

Received 2 January 2015 Accepted 19 January 2015

Edited by K. Fejfarova, Institute of Macromolecular Chemistry, AS CR, v.v.i, Czech Republic

Keywords: crystal structure; nickel(II) complex; hydrogen bonding

CCDC reference: 1044097 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of aqua[N-(2-oxidobenzyl- κO)-L-leucinato- $\kappa^2 N$,O](1,10-phenanthroline- $\kappa^2 N$,N')nickel(II) pentahydrate

Md. Serajul Haque Faizi^a and Natalia O. Sharkina^{b*}

^aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India, and ^bNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine. *Correspondence e-mail: nsharkina@ukr.net

In the title compound, $[Ni(C_{13}H_{17}NO_3)(C_{12}H_8N_2)(H_2O)]\cdot 5H_2O$, the Ni^{II} atom is in a distorted octahedral coordination environment provided by the two N atoms of one bidentate phenanthroline ligand and two O atoms and one N atom from a tridentate 2-[(2-hydroxybenzyl)amino]-4-methylpentanoic acid (HAMA) ligand and one water molecule. The complex was prepared by the reaction of nickel(II) nitrate with HAMA in the presence of 1,10-phenanthroline in a 1:1:1 ratio. In the crystal, the complex molecules and solvate water molecules are associated *via* $O-H \cdots O$ hydrogen bonds into a threedimensional network.

1. Chemical context

Metal complexes of 1,10-phenanthroline (phen) and its derivatives are of increasing interest because of their versatile roles in many fields such as analytical chemistry (Chalk & Tyson, 1994), catalysis (Samnani et al., 1996), electrochemical polymerization (Bachas et al., 1997), and biochemistry (Sammes & Yahioglu, 1994). 1,10-Phenanthroline is a chelating bidentate ligand with notable coordination ability for transition metal cations. It is widely used in coordination chemistry, in particular, for the preparation of mixed-ligand complexes (Fritsky et al., 2004; Kanderal et al., 2005), and in the synthesis of polynuclear complexes and coordination polymers in order to control nuclearity and dimensionality by blocking a certain number of vacant sites in the coordination sphere of a metal ion (Fritsky et al., 2006; Penkova et al., 2010). Over the last few decades, the complex formation of transition metal ions with amino acids has also been studied extensively (Auclair et al., 1984). Amino acid-metallic ion interactions are found to be responsible for enzymatic activity and the stability of protein structures (Dinelli et al., 2010). Nickel is also essential for the healthy life of animals. It is associated with several enzymes (Poellot et al., 1990) and plays a role in physiological processes as a co-factor in the absorption of iron from the intestine (Nielsen et al., 1980). Any change in its concentration leads to metabolic disorder (Kolodziej, 1994). With the discovery of the biological importance of nickel, it is essential to study its complex formation with amino acids in order to understand more about the functions of their complexes.

2. Structural commentary

The Ni^{II} ion in the title compound is in a distorted octahedral coordination environment provided by the two N atoms of one

bidentate phen ligand and two O atoms and one N atom from a tridentate anion of HAMA and one water molecule (Fig. 1).

The equatorial plane consists of two nitrogen atoms of 1,10phenanthroline and two oxygen atoms of the HAMA ligand. The axial positions are occupied by the nitrogen atom from the HAMA ligand and a water O atom. The equatorial Ni–N and Ni–O bond lengths are in the range 2.0383 (11)– 2.1058 (13) Å, the axial Ni–N and Ni–O bond lengths are 2.1429 (14) and 2.1110 (12) Å. The coordination Ni–N and Ni–O bond lengths are typical for distorted octahedral Ni^{II} complexes with nitrogen and oxygen donors (Fritsky *et al.*, 1998; Moroz *et al.*, 2012). The N1–Ni1–N2 and O2–Ni1– N3 bite angles are decreased to 79.43 (5) and 80.50 (5)° as a

Symmetry codes: (i) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$.

consequence of the formation of the five-membered chelate rings. The C–C and C–N bond lengths in the organic ligands are well within the limits expected for those in aromatic rings (Petrusenko *et al.*, 1997; Strotmeyer *et al.*, 2003; Penkova *et al.*, 2009).

3. Supramolecular features

Table 1

In the crystal packing, the complex molecules and solvate water molecules are associated *via* intermolecular hydrogen bonds (Table 1 and Fig. 2) that involve O—H interactions of medium strength between the donor atoms of the water molecules and acceptor oxygen atoms of the phenolic and the carboxylic groups and solvate water molecules, forming a three-dimensional network (Fig. 3).

Figure 2

A view of the $O-H\cdots O$ hydrogen-bond interactions between the donor atoms of the water molecules and acceptor oxygen atoms of the phenolic and carboxylic groups and solvate water molecules in the crystal of the title compound (hydrogen bonds are shown as dashed lines; see Table 1 for details).

Figure 1

The molecular structure and atom-numbering scheme for the title compound, with displacement ellipsoids drawn at the 40% probability level.

