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Abstract: In many e-learning settings, allowing students to choose which skills to practice encourages
their motivation and contributes to learning. However, when given choice, students may prefer
to practice skills that they already master, rather than practice skills they need to master. On the
other hand, requiring students only to practice their required skills may reduce their motivation and
lead to dropout. In this paper, we model this tradeoff as a multi-agent planning task, which we call
SWOPP (Supervisor- Worker Problem with Partially Overlapping goals), involving two agents—a
supervisor (teacher) and a worker (student)—each with different, yet non-conflicting, goals. The
supervisor and worker share joint goals (mastering skills). The worker plans to achieve his/her
own goals (completing an e-learning session) at a minimal cost (effort required to solve problems).
The supervisor guides the worker towards achieving the joint goals by controlling the problems
in the choice set for the worker. We provide a formal model for the SWOPP task and two sound
and complete algorithms for the supervisor to guide the worker’s plan to achieve their joint goals.
We deploy SWOPP for the first time in a real-world study to personalize math questions for K5
students using an e-learning software in schools. We show that SWOPP was able to guide students’
interactions with the software to practice necessary skills without deterring their motivation.

Keywords: e-learning; education; interactive learning; artificial intelligence; choice; planning; multi
agent planning; classical planning

1. Introduction

When using e-learning software for practicing skills, students can often choose which
of several tasks to complete [1]. Research in the social sciences has demonstrated that
providing people with different task choices increases their motivation and task perfor-
mance [2]. For example, allowing students to choose which problem to solve from a
candidate set was shown to positively contribute to their learning [3]. On the other hand,
students may choose to solve problems that are easy and familiar, not venturing outside of
their “comfort zone” to try more challenging problems that increase learning [1]. There is,
thus, a need for e-learning systems to personalize the choice set of problems in a way that
achieves teachers’ learning goals while maintaining students’ motivation.

We model this tradeoff as a multi-agent planning problem [4] called SWOPP (Supervisor-
Worker Problem with Partially Overlapping goals) with two agents: a supervisor (teacher)
and a worker (student). The worker can apply a sequence of actions in order to achieve its
goals, and executing actions incurs a cost. The worker can control which actions to choose
from a given choice set, while the supervisor controls the action costs. The supervisor must
guide the worker towards achieving the supervisor’s goals, while still achieving the goals
of the worker, and without reducing its set of choices. The supervisor and the worker are
not fully collaborative, having different goals, yet not strictly competitive, as their goals do
not conflict.

The supervisor can modify the worker’s cost function, by choosing to increase the
cost of worker actions. Thus, the supervisor can make certain worker actions less desirable
for a worker, without removing them from the set of actions under consideration. The
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worker can always choose from the original set of actions, but undesirable choices to the
supervisor are made less attractive for the worker. The worker plans its actions using the
revised cost function that is dictated by the supervisor.

In the e-learning setting, the student goal is to successfully complete a session with the
system. The goal of the teacher is for the student to practice certain skills. There are several
possible solution paths to completing the e-learning session. Each solution path contains
a set of problems and their associated skills. The student is free to choose any of these
solution paths. The cost function of the student measures the effort that is required to solve
problems (lower costs are associated with easier problems for the student). The teacher can
control the solution paths, allowing to personalize possible solution paths for each student.
For example, the teacher can guide the student towards a solution path with new skills by
increasing the number of problems in a solution path which contains skills that the student
already knows, making this easier solution path less attractive to the student.

The cost for the teacher represents the amount of work that the teacher must invest to
create a longer path, that requires more effort from the student. For example, the teacher
can create additional questions to be added to the path. The teacher wishes for the student
to acquire a new skill, without overloading or frustrating the student. Hence, the teacher
will guide the student to the path that minimizes the student cost in achieving both teacher
and student not conflict goals.

While, in this paper, we focus on an education application, SWOPP is a general model
that can be applied to other problems. For example, a city that wishes to persuade drivers
to avoid school areas when the students arrive at school or leave. SWOPP can compute the
necessary speed limit for each driver to make driving near the school undesirable. Another
application for SWOPP is to regulate traffic during rush hours in toll roads. SWOPP can
design a personalized toll for each driver, sufficiently high to persuade the driver to take
other roads.

