) from the analysis. The HOT sites are de-
fined by counting the number of binding TFs in each 200-bp bin
and cutting off using the 99th percentile threshold to define the
HOT sites (Wreczycka et al. 2019), which was deemed in line
with previous studies (Gerstein et al. 2010). SHAP patterns ex-
cluding HOT sites do not differ substantially from the ones in-
cluding the HOT sites (Supplemental Figs. S6–S13). The
correlations between SHAP values with and without HOT sites
range from 0.9939 to 0.9995. For example, for cell line K562,
GABPA is the most dominant effector for JUND-TF pairs.
Similarly, for cell line HepG2, FOXA2 is the most dominant effec-
tor for FOXA1-TF pairs. After removing the HOT sites, GABPA re-
mains the top feature of the JUND-TF pair in K562, and FOXA2
also remains the top feature of FOXA1-TF pairs in HepG2. This
result indicates the HOT sites had minimal impact on the feature
importance analysis.

Table 1. TF-specific effectors, which are related to cobinding patterns involving a specific TF,
as identified for all TFs with more than two samples available; the TF under investigation is ex-
cluded in the table
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Independent sequence signatures for TF binding are rarely

mutual but mostly directional

For both TF-specific effector and TF pair–specific effector, we ob-
serve striking cases where the independent TF sequence signature
weights more than the original TFs in predicting cobinding. This
motivated us to create a directed graph that represents such contri-
bution relationships (Figs. 1J, 6). First, from the regulatory graph,
we observe that the control relationship is rarely symmetric,
with the exception of TFs that share strong sequence similarity,
for example, FOXA1 and FOXA2. Although the motif signature
of TF-A is important for another pair TF-B and TF-C, it is not nec-
essary that TF-B and TF-C will be a strong signature of pairs involv-
ing TF-A (Fig. 6A,G). This refutes the possibility of significant
artifacts caused by sequence signatures sharing sequence similarity
with the TFs under investigation and supports the directional reg-
ulatory relationship.

Second, we observe sequence motifs that appear to be hubs in
affecting many TFs (Fig. 6A,F). In the network (Fig. 6A), the width
and color of each edge connecting a TF and a TF-TF pair represent
the contribution of that TF motif features to the TF-TF pair. The
weight value of an edge connecting TF-A and TF-B-TF is calculated
by averaging the SHAP feature importance of all pairs tied with TF-
B forTF-A’smotif features.Thestrengthofeachsequencemotif is cal-
culatedbyaveragingweights connected to thatmotif in thenetwork
(Fig. 6F). From the plot, CTCF, GABPA, and HNF4A are the three
most contributive effectors (Fig. 6F), and GABPA, HNF4A, TAF1,
and JUND affect many TF-TF pairs in this network under investiga-
tion (Table 1), whereas others control more specific and fewer TFs
andTFpairs.Overall, this graph supports ahierarchical organization
of the regulatory network that is orchestrated by a few sequence sig-
natures and rewires into more specific functions and specificity
through combinations of more specific sequence signatures.

Discussion

Unlike single TF binding, the study of cobinding is a less explored
area. Although chromatin immunoprecipitation followed by
DNA sequencing (ChIP-seq) has been applied to the combination
among10 cell lines and13 transcription factors in the ENCODEda-
tabase, experimentally measuring the genome-wide co-occupancy
of every TF pair in every cell type is practically infeasible. Thus,
characterizing the TF cobinding patterns has been an open scien-
tific question for years. Existing software such as TACO and
coTRaCTE also used DNase-seq and TF motifs to predict TF-TF co-
occurrence (Jankowski et al. 2014; van Bömmel et al. 2018).

TACOmodeled TF motif complex enrichment based on cell type–
specific open chromatin regions from the ENCODE DNase-seq
data set. Similarly, coTRaCTE first defined cell type–specific DNase
Hypersensitive Sites (DHSs) through the t-statistic measure. Then,
the TRanscription factor Affinity Prediction method (TRAP)
(Roider et al. 2007)was used to estimate the TF binding sites among
theDHSs based on TFmotifs. In thiswork, we further leveraged the
large-scale TF ChIP-seq data to build machine learning models for
TF-TF co-occurrence detection. Consistent with previous studies,
wealso found thatopenchromatinandTFmotifs play central roles.

Specifically, we developed machine learning methods to dis-
sect the contributors to TF cobinding. Our focus is on dissecting
the independent sequence contributors. The design of the algo-
rithm thus included features of other TFs irrelevant to the ones un-
der investigation. This experiment resulted in the finding of
independent sequence signatures that contribute as strongly as
or even more strongly than the TFs under investigation. This anal-
ysis also allowed us to construct a directed graph of how these se-
quence signatures affect each other.