Figure 3

A view along the *a* axis of the crystal packing of the title compound. The $O-H\cdots O$ hydrogen-bonding interactions between the donor atoms of the water molecules and acceptor oxygen atoms of the phenolic and carboxylic groups and solvate water molecules are shown as magenta dashed lines (see Table 1 for details).

4. Synthesis and crystallization

The ligand 2-[(2-hydroxybenzyl)amino]-4-methylpentanoic acid (HAMA) was prepared by following procedure: L-Leucine (1.00 g, 6.71 mmol) and LiOH·H₂O (0.284 g, 6.77 mmol) in dry methanol (30 ml) were stirred for 30 min to dissolve. A methanolic solution of salicylaldehyde (1.44 g, 6.72 mmol) was added dropwise to the above solution. The solution was stirred for 1 h and then treated with sodium borohydride (0.248 g, 6.71 mmol) with constant stirring. The solvent was evaporated and the resulting sticky mass was dissolved in water. A cloudy solution was obtained, which was then acidified with dilute HCl and the solution pH was maintained between 5–7. The ligand precipitated as a colourless solid. The solid was filtered off, thoroughly washed with water and finally dried inside a vacuum desiccator. Yield 2.08 g (85%).

The title compound was prepared as follows: HAMA (0.500 g, 1.43 mmol) was deprotonated with LiOH·H₂O (0.060 g, 1.44 mmol) in 25 ml MeOH, which resulted in a clear colourless solution after 30 min. A methanolic solution of Ni(NO₃)₂·6H₂O (0.17 g, 0.71 mmol) was added dropwise to the ligand with stirring. The colour of the solution changed to green immediately. The solution was stirred for 2 h and evaporated to dryness on a rotary evaporator. The blue solid obtained by adding acetonitrile was recrystallized as green plates by slow diffusion of diethyl ether into a methanolic solution of the crude solid over 2–3 days. The crystals were filtered off and washed with diethyl ether. Yield 74%.

Experimental details.	
Crystal data	
Chemical formula	[Ni(C ₁₃ H ₁₇ NO ₃)(C ₁₂ H ₈ N ₂)- (H ₂ O)]·5H ₂ O
M _r	582.29
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	100
a, b, c (Å)	11.7968 (2), 14.8290 (3), 16.1406 (3)
$V(Å^3)$	2823.55 (9)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.74
Crystal size (mm)	$0.30 \times 0.21 \times 0.15$
Data collection	
Diffractometer	Bruker SMART APEX CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2001)
T_{\min}, T_{\max}	0.803, 0.865
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	29541, 5240, 5046
R _{int}	0.024
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.606
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.022, 0.057, 1.03
No. of reflections	5240
No. of parameters	347
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm ~\AA}^{-3})$	0.22, -0.24
Absolute structure	(Flack, 1983), 2291 Friedel pairs
Absolute structure parameter	0.008 (7)
-	

Computer programs: *SMART* and *SAINT* (Bruker, 2003), *SIR97* (Altomare *et al.*, 1999), *SHELXL97* (Sheldrick, 2015) and *DIAMOND* (Brandenburg & Putz, 2006).

5. Refinement

Table 2

Experimental details

Crystal data, data collection and structure refinement details are summarized in Table 2. The N-H hydrogen atoms were located in a difference Fourier map and freely refined. The O-H hydrogen atoms were also located in a difference Fourier map but constrained to ride on their parent atoms with $U_{iso}(H) = 1.5U_{eq}(O)$. The C-bound H atoms were included in calculated positions and treated as riding atoms: with C-H = 0.95 Å and $U_{iso}(H) = 1.2-1.5U_{eq}(C)$.

Acknowledgements

The authors are grateful to the Department of Chemistry, Indian Institute of Technology Kanpur, for the data collection.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Auclair, C., Voisin, E., Banoun, H., Paoletti, C., Bernadou, J. & Meunier, B. (1984). *J. Med. Chem.* **27**, 1161–1166.
- Bachas, L. G., Cullen, L., Hutchins, R. S. & Scott, D. L. (1997). J. Chem. Soc. Dalton Trans. pp. 1571–1578.
- Brandenburg, K. & Putz, H. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

research communications

- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chalk, S. J. & Tyson, J. F. (1994). Anal. Chem. 66, 660-666.
- Dinelli, L. R., Bezerra, T. M. & Sene, J. J. (2010). Curr. Res. Chem. 2, 18–23.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). *Chem. Commun.* pp. 4125–4127.
- Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.
- Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). *Inorg. Chim. Acta*, 357, 3746–3752.
- Kanderal, O. M., Kozlowski, H., Dobosz, A., Swiatek-Kozlowska, J., Meyer, F. & Fritsky, I. O. (2005). *Dalton Trans.* pp. 1428–1437.
- Kolodziej, A. F. (1994). *Progress in Inorganic Chemistry*, Vol. 41, edited by K. D. Karlin, pp. 493–523. New York: Wiley.

- Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). *Inorg. Chem.* 51, 7445–7447.
- Nielsen, F. H. (1980). J. Nutr. 110, 965-973.
- Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). *Inorg. Chim. Acta*, **363**, 3036–3040.
- Penkova, L. V., Maciąg, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). *Inorg. Chem.* 48, 6960–6971.
- Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274.
- Poellot, R. A., Shuler, T. R., Uthus, E. O. & Nielsen, F. H. (1990). Proc. Natl. Acad. Sci. USA, 44, 80–97.
- Sammes, P. G. & Yahioglu, G. (1994). Chem. Soc. Rev. 23, 327-350.
- Samnani, P. B., Bhattacharya, P. K., Ganeshpure, P. A., Koshy, V. J. & Satish, N. (1996). J. Mol. Catal. A Chem. 110, 89–94.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547.

supporting information

Acta Cryst. (2015). E71, 195-198 [doi:10.1107/S2056989015001085]

Crystal structure of aqua[N-(2-oxidobenzyl- κO)-L-leucinato- $\kappa^2 N$,O](1,10-phenanthroline- $\kappa^2 N$,N')nickel(II) pentahydrate

Md. Serajul Haque Faizi and Natalia O. Sharkina

Computing details

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT* (Bruker, 2003); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2006); software used to prepare material for publication: *DIAMOND* (Brandenburg & Putz, 2006).

Aqua[N-(2-oxidobenzyl- κO)-L-leucinato- $\kappa^2 N$,O](1,10-phenanthroline-N,N')nickel(II) pentahydrate

Crystal data	
$[\text{Ni}(\text{C}_{13}\text{H}_{17}\text{NO}_3)(\text{C}_{12}\text{H}_8\text{N}_2)(\text{H}_2\text{O})] \cdot 5\text{H}_2\text{O}$	F(000) = 1232
$M_r = 582.29$	$D_x = 1.370 \text{ Mg m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo K α radiation, $\lambda = 0.71073 \text{ Å}$
Hall symbol: P 2ac 2ab	Cell parameters from 1399 reflections
a = 11.7968 (2) Å	$\theta = 2.6-28.6^{\circ}$
b = 14.8290 (3) Å	$\mu = 0.74 \text{ mm}^{-1}$
c = 16.1406 (3) Å	T = 100 K
V = 2823.55 (9) Å ³	Block, green
Z = 4	$0.30 \times 0.21 \times 0.15 \text{ mm}$
Data collection	
Bruker SMART APEX CCD	29541 measured reflections
diffractometer	5240 independent reflections
Radiation source: fine-focus sealed tube	5046 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.024$
ω scans	$\theta_{max} = 25.5^{\circ}, \theta_{min} = 2.9^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(<i>SADABS</i> ; Bruker, 2001)	$k = -17 \rightarrow 17$
$T_{min} = 0.803, T_{max} = 0.865$	$l = -19 \rightarrow 19$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.022$	Hydrogen site location: inferred from
$wR(F^2) = 0.057$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
5240 reflections	and constrained refinement
347 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0322P)^2 + 0.3183P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{max} = 0.001$
direct methods	$\Delta\rho_{max} = 0.22$ e Å ⁻³