Our research problem is to define and solve the SWOPP problem. We provide two
algorithms that receive as input the goals and cost functions for both the worker and the
supervisor. Both algorithms output a revised cost function for the worker that produces
an optimal plan for the worker (minimizes its costs) while fulfilling the goals for both
supervisor and worker. The first algorithm (called Cost Function Modification (CFM)) is a
brute force approach guaranteed to minimize the modification costs for the supervisor, but
requires to generate an exponential number of plans for the worker. The second algorithm
(called Incremental CFM (ICFM)) is an iterative approach that may in practice traverse far
fewer plans, but does not guarantee optimality for the supervisor.

We apply SWOPP in the wild by using it to personalize math questions from different
topics to K5 students using e-learning software in elementary schools. We developed a
game, where the player advances on a path to a goal by solving math problems. The player
can choose from different paths, where each path requires the player to answer questions
associated with different math topics. Once the player solved a pre-defined number of
questions, thus demonstrating her mastery of a skill, a gate was opened allowing her to
advance the path towards the goal. SWOPP was used to set the number of gates that
must be opened at each path, according to a specific skill, set by the teacher for that
particular student. This is the first time SWOPP was formalized and has been used in
educational settings.

We formulate an SWOPP problem for this setting, defining a personal cost function for
each student. We show that more students practiced their necessary skills when using our
approach, even though they were given free choice about which skills to practice. These
students solved more problems correctly than other students whose sessions were not
tailored by SWOPP and reported a high perceived level of choice.

This paper provides three contributions: (1) the formalization of the supervisor-worker
SWOPP problem; (2) two sound and complete algorithms for solving the problem; and
(3) applying SWOPP in a real world education setting and validating our approach in
this setting.
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2. Related Work

Several approaches within AI and education have used computational methods for
personalizing learning paths of students. Recommendation algorithms have been used
to personalize educational content to students by aggregating the rankings of similar
students [5,6]. Other researchers used graphical models or neural nets to sequence content
for students by inferring their skill acquisition (i.e., mastery level) over time given their
performance levels on different question sequences [7,8]. The models are trained on large
data sets from multiple students using machine learning algorithms that account for latent
variables. Other methods have considered the exploration/exploitation tradeoff when
generating contents to students by using Multi Armed Bandits [5,9], or through knowledge
transfer models [10].

Our approach is inspired by recent studies in behavior change and persuasion that
show people prefer to be able to choose between several alternatives [11,12]. It is widely
agreed in psychology and economics research that the provision of choice increases
the intrinsic motivation, perceived control, task performance, and overall satisfaction
of people [13]. Although choosing between too many options can be confusing, choosing
between a small set of options is known to be preferred to no choice [2]. This was also
shown in the educational domain [1,3].

SWOPP relates to the environment design problem in AI in which an interested party,
the system designer, can make changes to the environment of an agent in order to encourage
desired behavior [14]. Keren et al. [15] model environment design settings in which the
system designer and the worker optimize the same utility function. The designer attempts
to introduce changes to the environment that would reduce the cost of achieving the joint
goals. This is very different than the SWOPP model, where the supervisor increases the
worker cost for some of its actions, in order to achieve the supervisor goals. Keren et
al. allow modifications to the transition probabilities, while we only increase the cost of
worker actions, which is more suitable in some real world scenarios.

Keren et al. [16] studied the goal recognition design (GRD) problem, where the envi-
ronment can be modified to allow the system designer to elicit the goals of the agent. GRD
takes a similar modeling approach to ours, based on classical planning. However, in GRD,
the system designer cannot increase the overall cost of the agent’s plan, while we must
increase this cost in order to meet the goals of the designer. In addition, GRD allows only
action removal by the system designer, which is equivalent to increasing the cost of actions
to infinity, while we allow more subtle cost increases.

Our work is also related to the inverse optimization problem in the operations research
community [17], inter alia. The input to an inverse optimization problem is a solution and
a cost function. The output of the problem is a revised cost function such that the given
solution would be optimal. Inverse optimization was studied for several applications,
such as constraint optimization and auctions, and has been applied to domains, such as
assembly lines and health care. SWOPP combines insights from both inverse optimization
and environment design.

Reward shaping is a form of reinforcement learning that modifies the original rewards
in MDPs [18], to provide domain information to the learning process, to control its ex-
ploration, and to inject human input [19]. Reward shaping differs from SWOPP in that it
encourages faster learning, rather than directing the agent to different goals.

De Giacomo et al. [20] describe an online process where a supervisor limits the set of
actions available to a worker at each step of the execution. The goals of the worker and the
supervisor may conflict, and the supervisor must prevent the worker from behavior that is
deemed undesirable by the supervisor. They differ from our work in guiding the worker
away from undesirable behavior, rather than guiding it towards achieving additional goals.
They focus, as we do, on reducing the restrictions on the choices of the worker. They take a
logic-based approach, ignoring action costs.