Such sequence signatures can be roughly divided into three
categories: TF pair–specific, TF-specific, and TF-generic. For exam-
ple, TAF1 is an important signature for a range of transcription fac-
tor binding patterns. On the other hand, TF-specific and TF pair-
specific sequence signatures tend to involve TFs controlling more
specific biological processes. For example, the cobinding patterns
of FOXA2, a TF that activates liver-specific gene expression, are af-
fected by HNF4A, another liver-specific TF. The result from SHAP
analysis and network analysis overall suggests a hierarchy of orga-
nization of sequence signatures that coordinates to fulfill global
functionality of transcription by global effectors as well as tissue
specificity by the interplay of binding sites of tissue-specific TFs.
Analysis of feature importance could be affected by a variety of fac-
tors such as the frequency of occurrence of a feature and the base
learners. Upscaled andmore comprehensive studies covering these
areas could be carried out in the future.

The human genome encodes for a limited number of 1500
transcription factors (Ignatieva et al. 2015), but they are sufficient
to facilitate the formation of cellular diversity and development
dynamics. One key is the combinatory interplays of multiple
TFs. This study identifies the sequence signatures by using a ma-
chine learning approach and statistical analysis and contributes
to our understanding of the rules that drive such interplay.

Methods

Data sets for model building and testing

In this study, we used the DNase-seq and ChIP-seq data from the
ENCODE Project, covering 13 TFs (ATF3, CTCF, E2F1, EGR1,
FOXA1, FOXA2, GABPA, HNF4A, JUND, MAX, NANOG, REST,
and TAF1) in 10 cell types (A549, GM12878, H1-hESC, HCT116,
HeLa-S3, HepG2, K562, MCF-7, iPSC, liver). The ChIP-seq data
were downloaded from https://www.synapse.org/#!Synapse:
syn6181337 (conservative peaks) and the ENCODEProjectwebsite
(https://www.encodeproject.org/). The accession IDs are listed in
Supplemental Table S1. The DNase-seq data were downloaded
from https://www.synapse.org/#!Synapse:syn6176232. The data
were processed following the standard ENCODE analysis pipeline
(Data Processing Pipelines 2020, https://www.encodeproject.org/
pipelines/, accessed October 5, 2020). The reference human ge-
nome is GRCh37. The conclusions in this manuscript would not
be significantly affected if using GRCh38 as the reference genome.
GRCh38 has improvements over GRCh37 such as annotation of

Table 2. TF pair–specific effectors, defined as TFs whose sum
of absolute SHAP values is larger than both of the TFs of the
pair; FOXA1 and FOXA2 are mutually excluded in this analysis
due to high sequence similarity
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the centromere regions and the addition of alternate loci, but these
differences should not greatly impact the patterns of transcription
factor cobinding. In particular, the DNase-seq data provided the
cell type–specific chromatin accessibility, whichwas highly associ-
ated with TF binding events, and we used the filtered alignment fi-
les of DNase-seq. TheChIP-seq data provided the single TF binding
sites across various cell types. For each 200-bp interval sliding ev-
ery 50 bp in the human genome, we defined three types of binding
labels—“bound” (B); “unbound” (U); and “ambiguous” (A)—by
overlapping 200-bp intervals with peaks generated from SPP
peak caller (Kharchenko et al. 2008) at the irreproducible discovery
rate (IDR) cutoff of 5% (Li et al. 2011; Bionetworks S. Synapse | Sage
Bionetworks, https://www.synapse.org/#!Synapse:syn6131484/
wiki/402033, accessed November 1, 2019). We further defined a
“cobound” genomic bin of a TF-TF pair when the single TF ChIP-
seq labels from both TFs were “bound,” serving as the positive ex-
amples. When only one TF ChIP-seq label is “bound,” or none of
the TFs is bound, the interval is considered as a negative example.

Data set partition for cross-cell type and cross-chromosome

training and testing

In this study,we used a total of 228 TF co-occupancy profiles involv-
ing 56 different TF-TF pairs. For each TF-TF pair, we randomly held
out one cell type for testing and the other cell types formodel build-
ing. In this way, the performance of our models was evaluated in a
cross-cell type manner (Supplemental Fig. S14; Supplemental Table
S2). To build a robust and generalizable model for predicting TF co-
occupancy, we designed a “crisscross” strategy to exploit the train-
ing data and avoid overfitting (Fig. 1C). In particular, we partitioned
the cell types and chromosomes into the training set for model
building and the validation set for hyperparameter tuning. This is
because we used XGBoost, an iteration-based machine learning
model, which required the validation-based early stopping. First,
the 20 training chromosomes were randomly split into set1 (Chr
2, Chr 4, Chr 6, Chr 7, Chr 12, Chr 13, Chr 15, Chr 16, Chr 17,
Chr 20, Chr X) and set2 (Chr 3, Chr 5, Chr 9, Chr 10, Chr 11,
Chr 14, Chr 18, Chr 19, Chr 22). The model was trained on one
chromosome set and validated on the other set to avoid overfitting
on chromosomes. Second, for a TF-TF pairwithN training cell types,
2N XGboost models would be built. The first model was trained on
chromosome set1 in cell type 1, and validated on chromosome set2
in cell type 2. Similarly, the kthmodel was trained on chromosome
set1 in cell type k and validated on chromosome set2 in cell type k+
1. The Nth model was trained on chromosome set1 in cell type N,
and validated on chromosome set2 in cell type 1. In this way, we
trained themodel in one cell type but validated it against a different
cell type, which improved the generalizability of our method in un-
seen cell types. After that, we switched chromosome set1 and set2
by training a model on chromosome set2 in cell type k and validat-
ing on chromosome set1 in cell type k+1. In this way, we obtained
anotherNmodels. Finally, predictions from the 2Nmodels were av-
eraged as the final prediction.