 $\Delta \rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3}$

Absolute structure: (Flack, 1983), 2291 Friedel pairs Absolute structure parameter: 0.008 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	r	17	7	II. */II	
<u></u>	A (7010 (1())	<i>y</i>	2	O_{150} / O_{eq}	
	0.67912 (16)	0.00202 (12)	0.88437 (13)	0.0487 (5)	
HI	0.6018	0.0137	0.8809	0.058*	
C2	0.71452 (18)	-0.07817 (13)	0.92143 (13)	0.0558 (5)	
H2	0.6614	-0.1186	0.9422	0.067*	
C3	0.82686 (17)	-0.09691 (13)	0.92708 (13)	0.0522 (5)	
H3	0.8514	-0.1496	0.9526	0.063*	
C4	0.90610 (15)	-0.03549 (12)	0.89372 (11)	0.0422 (4)	
C5	1.02594 (17)	-0.04941 (14)	0.89504 (13)	0.0553 (5)	
H5	1.0550	-0.1010	0.9200	0.066*	
C6	1.09760 (17)	0.01069 (15)	0.86086 (14)	0.0573 (5)	
H6	1.1752	-0.0002	0.8625	0.069*	
C7	1.05636 (15)	0.09111 (13)	0.82204 (11)	0.0442 (4)	
C8	1.12618 (17)	0.15465 (15)	0.78282 (14)	0.0576 (5)	
H8	1.2044	0.1468	0.7819	0.069*	
C9	1.07804 (18)	0.22823 (16)	0.74592 (15)	0.0589 (5)	
H9	1.1231	0.2701	0.7184	0.071*	
C10	0.96122 (16)	0.24002 (13)	0.74975 (13)	0.0481 (4)	
H10	0.9299	0.2907	0.7246	0.058*	
C11	0.93931 (14)	0.10790 (11)	0.82141 (9)	0.0346 (3)	
C12	0.86278 (14)	0.04341 (10)	0.85744 (10)	0.0339 (3)	
C13	0.48304 (14)	0.24458 (11)	0.83796 (11)	0.0386 (4)	
C14	0.39435 (15)	0.28423 (13)	0.79308 (14)	0.0514 (4)	
H14	0.3766	0.2628	0.7405	0.062*	
C15	0.33276 (18)	0.35528 (15)	0.82648 (16)	0.0643 (6)	
H15	0.2743	0.3811	0.7959	0.077*	
C16	0.35715 (19)	0.38806 (15)	0.90432 (16)	0.0649 (6)	
H16	0.3146	0.4348	0.9269	0.078*	
C17	0.44555 (17)	0.35059 (14)	0.94819 (13)	0.0539 (5)	
H17	0.4632	0.3735	1.0002	0.065*	
C18	0.50909 (15)	0.27931 (12)	0.91669 (11)	0.0415 (4)	
C19	0.60869 (16)	0.24162 (13)	0.96300 (11)	0.0462 (4)	
H19A	0.6129	0.2693	1.0174	0.055*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H19B	0.5987	0.1772	0.9705	0.055*
C20	0.73468 (15)	0.35627 (11)	0.90083 (11)	0.0388 (4)
H20	0.6897	0.3914	0.9404	0.047*
C21	0.69476 (13)	0.37869 (10)	0.81280 (11)	0.0362 (3)
C22	0.86072 (17)	0.37934 (13)	0.91303 (12)	0.0471 (4)
H22A	0.8783	0.3737	0.9715	0.056*
H22B	0.9055	0.3346	0.8838	0.056*
C23	0.89868 (19)	0.47278 (15)	0.88411 (13)	0.0598 (6)
H23	0.8787	0.4785	0.8254	0.072*
C24	1.0279 (3)	0.4786 (2)	0.8908 (2)	0.1145 (13)
H24A	1.0527	0.5372	0.8730	0.172*
H24B	1.0617	0.4333	0.8563	0.172*
H24C	1.0504	0.4691	0.9473	0.172*
C25	0.8371 (3)	0.54780 (16)	0.93128 (17)	0.0957 (10)
H25A	0.8623	0.6054	0.9113	0.144*
H25B	0.8536	0.5428	0.9893	0.144*
H25C	0.7569	0.5422	0.9227	0.144*
N1	0.75051 (11)	0.06215 (9)	0.85396 (9)	0.0368 (3)
N2	0.89272 (11)	0.18292 (10)	0.78726 (8)	0.0370 (3)
N3	0.71624 (14)	0.25874 (9)	0.91724 (9)	0.0373 (3)
H1N3	0.7731 (17)	0.2423 (12)	0.9458 (11)	0.035 (5)*
O1	0.54218 (9)	0.17497 (7)	0.80691 (8)	0.0404 (2)
O2	0.70273 (9)	0.31677 (7)	0.75881 (7)	0.0378 (2)
03	0.66098 (12)	0.45636 (8)	0.79805 (9)	0.0528 (3)
O4	0.71500 (12)	0.12784 (8)	0.68295 (7)	0.0482 (3)
H1O4	0.7442	0.1593	0.6462	0.072*
H2O4	0.6364	0.1109	0.6697	0.072*
05	0.48550 (14)	0.09831 (10)	0.65816 (9)	0.0655 (4)
H1O5	0.4369	0.0440	0.6693	0.098*
H2O5	0.4945	0.1184	0.7136	0.098*
O6	0.59572 (17)	0.35179 (11)	0.61226 (9)	0.0762 (5)
H1O6	0.6134	0.3321	0.6675	0.114*
H2O6	0.5949	0.4193	0.6121	0.114*
07	0.78670 (19)	0.24699 (12)	0.56707 (11)	0.0893 (6)
H1O7	0.8508	0.2601	0.5362	0.134*
H2O7	0.7207	0.2824	0.5720	0.134*
08	0.96331 (17)	0.27411 (12)	0.46430 (12)	0.0867 (6)
H1O8	1.0055	0.2280	0.4505	0.130*
H2O8	0.9617	0.3251	0.4163	0.130*
09	0.61321 (12)	0.53645 (10)	0.64845 (9)	0.0572 (4)
H1O9	0.6214	0.5095	0.7015	0.086*
H2O9	0.5648	0.5795	0.6578	0.086*
Ni1	0.715392 (16)	0.187826 (13)	0.801560 (13)	0.03288 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0358 (9)	0.0380 (10)	0.0724 (13)	-0.0048 (7)	0.0006 (8)	0.0138 (9)