Our work is also related to the incentive design task [21,22], where a supervisor can
design incentives for an agent to achieve a desired action. Specifically, Chen et al. [23]
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consider a setting where the agent uses a multi-armed bandit model to choose actions, but
the supervisor does not know the beliefs of the agent about the action values. Assuming
that the given costs represent the minimal required effort, we do not allow to reduce the
costs of the worker actions with respect to its original cost function.

3. Background: Classical Planning

We provide a necessary background for the SWOPP model. A classical planning
problem is a tuple 〈P, A, sI , G, C〉, where P is a set of propositions, A is a set of actions,
sI ⊂ P is the initial state—a set of propositions that are initially true, and G ⊂ P is the set of
goal propositions that the agent must achieve. The propositions in P describe the possible
world states, such that each world state s is defined by a truth or false assignment to all
propositions in P.

An action a ∈ A is a pair, {pre(a), effects(a)}, where pre(a) is a conjunction of literals,
denoting a set of preconditions that must hold before a can be applied. We say that a is
applicable in a state s if s |= pre(a). The action effect effects(a) is a conjunction of literals,
modeling the change to the world following the execution of a. We use a(s) to denote the
state that is obtained after a is executed in state s.

A solution to a classical planning problem is a sequence of actions π = 〈a1, . . . , an〉,
such that π(i) = ai is applicable in the state ai−1(. . . (a1(sI))), and G ⊂ an(an−1(. . . (a1(sI)))).
Applying the plan sequentially, starting from the initial state sI , will result in a valid state
where all goal propositions hold. There are many approaches to constructing classical
planners for computing solution plans (see, e.g., Hoffmann [24], Helmert [25]).

A time-based (non-stationary) cost function for an agent C : A × T → R assigns a
numerical cost to the execution of an action by the worker at a given time. The worker cost
for executing plan π is C(π) = ∑t=0,...,|π| c(π(t), t), where π(t) is the action dictated by
the plan at time t, and c(a, t) is the cost associated with action a at time t.

4. The SWOPP Problem

We now define the SWOPP problem under full observability and deterministic actions.
We begin with motivating applications, highlighting the main properties of the problem,
and focusing on challenges that must be handled.

Definition 1. A SWOPP problem is a tuple 〈P, A, sI , GW , GS, C0, Cs〉, where P is a set of proposi-
tions; A is a set of actions for the worker; sI is an initial state; GW and GS (subsets of P) are the
set of goals of the worker and supervisor, respectively; GS and GW are consistent in the sense that
there exists a reachable state s such that s |= GS ∪ GW ; C0 is the initial cost function for the worker,
representing the minimal possible effort for the worker for applying actions. Cs is the supervisor cost
function Cs(a, t, c, c′) assigning a cost for increasing the worker’s cost function for action a at time
t from c to c′.

The supervisor’s objective is that the worker achieves both GW and GS, while the
worker’s objective is to achieve only GW . At each step, the worker takes the optimal action
for achieving its goals, given its time-based cost function. The supervisor can guide the
worker towards performing actions that are desirable to the supervisor, by modifying
the costs of other actions for the worker at specific times. We allow only modifications
that increase the worker cost beyond the initial cost C0(a, t), which we assume to be the
minimal effort required to execute a at t. An increase to the worker’s cost function incurs a
cost to the supervisor. We assume a worker that minimizes the sum of action costs. The
supervisor must minimize the worker’s costs.

Definition 2. A plan π = 〈a1, . . . , an〉 is SW-optimal for a worker cost function C if it satisfies
the goals GS and GW and is optimal for the worker cost function C.

A solution for the supervisor-worker problem (SWOPP) is a worker cost function C′

such that any plan π′ that satisfies GW and is optimal with respect to C′ is also SW-optimal
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for C′. The optimal worker plan under the cost function outputted by an algorithm must
complete the goals of both worker and supervisor.