An additional test was carried out for cross-chromosome eval-
uation. In this test, different from cross-cell type evaluation which
tested on the 20 training chromosomes, we tested on the three left
out chromosomes (Chr 1, Chr 8, Chr 21). Of note, the two ap-
proaches of cross-validation were aimed to assess model transfer-
ability in different scenarios. The follow-up feature analysis
focused on cross-cell prediction models.

The distributions of single TFBSs and co-occupied TFBSs were
investigated (Supplemental Table S7; Supplemental Figs. S15–S17).
To validate whether a TF-TF pair was significantly co-occupied, we
applied a nonparametric paired Wilcoxon signed-rank (Wilcoxon
1945) test to all 56 TF pairs after pairwise comparison selection.

The overall distributions of co-occupancy counts and P-values
(Supplemental Table S8; Supplemental Figs. S18, S19) are shown
in Supplemental Figure S19, C–E. The results showed that all pairs
detected were significantly cooperative (all P-value<0.0001, with
family-wise error rate 0.01), which also corresponds to literature re-
ports. In particular, the ratio of observed co-occupancy between
FOXA1 and FOXA2 was significantly higher than other TF pairs,
which may be attributed to the similarity in their motifs
(Kulakovskiy et al. 2018) and regulatory functions (van der Sluis
et al. 2008; Li et al. 2012). We also observed a high ratio of co-oc-
cupancy between HNF4A and FOXA2 (Supplemental Fig. S19B,E).
In fact, themolecular interaction between themhas been reported
previously (Wallerman et al. 2009).

Feature extraction

A total of 90DNase-seq-based features, 416 TFmotif–based features,
and 20 distance-to-gene features were used in ourmodel. To remove
the potential batch effect, the original DNase-seq filtered alignment
was quantile-normalized before extracting DNase-seq-based fea-
tures. For each 200-bp genomic bin, the maximum, minimum,
and mean DNase-seq values were calculated as 3M-DNase features,
and Δmaximum, Δminimum, and Δmean DNase-seq values were
extracted as Δ3M-DNase features (Li et al. 2019). The Δ3M-DNase
features were the difference between the DNase-seq signal of a spe-
cific cell line and the average signals of all 10 cell lines used in this
study. We further considered 14 upstream and downstream neigh-
boring bins to extract the corresponding 3M-DNase and Δ3M-
DNase features, resulting in a total of 90= (3+3)×15 DNase-seq-
based features. This neighboring information is also reported to im-
prove predictive performance in recent studies.

In addition to the DNase-seq-based features, we also
integrated TF motif features of all 13 TFs in the models.
Specifically, for each TF, the position weight matrix (PWM)
(Stormo et al. 1982) can be represented by an a-by-4 matrix M,

where a is the length of the TF motif. Similarly, DNA sequence
can be one-hot encoded and represented by a 4-by-b matrix X,

where b is the number of nucleotides in the human genome and
four rows represent four types of nucleotides A/C/G/T. Each item
inXwas a binary value and for each column, or nucleotide position,
the row where x=1 corresponded to the nucleotide type in that po-
sition. By multiplying M and X, we can obtain an a-by-b matrix Y,
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where a is the length of the TF motif and b is the length of a chro-
mosome. In order to obtain the TF motif match score for
each nucleotide position, we calculated the trace of the submatrix
Y[, i:(i+ a−1)] for i=1, 2, …, b−a+1. For example, when i =1, the
trace of the submatrix within the red rectangle was calculated as
s1. Similarly, when i =2, the trace of the submatrix within the
blue rectanglewas calculated as s2. Therefore, for each TF, obtained
a 1-by-(b−a+1) score vector S = [s1 s2 s3 … sb−a+1]. This score vector
Swas further paddedwith zeros at both ends to the length a. Then,
we extracted bin-level motif-based features from this vector S. For
each 200-bp interval, the top three scores among that 200 posi-
tions were saved. Similarly, the top three scores of the product be-
tween TF PWM and the reverse complement of the genome
sequence were calculated. Then, the top four of the two sets of
top three scores were considered as motif features. Similar to the
DNase-seq-based features, we also considered eight neighboring
intervals and generated a total of 32= 4×8 motif features for
each TF. To consider the potential interactions of all TFs, we
used the 32 motif features from all 13 TFs under consideration in
this study. In addition to the DNase-seq-based and motif-based
features, we further extracted the distance-to-gene features.
Specifically, for each 200-bp interval, we calculated the top 20 clos-
est distances to proximal genes based on GENCODE annotation
(Li et al. 2019).