C2	0.0498 (11)	0.0403 (10)	0.0772 (13)	-0.0072 (9)	0.0056 (11)	0.0187 (9)
C3	0.0570 (12)	0.0343 (9)	0.0651 (12)	0.0052 (8)	0.0014 (9)	0.0155 (9)
C4	0.0454 (10)	0.0341 (9)	0.0471 (9)	0.0074 (7)	-0.0011 (8)	0.0031 (7)
C5	0.0485 (11)	0.0520 (12)	0.0654 (12)	0.0192 (9)	0.0002 (9)	0.0140 (9)
C6	0.0355 (10)	0.0655 (13)	0.0708 (13)	0.0179 (9)	0.0033 (9)	0.0117 (11)
C7	0.0328 (9)	0.0484 (10)	0.0514 (10)	0.0053 (7)	0.0029 (7)	0.0009 (8)
C8	0.0319 (9)	0.0648 (13)	0.0759 (14)	-0.0012 (9)	0.0116 (9)	0.0071 (10)
C9	0.0448 (11)	0.0580 (12)	0.0738 (14)	-0.0115 (10)	0.0132 (10)	0.0113 (11)
C10	0.0455 (10)	0.0387 (10)	0.0603 (11)	-0.0033 (8)	0.0030 (9)	0.0095 (8)
C11	0.0348 (8)	0.0328 (8)	0.0361 (8)	0.0013 (6)	0.0010 (6)	-0.0019 (6)
C12	0.0335 (8)	0.0292 (8)	0.0390 (8)	0.0017 (7)	-0.0006 (7)	-0.0018 (6)
C13	0.0296 (8)	0.0320 (8)	0.0543 (10)	-0.0035 (7)	0.0063 (7)	-0.0025 (7)
C14	0.0353 (9)	0.0514 (10)	0.0675 (12)	0.0012 (8)	-0.0067 (9)	-0.0073 (9)
C15	0.0373 (10)	0.0563 (12)	0.0992 (19)	0.0117 (9)	-0.0065 (10)	-0.0017 (12)
C16	0.0484 (12)	0.0530 (12)	0.0934 (17)	0.0088 (10)	0.0168 (12)	-0.0158 (12)
C17	0.0493 (11)	0.0539 (11)	0.0586 (12)	-0.0010 (9)	0.0143 (9)	-0.0095 (9)
C18	0.0381 (9)	0.0401 (9)	0.0463 (9)	-0.0054 (7)	0.0103 (7)	0.0008 (8)
C19	0.0523 (11)	0.0459 (10)	0.0403 (9)	-0.0040 (8)	0.0057 (8)	0.0054 (8)
C20	0.0435 (10)	0.0311 (8)	0.0418 (9)	-0.0003 (7)	-0.0042 (7)	-0.0003 (7)
C21	0.0347 (8)	0.0277 (8)	0.0462 (9)	0.0002 (6)	-0.0044 (7)	0.0027 (7)
C22	0.0501 (11)	0.0431 (10)	0.0481 (10)	-0.0064 (8)	-0.0141 (8)	0.0010 (8)
C23	0.0708 (14)	0.0579 (13)	0.0508 (11)	-0.0251 (11)	-0.0197 (10)	0.0101 (9)
C24	0.0807 (19)	0.118 (3)	0.145 (3)	-0.0561 (19)	-0.045 (2)	0.053 (2)
C25	0.161 (3)	0.0464 (13)	0.0799 (17)	-0.0191 (16)	-0.0274 (18)	-0.0082 (12)
N1	0.0331 (7)	0.0304 (7)	0.0469 (8)	0.0005 (5)	-0.0002 (5)	0.0050 (6)
N2	0.0345 (7)	0.0322 (7)	0.0443 (7)	-0.0020 (6)	0.0005 (5)	0.0034 (6)
N3	0.0368 (7)	0.0345 (7)	0.0407 (7)	0.0008 (7)	-0.0061 (7)	0.0070 (6)
01	0.0325 (5)	0.0341 (6)	0.0545 (6)	-0.0012 (4)	-0.0014 (5)	-0.0060 (6)
O2	0.0436 (6)	0.0292 (5)	0.0405 (5)	0.0021 (6)	-0.0054 (5)	0.0037 (5)
03	0.0646 (8)	0.0328 (6)	0.0611 (8)	0.0125 (6)	-0.0169 (7)	0.0003 (6)
O4	0.0507 (7)	0.0445 (7)	0.0496 (7)	-0.0037 (6)	0.0031 (6)	-0.0051 (5)
05	0.0754 (10)	0.0614 (9)	0.0598 (8)	-0.0264 (8)	-0.0071 (7)	0.0030 (7)
O6	0.1227 (15)	0.0539 (9)	0.0519 (8)	-0.0023 (10)	-0.0210 (9)	0.0008 (7)
O7	0.1090 (14)	0.0725 (11)	0.0864 (12)	-0.0087 (11)	0.0442 (12)	0.0061 (9)
08	0.1077 (15)	0.0609 (10)	0.0915 (12)	-0.0078 (10)	0.0424 (11)	-0.0001 (9)
09	0.0575 (9)	0.0537 (8)	0.0603 (8)	0.0147 (7)	0.0051 (7)	0.0009 (7)
Ni1	0.02919 (10)	0.02618 (10)	0.04328 (10)	0.00102 (8)	-0.00074 (9)	0.00352 (9)

Geometric parameters (Å, °)

C1—N1	1.321 (2)	C19—H19B	0.9700
C1—C2	1.395 (3)	C20—N3	1.486 (2)
C1—H1	0.9300	C20—C21	1.533 (2)
C2—C3	1.357 (3)	C20—C22	1.538 (3)
C2—H2	0.9300	C20—H20	0.9800
C3—C4	1.412 (3)	C21—O3	1.2417 (19)
С3—Н3	0.9300	C21—O2	1.269 (2)
C4—C12	1.405 (2)	C22—C23	1.529 (3)