The supervisor can change the worker cost for an action a at any time t from the current
cost c to any other cost c′, as long as c′ ≥ C0(a, t), i.e., the cost can never be lower than the
value specified by the initial cost function. The cost modifications are intended to guide
the worker away from the actions with the revised costs. The supervisor must, however,
pay a cost for modifying the worker’s cost function from its original value. This additional
cost can reflect the worker’s discontent from the cost increase, or the physical cost to the
supervisor in modifying the worker’s cost function. Given a revised cost function C′ and
an SW-optimal plan π′ for C′, the supervisor total cost

C+s = ∑
t=0,...,|π′ |,a∈A

Cs(a, t, C0(a, t), C′(a, t)), (1)

that is, the sum of the cost of deviations from the initial cost function C0.
Note that, while SW-optimal plans under C′ satisfy the goals of the supervisor, they

do not guarantee minimal modification costs for the supervisor. To address this, we make
use of the definition below.

Definition 3. An optimal solution cost function (OSCF) for SWOPP is a revised worker cost
function C′, such that (1) any plan π′ that is optimal for the worker (i.e., minimizes C(π′)) is also
SW-optimal for C′; and (2) C′ is optimal for the supervisor (i.e., minimizes the supervisor cost C+s
for all possible SW-plans given the initial cost function C0).

Running Example

We use the following running example to illustrate the SWOPP problem and
our approach.

Example 1.

Consider the navigation problem in Figure 1. In this domain, a worker’s task is to
move from one location to another. Edges are undirected, i.e., the worker can move in
both directions over an edge. The action costs for moving between two connected cells
represent the movement difficulty. This example is analogous to an education setting.
Nodes represent skills; edges between nodes represent math questions; arriving at a node
means solving a math question and achieving the skill associated with the node. The goal
of the student is to reach ng, which represents finishing the exercise, by any possible path.
The goal of the teacher is for the student to learn specific skills, represented by particular
nodes. A student can pick a shorter path, allowing him to achieve a skill with less questions
and, hence, less effort, but the questions may be harder than the questions on a longer path.

Figure 1. The navigation example.
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The worker is positioned initially in cell n0 and has 3 available actions: (1) move
through a high difficulty (hard) connection to cell n1, incurring a cost of 6, (2) move
through a low difficulty (easy) connection to cell n2 incurring a cost of 1, or (3) move
through a moderate connection to cell n3 for a cost of 3.

The set of propositions P models the difficulty level of the possible connections
between the cells, denoted by (easy ni nj),(medium ni nj), (hard ni nj), the current location
of the worker, (loc ni), and the visited cells denoted by (visited ni). An action move(ni, nj)
represents moving on a connection from ni to nj. The precondition for all moving actions
is for the worker to be in cell ni and an available connection to be at some difficulty level
between ni and nj. The location of the worker at cell nj is denoted by (loc nj).

The worker goal is to be at ng, i.e., GW is (loc ng). The supervisor goal, GS, is for
the worker to visit n2 and n3, which is (visited n2) and (visited n3). The initial time-based
cost function C0 sets costs of 1, 3, and 6, for moving through easy, medium, and hard
connections, respectively, for all time t = 0, 1, . . . , ∞. Obviously, the union of GW and GS

can be achieved, for example, by the plan: πs = 〈move(n0, n3), move(n3, n4), move(n4, n2),
move(n2, n4), move(n4, ng)〉.

The supervisor cost function Cs is derived directly from the cost increase for the worker,
i.e., Cs(a, t, C(a, t), C′(a, t)) = C′(a, t)− C(a, t). For example, if C(move(n0, n2), 0) = 1 and
the supervisor increases the cost of by 2, i.e., C′(move(n0, n2), 0) = 3, then Cs(a, t, 3, 5) = 2.

A possible solution for this SWOPP problem is the following revised cost function:
C′(move(n0, n2), 0) = 10, C′(move(n0, n1), 0) = 12, C′(move(n4, ng), 2) = 5,
C′(move(n0, n2), 2) = 10. Planning under this modified cost function yields the SW-optimal
plan πs. However, the supervisor cost, C+s = (10− 1) + (12− 6) + (5− 1) + (10− 1) = 28,
is not minimal. Hence, this solution is not an OSCF.

An OSCF solution to this SWOPP problem is the following revised cost function:
C′(move(n0, n1), 0) = 6, C′(move(n4, ng), 2) = 4, C′(move(n1, ng), 1) = 4. Planning under
this modified cost function yields an SW-optimal plan. The supervisor cost, C+s =11, is
minimal, and this solution is OSCF.

5. Solving the SWOPP Problem

In this section, we provide two algorithms for computing solutions to SWOPP. The
first provides an OCSF solution but needs to enumerate all possible worker plans. We also
present an alternative incremental approach for outputting a solution that may traverse
fewer plans but does not guarantee to output an OSCF solution. Both approaches leverage a
black box classical planner, WorkerPlan. This planner receives as input a classical planning
problem and outputs a minimal cost plan for the problem.