Using XGBoost to model nonlinear interactions between

features and to facilitate subsequent game theory–based feature

importance analysis

The tree-based XGBoost models (Chen and Guestrin 2016) were
trained on a total of 526 (90+416+ 20) features mentioned above.
The parameters of XGBoost are: (1) the step size shrinkage is 1; (2)
the maximum depth of a tree is 7; (3) the minimum sum of
weights in a child is 5; and (4) the minimum loss reduction is
0.1. We used cross-entropy loss, as the label is binary, specifically:
−[y× log(ypred) + (1−y) × log(1−ypred)], where y represents the true
label and ypred represents the prediction value. The tree-based
models can learn efficiently the nonlinear interactions between
features and are robust to noise and outliers in data (Li et al.
2018; Li and Guan 2019b). Furthermore, we set the maximum
number of iterations to 1000 and applied a validation-based early
stopping strategy in a crisscross fashion, across both cell types and
chromosomes. Final predictions were obtained by averaging the
results of all models.

Evaluating predictive performance with AUROC and AUPRC

To evaluate the predictive performance of our model, we used the
area under the receiver operating characteristic curve and the area
under the precision recall curve as the primary scoring metrics
(Davis and Goadrich 2006). For each cutoff in the AUROC and
AUPRC curves, true positive (TP) was the number of correctly pre-
dicted cobound bins, false positive (FP) was the number of predict-
ed cobound binswhose true labels were un-cobound, true negative
(TN) was the number of correctly predicted un-cobound bins, and
false negative (FN) was the number of predicted un-cobound bins
whose true labels were cobound.

Benchmark comparison

We benchmarked the performance of TF cobinding prediction us-
ing methods TACO and coTRaCTE. Briefly, these two methods fo-
cus on open chromatin regions and estimate TF cobinding
enrichment based on motif information. They assign a P-value
for each genomic region under consideration. For TACO, we de-
fined the prediction score by multiplying the P-values of two TFs

in the same region. For coTRaCTE, we first transformed the origi-
nal P-value of a TF pair into −log10(P-value). Then, we rescaled
them to the range between zero and one and used one minus
the rescaled value as the prediction score.

SHAP analysis to identify independent sequence signatures

We used SHAP (Shapley 1988; Lundberg et al. 2018) to interpret
the output of our model and reveal independent sequence signa-
tures’ contributions to cobinding events. The typical feature im-
portance calculation in the gradient boosting model is based on
the improvement of each attribute in the performance (Chen
and Guestrin 2016; Xia et al. 2017). In contrast, SHAP is based
on the magnitude of feature attributions (Molnar 2019). We
used SHAP feature importance, which is measured as the mean ab-
solute Shapley values, in our analysis.

For our model, we calculated a 526×56 matrix containing
SHAP values for 526 features and 56 pairs. For a specific TF or TF-
TF pair, we calculated the relative feature importance by analyzing
the corresponding submatrix. Additionally, to reveal the control
relationship between sequence motif features and TF-TF pairs, we
assigned SHAP values to a directed regulatory network, and the
edges with different weights were indicated by widths. In the net-
work, each node represents a TF or a TF-TF pair and each edge rep-
resents the SHAP feature importance of that sequence feature to
the TF-TF pair. For an edge connecting ‘TF1’ and ‘TF2-TF’, the
weight was calculated by averaging SHAP values of the TF1 motif
feature predicting all pairs tied with TF2. For example, there are
seven pairs tied with FOXA2 (FOXA2-TAF1, FOXA2-REST,
FOXA2-AMX, FOXA2-JUND, FOXA2-HNF4A, FOXA2-GABPA,
and FOXA1-FOXA2) (Supplemental Fig. S2); we only selected a
submatrix of the corresponding seven columns from the complete
SHAP valuematrix and calculated the average absolute SHAP value
for each TF as the weights of the edges connecting the nodes TF’
and ‘FOXA2-TF’.

Software availability

The source code of the analysis is available as Supplemental
Code and at GitHub (https://github.com/GuanLab/Sequence_
Analysis_for_TF-co-binding).
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