C4—C5	1.429 (3)	C22—H22A	0.9700
C5—C6	1.347 (3)	C22—H22B	0.9700
С5—Н5	0.9300	C23—C24	1.531 (4)
C6—C7	1.432 (3)	C23—C25	1.531 (4)
С6—Н6	0.9300	С23—Н23	0.9800
C7—C8	1.402 (3)	C24—H24A	0.9600
C7—C11	1.403 (2)	C24—H24B	0.9600
C8—C9	1.367 (3)	C24—H24C	0.9600
C8—H8	0.9300	C25—H25A	0.9600
C9—C10	1,390 (3)	C25—H25B	0.9600
С9—Н9	0.9300	C25—H25C	0.9600
C10—N2	1 318 (2)	N1—Ni1	2 0881 (14)
C10-H10	0.9300	N2—Ni1	2.0001(11) 2.1058(13)
C_{11} N2	1 358 (2)	N3—Ni1	2.1030 (13)
$C_{11} - C_{12}$	1 438 (2)	N3—H1N3	0.849(19)
C12—N1	1 354 (2)	01—Nil	2.0540(11)
$C_{12} = 101$	1.334(2) 1.343(2)	O_2 Nil	2.0340(11) 2.0383(11)
C_{13} C_{14}	1.343(2) 1.402(3)	04—Nil	2.0385(11) 2.1110(12)
C_{13} C_{14}	1.402(3)	04 H104	0.8200
$C_{13} = C_{18}$	1.405(3)	04 H204	0.0233
C14 = C13	0.0300	05 11204	1.0040
C15 C16	1 378 (3)	05 H205	0.0485
C15_H15	0.0300	05—11205 06 H106	0.9485
C16 C17	0.9300	06 4206	1.0011
C_{10}	1.578 (5)	07 H107	0.0260
C17 C18	0.9300	07 11207	0.9200
C17 - C18	1.392 (3)	$O^{\circ} H_{2}O^{\circ}$	0.9419
C1/-H1/	0.9300	08-H108	0.8742
C10 = N2	1.301(3)	08-H208	1.0820
C19—N3	1.490 (2)	09—H109	0.9494
С19—П19А	0.9700	09—н209	0.8705
N1—C1—C2	122.94 (17)	C22—C20—H20	108.8
N1—C1—H1	118.5	O3—C21—O2	124.27 (16)
C2—C1—H1	118.5	O3—C21—C20	118.51 (15)
C3—C2—C1	119.71 (18)	O2—C21—C20	117.17 (13)
С3—С2—Н2	120.1	C23—C22—C20	116.45 (17)
C1—C2—H2	120.1	C23—C22—H22A	108.2
C2—C3—C4	119.27 (17)	C20—C22—H22A	108.2
С2—С3—Н3	120.4	C23—C22—H22B	108.2
С4—С3—Н3	120.4	C20—C22—H22B	108.2
C12—C4—C3	117.09 (16)	H22A—C22—H22B	107.3
C12—C4—C5	119.12 (17)	C22—C23—C24	108.8 (2)
C3—C4—C5	123.79 (17)	C22—C23—C25	111.58 (19)
C6—C5—C4	121.29 (18)	C24—C23—C25	113.3 (2)
С6—С5—Н5	119.4	C22—C23—H23	107.7
С4—С5—Н5	119.4	C24—C23—H23	107.7
C5—C6—C7	121.13 (17)	C25—C23—H23	107.7
С5—С6—Н6	119.4	C23—C24—H24A	109.5