5.1. CFM: Brute Force Approach

The first approach, called Cost Function Modification (CFM) increases the costs of all
possible plans with lower worker cost than the SW-optimal plan.

We begin with some notation. Let SupervisorPlans be a black box classical planner
for computing Πs—the set of all possible SW-optimal plans for an initial cost function C0.
By Definition 2, each plan in Πs is optimal for the worker and has the same minimal cost,
which we denote C∗. Computing C∗ can be done by running WorkerPlan over a planning
problem, where the goal is to obtain both GW and GS. In addition, GS must be obtained
before GW , as if the worker achieves GW before GS, it has no incentive to continue working.
Let WorkerPlans be black box classical planner for computing the set Πw of all possible
plans that (1) achieve the worker goals GW but not the supervisor goals GS and (2) have a
worker cost less or equal to C∗.

Given a supervisor plan πs ∈ Πs, we define a linear program (LP) that receives as
input the worker cost C∗ for πs, all worker plans in Πw, the initial cost function C0, and the
supervisor cost function Cs. The goal of the LP LP(Πw, C∗, πs, C0, Cs) is to increase the cost
of all worker plans in Πw to be above C∗, making πs preferable to any plan in Πw.
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The LP includes the following variables: For every

π = 〈a1, ..., ak〉 ∈ (Πw ∪ πs),

for t = 1, . . . , k, we add a variable Xat ,t (without repetition) representing the cost for the
worker for an action a at time t. In addition, for every variable Xat ,t, we add a variable Yat ,t,
representing the supervisor cost for modifying the worker cost for the action associated
with Xat ,t. The LP contains the following constraints:

• Action constraints: For every action, the modified cost should be greater or equal to
the initial action cost

∀at, t ∈ Πw, Xat ,t ≥ C0(at, t). (2)

• Plan constraints: The cost of every worker plan should be strictly greater than C∗.

∀πi = 〈a1, . . . , ak〉 ∈ Πw, ∑
t=1..k

Xat ,t > C∗. (3)

• Supervisor plan constraints: πs is an optimal plan for jointly achieving the worker
and the supervisor goals. For optimal plans, the cost of actions in πs = 〈a1, . . . , am〉
should not be increased.

∀at ∈ πs, Xat ,t = C0(at, t). (4)

• Supervisor modification cost constraints: The supervisor cost for modifying worker
action costs is linear in the magnitude of the modification.

∀at, t ∈ Πw, Yat ,t = Cs(at, t) · (Xat ,t − C0(at, t)). (5)

The objective function of LP(Πw, C∗, πs, C, Cs) is to minimize the sum of the supervisor
cost modifications over all variables.

Min ∑
at ,t

Yat ,t. (6)

Solving the LP, we obtain the revised costs for all actions that appear in plans in Πw.
As such, all plans in Πw have a cost higher than πs, and the worker would choose πs.
Choosing different supervisor plans in Πs may result in different cost modifications. In
particular, some plans in Πs require less cost modifications than others. Hence, we must
solve LP(Πw, C∗, πs, C, Cs) for every πs ∈ Pis, and choose the minimal cost solution.

The CFM approach is shown in Algorithm 1. We create an LP for each πs ∈ Πs and
return the worker cost function with minimal supervisor cost. This algorithm necessarily
returns an OSCF solution.

Algorithm 1: Cost Function Modification (CFM)

1 CFM(P, A, sI , GS, GW , C0, Cs, πs, C∗)
2 C+s ← ∞
3 C ← C0

4 Πs ← SupervisorPlans(P, A, sI , GW × GS, C0)

5 Πw ← WorkerPlans(P, A, sI , GW , C0)
6 foreach πs ∈ Πs do
7 C′ ← LP(Πw, C∗, πs, C0, Cs)

8 C ′+s ← ∑at∈A Cs(at, t, C0(at, t), C(at, t))
9 if C+s > C ′+s then

10 C+s ← C ′
+
s

11 C ← C′

12 return 〈C, C+s 〉
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5.2. ICFM: Incremental Approach

The brute-force CFM approach requires as input all possible plans in Πw and Πs.
However, the size of each set can be exponential in the number of worker actions. As
such, this approach does not scale. In this section, we provide an iterative version of our
approach, called ICFM. The approach alternates between (1) computing a worker plan for a
given cost function, incrementally adding constraints associated with the resulting plan to
the LP, and (2) solving the linear program to obtain a new cost function. ICFM terminates
when a worker plan is found that satisfies the supervisor goals. This approach does not
guarantee an OSCF solution because we focus on a single πs.