С7—С6—Н6	119.4	C23—C24—H24B	109.5
C8—C7—C11	117.09 (17)	H24A—C24—H24B	109.5
C8—C7—C6	123.87 (17)	C23—C24—H24C	109.5
C11—C7—C6	119.03 (17)	H24A—C24—H24C	109.5
C9—C8—C7	119.28 (18)	H24B—C24—H24C	109.5
C9—C8—H8	120.4	C23—C25—H25A	109.5
C7—C8—H8	120.4	C23—C25—H25B	109.5
C8—C9—C10	119.52 (19)	H25A—C25—H25B	109.5
C8—C9—H9	120.2	C_{23} C_{25} H_{25}	109.5
C10—C9—H9	120.2	$H_{25A} = C_{25} = H_{25C}$	109.5
N2-C10-C9	123.20 (18)	$H_{25B} = C_{25} = H_{25C}$	109.5
$N_2 - C_{10} - H_{10}$	118.4	C1-N1-C12	118 00 (15)
C9-C10-H10	118.4	C1 - N1 - Ni1	128 79 (12)
$N_2 - C_{11} - C_7$	123 15 (15)	C12 N1 Ni1	120.79(12) 113.20(10)
$N_2 = C_{11} = C_{12}$	117.06 (14)	C10 N2 $C11$	117.69 (15)
C7-C11-C12	119.79 (15)	C10 $N2$ $C11$	129.60 (12)
$C_{1} = C_{11} = C_{12}$	122.96 (15)	C_{10} N_2 N_{11}	129.00(12) 112.70(10)
N1 = C12 = C4	122.90(13) 117.43(14)	$C_{11} = N_{12} = N_{11}$	112.70(10) 112.25(14)
C_{4} C_{12} C_{11}	110.61 (15)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112.23(14) 108.84(10)
$C_{1} = C_{12} = C_{11}$	119.01(13) 121.15(16)	C_{20} N3 Ni1	108.84(10) 110.15(11)
01 - 013 - 018	121.13(10) 120.38(16)	$C_{13} = M_{13} = M_{11}$	110.13(11) 105.1(12)
C_{14} C_{13} C_{18}	118 48 (16)	$C_{20} = N_3 = H_{1N_3}$	103.1(12) 110.7(12)
$C_{14} = C_{13} = C_{16}$	110.40(10) 120.5(2)	N:1 N2 H1N2	110.7(12)
C15 - C14 - C13	120.3 (2)	$\frac{11}{100} = \frac{11}{100} = 1$	109.0(12)
C13 - C14 - H14	119.7	C13 - O1 - N11	117.47(9)
C15 - C14 - H14	119.7	$C_2I = O_2 = NII$	110.85 (10)
C16 - C15 - C14	120.8 (2)	NII-04-HI04	114.3
C10-C15-H15	119.6	N11	107.9
C14—C15—H15	119.0	H104-04-H204	112.2
C15-C16-C17	118.98 (19)	H105-05-H205	98.5
C15—C16—H16	120.5	H106-06-H206	108.0
CI/-CI6-HI6	120.5	H10/-0/-H20/	127.2
C16-C1/-C18	121.7 (2)	H108-08-H208	111.9
C16—C17—H17	119.1	H109—09—H209	102.6
C18—C17—H17	119.1	02-N1-01	91.63 (5)
C17—C18—C13	119.40 (17)	O2—Nil—Nl	171.46 (5)
C17—C18—C19	121.50 (17)	OI—NII—NI	95.60 (5)
C13—C18—C19	119.03 (16)	02—Ni1—N2	93.90 (5)
N3—C19—C18	110.88 (14)	Ol—Nil—N2	171.73 (5)
N3—C19—H19A	109.5	N1—Ni1—N2	79.43 (5)
C18—C19—H19A	109.5	02—Nil—O4	95.06 (5)
N3—C19—H19B	109.5	01—Ni1—O4	89.82 (5)
C18—C19—H19B	109.5	N1—Ni1—O4	89.52 (5)
H19A—C19—H19B	108.1	N2—Ni1—O4	83.59 (5)
N3—C20—C21	109.33 (13)	02—Ni1—N3	80.50 (5)
N3—C20—C22	109.57 (14)	O1—Ni1—N3	90.78 (6)
C21—C20—C22	111.54 (15)	N1—Ni1—N3	94.83 (5)
N3—C20—H20	108.8	N2—Ni1—N3	96.19 (6)
C21—C20—H20	108.8	O4—Ni1—N3	175.53 (5)

N1—C1—C2—C3	-0.2 (3)	C7—C11—N2—C10	3.3 (2)
C1—C2—C3—C4	-1.3 (3)	C12-C11-N2-C10	-176.12 (16)
C2—C3—C4—C12	1.1 (3)	C7—C11—N2—Ni1	-177.88 (13)
C2—C3—C4—C5	-178.9 (2)	C12—C11—N2—Ni1	2.74 (17)
C12—C4—C5—C6	-1.3 (3)	C21—C20—N3—C19	-97.20 (16)
C3—C4—C5—C6	178.7 (2)	C22—C20—N3—C19	140.27 (15)
C4—C5—C6—C7	0.2 (4)	C21—C20—N3—Ni1	25.00 (16)
C5—C6—C7—C8	-177.7 (2)	C22—C20—N3—Ni1	-97.53 (15)
C5—C6—C7—C11	1.3 (3)	C18—C19—N3—C20	56.96 (19)
C11—C7—C8—C9	-0.5 (3)	C18—C19—N3—Ni1	-64.49 (16)
C6—C7—C8—C9	178.5 (2)	C14—C13—O1—Ni1	125.71 (15)
C7—C8—C9—C10	1.7 (3)	C18—C13—O1—Ni1	-54.29 (19)
C8—C9—C10—N2	-0.4 (4)	O3—C21—O2—Ni1	-162.77 (14)
C8—C7—C11—N2	-2.0(3)	C20—C21—O2—Ni1	20.04 (18)
C6—C7—C11—N2	178.93 (17)	C21—O2—Ni1—O1	86.89 (11)
C8—C7—C11—C12	177.34 (16)	C21—O2—Ni1—N1	-60.9 (4)
C6—C7—C11—C12	-1.7 (3)	C21—O2—Ni1—N2	-99.25 (11)
C3—C4—C12—N1	0.4 (3)	C21—O2—Ni1—O4	176.86 (11)
C5—C4—C12—N1	-179.63 (17)	C21—O2—Ni1—N3	-3.62(11)
C3—C4—C12—C11	-179.14 (16)	C13—O1—Ni1—O2	-43.27 (13)
C5—C4—C12—C11	0.9 (3)	C13—O1—Ni1—N1	132.18 (12)
N2-C11-C12-N1	0.5 (2)	C13—O1—Ni1—N2	-175.3 (3)
C7—C11—C12—N1	-178.91 (15)	C13—O1—Ni1—O4	-138.32 (12)
N2—C11—C12—C4	-179.97 (15)	C13—O1—Ni1—N3	37.25 (12)
C7—C11—C12—C4	0.6 (2)	C1—N1—Ni1—O2	143.3 (3)
O1—C13—C14—C15	179.01 (18)	C12—N1—Ni1—O2	-35.3 (4)
C18—C13—C14—C15	-1.0 (3)	C1—N1—Ni1—O1	-4.37 (17)
C13—C14—C15—C16	-0.2 (3)	C12—N1—Ni1—O1	177.07 (12)
C14—C15—C16—C17	1.4 (3)	C1—N1—Ni1—N2	-177.71 (17)
C15—C16—C17—C18	-1.4 (3)	C12—N1—Ni1—N2	3.73 (12)
C16—C17—C18—C13	0.2 (3)	C1—N1—Ni1—O4	-94.14 (17)
C16—C17—C18—C19	177.10 (19)	C12—N1—Ni1—O4	87.30 (12)
O1—C13—C18—C17	-179.03 (16)	C1—N1—Ni1—N3	86.88 (17)
C14—C13—C18—C17	1.0 (3)	C12—N1—Ni1—N3	-91.68 (12)
O1—C13—C18—C19	4.0 (2)	C10—N2—Ni1—O2	-10.16 (17)
C14—C13—C18—C19	-175.97 (17)	C11—N2—Ni1—O2	171.16 (11)
C17—C18—C19—N3	-114.01 (19)	C10—N2—Ni1—O1	121.7 (4)
C13—C18—C19—N3	62.9 (2)	C11—N2—Ni1—O1	-57.0 (4)
N3—C20—C21—O3	151.94 (15)	C10—N2—Ni1—N1	175.22 (17)
C22—C20—C21—O3	-86.71 (19)	C11—N2—Ni1—N1	-3.47 (11)
N3—C20—C21—O2	-30.7 (2)	C10—N2—Ni1—O4	84.50 (17)
C22—C20—C21—O2	90.65 (18)	C11—N2—Ni1—O4	-94.18 (11)
N3—C20—C22—C23	169.60 (16)	C10—N2—Ni1—N3	-91.01 (17)
C21—C20—C22—C23	48.4 (2)	C11—N2—Ni1—N3	90.31 (11)
C20—C22—C23—C24	-172.7 (2)	C20—N3—Ni1—O2	-13.11 (11)
C20—C22—C23—C25	61.5 (2)	C19—N3—Ni1—O2	110.36 (11)
C2-C1-N1-C12	1.6 (3)	C20—N3—Ni1—O1	-104.63 (12)

supporting information

C2—C1—N1—Ni1	-176.86 (15)	C19—N3—Ni1—O1	18.84 (11)
C4-C12-N1-C1	-1.7 (3)	C20—N3—Ni1—N1	159.69 (11)
C11—C12—N1—C1	177.78 (16)	C19—N3—Ni1—N1	-76.85 (11)
C4—C12—N1—Ni1	176.99 (13)	C20—N3—Ni1—N2	79.83 (12)
C11—C12—N1—Ni1	-3.49 (18)	C19—N3—Ni1—N2	-156.70 (11)
C9—C10—N2—C11	-2.0 (3)	C20—N3—Ni1—O4	-7.0 (9)
C9—C10—N2—Ni1	179.36 (16)	C19—N3—Ni1—O4	116.5 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H··· A
04—H1 <i>0</i> 4…O7	0.83	1.89	2.709 (2)	169
O4—H2 <i>O</i> 4…O5	0.98	1.80	2.772 (2)	169
O5—H1 <i>O</i> 5···O3 ⁱ	1.00	1.82	2.8137 (19)	171
O5—H2 <i>O</i> 5…O1	0.95	1.81	2.7393 (19)	164
O6—H1 <i>O</i> 6…O2	0.96	1.83	2.7310 (18)	156
O6—H2 <i>O</i> 6···O9	1.00	1.85	2.807 (2)	160
O7—H1 <i>O</i> 7···O8	0.93	1.78	2.693 (3)	171
O7—H2 <i>O</i> 7···O6	0.94	1.91	2.832 (3)	165
O8—H1 <i>O</i> 8…O6 ⁱⁱ	0.87	1.89	2.730 (3)	162
O8—H2 <i>O</i> 8····O5 ⁱⁱ	1.08	1.68	2.749 (2)	169
O9—H1 <i>O</i> 9…O3	0.95	1.81	2.749 (2)	171
O9—H2 <i>O</i> 9…O1 ⁱⁱⁱ	0.87	1.98	2.8459 (18)	173

Symmetry codes: (i) -x+1, y-1/2, -z+3/2; (ii) x+1/2, -y+1/2, -z+1; (iii) -x+1, y+1/2, -z+3/2.