There can be several worker plans with cost C∗, and WorkerPlan may return πs prior
to some πw ∈ Πw that has a cost of C∗. To address this, we disqualify all such plans from
the worker’s consideration by increasing the cost of plans that achieve the goals of both
participants to be C∗ + ε. We do so by defining a slightly different planning problem,
WorkerPlan-ε, adding a new proposition done which is the new goal of the worker. We
add two actions that provide done, achievedw, and achivedsw. achievedw has a preconditions
GW and ¬GS and a cost of 0. achievedsw, on the other hand, requires both GS and GW as
preconditions, and has a cost of ε. In the revised problem the cost is increased to C∗ + ε.
Hence, all worker plans of cost C∗ or less must be returned by WorkerPlan-ε before an
SW-optimal plan is found. In the LP we omit the additional actions.

This ICFM approach is shown in Algorithm 2. We maintain an incrementally growing
set Πi of worker plans, initialized to ∅. The algorithm receives as input an SW-optimal
plan πs and the associated worker cost C∗. In line 9, we solve LP(Πi, C∗ + ε, πs, C0, Cs)
to obtain the modified cost function for the worker under the constraints Πi. In line 10,
we call WorkerPlan-ε on the modified cost function to obtain a new worker plan πi. This
process continues until WorkerPlan-ε returns πs.

Algorithm 2: Incremental CFM (ICFM)

1 ICFM(P, A, sI , GS, GW , C0, Cs, πs, C∗)
2 i← 1
3 Ci ← C0
4 Πi ← ∅
5 πi ← WorkerPlan-ε(P, A, sI , GW , Ci)
6 while πi 6= πs do
7 i← i + 1
8 Πi = Πi−1 ∪ {πi−1}
9 Ci ← LP(Πi, C∗ + ε, πs, C0, Cs)

10 πi ← WorkerPlan-ε(P, A, sI , GW , Ci)
11 C+s ← ∑t=0..|πw |,a∈A Cs(a, t, C0(a, t), Ci(a, t))
12 return 〈Ci, C+s 〉

In the worst case, the approach will need to traverse all worker plans in Πw. However,
as each cost modification increases the cost of many possible plans, in practice, we may
obtain sufficient cost increases for WorkerPlan to choose πs with orders of magnitude less
constraints than the complete approach.

The solution to the final LP(Πi, C∗ + ε, πs, C0, Cs) must have identical cost to the
complete LP(Πw, C∗, πs, C0, Cs). This is because LP(Πi, C∗ + ε, πs, C0, Cs) is a roof [26] of
LP(Πw, C∗ + ε, πs, C0, Cs), and C+s under the solution of LP(Πi, C∗ + ε, πs, C0, Cs), must be
a lower bound (as this is a minimization task) on the C+s under the solution of LP(Πw, C∗ +
ε, πs, C0, Cs).

From the supervisor perspective, however, it may be that selecting a different πs
would result in fewer cost modifications. Thus, ICFM is not guaranteed to return an OSCF.

However, we can still show that the solution is optimal for a specific SW-optimal plan.
To this end, we make the following definition.
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Definition 4. A πs-optimal solution for SWOPP is a pair (πs, C′) such that πs is an SW-optimal
plan for the initial cost function, and C′ is a revised worker cost function such that 1) any plan π′

that is optimal for the worker (minimizes C(π)) is SW-optimal for C′; and 2) C′ minimizes the
supervisor cost C+s given πs.

The following section will show that ICFM returns a πs-optimal solution.

Running Example

We now demonstrate ICFM over our running example. The input given to ICFM
is πs = 〈move(n0, n3), move(n3, n4), move(n4, n2), move(n2, n4), move(n4, ng)〉. The cost of
πs denoted c∗ = 9. The worker initial plan, computed in line 5, when i = 1 is π1 =
〈move(n0, n2), move(n2, n4), move(n4, ng)〉. The set of worker plans Π1 now contains π1
(line 8). An LP problem is created in line 9 with the plan constraint Xmove(n0,n2),0 +
Xmove(n2,n4),1 + Xmove(n4,ng),2 > c∗ + ε.

The solution to the LP problem is a revised cost function C1 that modifies one action
cost: C1(move(n2, n4), 1) = 8. After replanning (line 10), we get a new worker plan π2 =
〈move(n0, n2), move(n2, n0), move(n0, n2), move(n2, n4), move(n4, ng)〉. Since π2 is not πs, we
keep iterating (line 6). We define Π2 = Π1 ∪ π2. After solving the relevant LP, we get a
revised cost function C2 which modified the following action costs: C2(move(n0, n2), 0) = 6
and C2(move(n2, n4), 1) = 3. After another replanning, we get a new worker plan π3 =
〈move(n0, n1), move(n1, ng)〉. We define Π3 = Π2 ∪ π3. The relevant LP problem results
in a new cost function that modifies the following action costs: C3(move(n0, n2), 0) = 6,
C3(move(n2, n4), 1) = 3, and C3(move(n1, ng), 1) = 4.

This process continues five iteration until π5 = πs. Thus ICFM terminates and returns
the worker cost function C4 and the increase to the supervisor cost C+s = (6− 1) + (4−
1) + (4− 1) = 11.

6. Properties of ICFM

We now briefly discuss the properties of ICFM—termination, optimality, soundness,
and completeness. This analysis applies only for a rational (optimal) worker. We also
assume that a SW-optimal πs exists; otherwise, there is no valid solution to SWOPP.

1. ICFM terminates after a finite number of steps.
2. ICFM is sound—it returns a cost function C′, such that optimal planning under C′

yields an SW-optimal plan.
3. ICFM is complete with respect to an SW-optimal solution, πs—if there is a cost

function that forces the optimal planner to follow πs , ICFM will find it.
4. The ICFM solution is πs-optimal.
5. The SW-optimal plan πw for the worker does not incur additional cost for the worker

(C(πw) = C0(πw)).

Lemma 1. Each plan π ∈ Πw can be computed by WorkerPlan at most, once during Algorithm 2.

Proof. Assume (for contradiction) that the same plan was computed by WorkerPlan in
two different iterations i, j, where i < j, that is πi = πj. When ICFM computes plan πi
at step i, a plan constraint was added to the LP problem requiring that Ci+1(π) > C∗.
This constraint holds at step j − 1. Hence, Cj(πi) must also be greater than C∗. Given
the supervisor’s plan constraints in the LP problem, Cj(πs) = C0(πs). Hence, πs must be
computed by WorkerPlan before πj and the algorithm will terminate.

Theorem 1. ICFM terminates after a finite number of steps.

Proof. The ICFM loop (line 6) ends when πi = πs which occurs when C(πs) ≥ C∗. By
Lemma 1 each plan can be chosen by ICFM, at most, once. There is a finite number of
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possible plans of cost less or equal to C∗, and at least one plan πs with cost C∗. Hence, after
a finite number of steps, the loop terminates.

Theorem 2. ICFM is sound—it returns a cost function C′, such that optimal planning under C′

yields an SW-optimal plan.

Proof. The resulted LP cost function Ci is validated by the optimal classical planner
(line 10). When ICFM terminates, πi = πs, validating that WorkerPlan under Ci returns πs.
Hence, if this black box planner is sound, ICFM is also sound.

Theorem 3. ICFM is complete with respect to an SW-optimal solution, πs. That is, if there exists
a cost function that forces the optimal planner to follow πs, ICFM will find one.

Proof. ICFM terminates only when πi = πs. ICFM always terminates; hence, ICFM returns
a cost function that forces the optimal planner to follow πs.

Theorem 4. ICFM returns a πs-optimal solution

Proof. To show that ICFM returns a πs-optimal solution, we need to show that, under the
computed cost function C′: (1) any plan that is optimal for the worker is SW-optimal under
C′ (Theorem 2). (2) C′ minimizes the supervisor’s cost C+s given πs.

To prove (2), we note that a solution for LP(Πw, C∗, πs, C0, Cs), where Πw is the set
of all possible worker plans with a cost less or equal to C∗, necessarily minimizes the
supervisor cost given πs. We denote the supervisor minimal cost as C+∗s .

We need to show that the optimal solution of the LP problem for a subset of worker
plans Πi ∈ Πw , C+s , is smaller than C+∗s . Πi contains worker plans with a cost less or
equal to C∗, and as such, Πi ⊂ Πw. Each plan πi (line 10) adds a set of variables to
the LP, and a set of constraints. Therefore, LP(Πi, C∗, πs, C0, Cs) contains a subset of the
variables and constraints in LP(Πw, C∗, πs, C0, Cs). As the rest of the parameters to the
linear program construction are identical, there are no additional variables and constraints
in LP(Πi, C∗, πs, C0, Cs) that do not appear in LP(Πw, C∗, πs, C0, Cs)

As such, LP(Πi, C∗, πs, C0, Cs) is a roof [26] of LP(Πw, C∗, πs, C0, Cs), and C+s under
the solution of LP(Πi, C∗, πs, C0, Cs), must be a lower bound (as this is a minimization
task) on the C+s under the solution of LP(Πw, C∗, πs, C0, Cs). Hence, the solution of ICFM
is πs-optimal solution.

For the other direction, the solution of LP(Πi, C∗, πs, C0, Cs) provides cost modifi-
cations such that after applying them, the optimal planner WorkerPlan cannot find a
worker plan of cost less or equal to C∗. Therefore, the solution of LP(Πi, C∗, πs, C0, Cs) also
maintains the constraints in LP(Πw, C∗, πs, C0, Cs).

7. Empirical Analysis

We now provide an empirical study of our algorithm on a set of modified benchmarks.
We describe the domains and how we modified different features to control for the com-
plexity of solving the SWOPP problem. To compute optimal worker plans, we use the
fast-downward (FD) planner [25], running an A∗ variant with the LMCut heuristic [27]. To
obtain the sets of all plans Πs and Πw of cost less than C∗, we used BFS. The experiments
were run on an Intel i7-8550u CPU at 1.99 GHz with 16 GB of RAM.

We adapt the following domains from the classical planning competition (IPC) [28].
In all domains, we allow the supervisor to increase the cost of any action to any natural
number, and the cost to the supervisor is the difference between the original cost and the
increased cost.

Grid: The grid domain is an n×m fully connected map where the worker’s task is to
move from one location to another. We assign a difficulty level to each passage between
neighboring cells, and the action costs represent this difficulty. The worker’s goal is to visit
a set of cells, while the supervisor’s goal is for the worker to visit additional cells.
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Blocks: The well known blocks world describes a domain where stackable blocks
need to be re-assembled on a table using a robotic arm. The goals of the worker and the
supervisor are to achieve different block arrangements. The supervisor’s goal is to achieve
a specific block arrangement at least once during the plan execution (we do not require this
arrangement to hold at the end of the execution).

Logistics: The task is to transport packages within and between cities using trucks
and airplanes. The worker’s goal is to deliver a subset of the packages, while the goal of
the supervisor is for the worker to deliver additional packages.

7.1. Varying the Domain Difficulty

To better understand the behavior of ICFM, we vary the domains according to several
factors, which are intuitively related to the difficulty of solving the problem.

First, we look at the effort required for the worker agent to achieve the goals of the
supervisor on top of its own goals. We hypothesize that, when more effort is required
from the worker agent, there would be significantly more disagreements between the
worker and supervisor plans. Hence, the supervisor must impose more modifications on
the worker’s cost function, resulting in higher costs for the supervisor.

For example, in the grid domains, the cells that the supervisor requires the worker to
visit may be far from the goal cells of the worker, requiring larger detours by the worker.
Analogously, in education, when the teacher needs the student to master multiplication
of large numbers, and the student has already mastered multiplication of small numbers,
then we can argue that the required effort from the student is relatively small. On the other
hand, if the student has only mastered addition, then a higher degree of effort is needed by
the student before accomplishing the goals of the teacher.

7.2. Baseline Algorithm

We compare ICFM to a baseline algorithm, which increases the costs of all currently
available worker actions by a sufficiently high amount, so that they will not be selected by
the worker’s plan. The algorithm begins with computing πs, and then starts simulating the
execution of πs. Following the execution of each action πs(t), for every action a′ 6= πs(t)
whose preconditions are met, we increase the cost of a′ by C(πs(t + 1, . . . , |πs|) + ε so that
it will not be selected by the worker. Similar to ICFM, this algorithm causes the worker
to eventually choose the optimal plan with respect to C0. This baseline algorithm is very
fast compared to ICFM because it avoids the multiple calls to the optimal planner, but it
increases the cost of many actions that would not be chosen by the worker. Thus, we expect
it to incur a much higher cost for the supervisor.

7.3. Results

Table 1 shows the results of running CFM and ICFM on the Grid, Blocks, and Logistics
domains described above. The results focus on the time required to produce a solution, as
well as the resulting supervisor cost, which corresponds to the efficiency of the solution.

In the table, T denotes the additional effort required to achieve the supervisor goals
(L = low, H = high). Cost and length denote the original cost and plan length for the
optimal plan achieving only the worker’s goals (πw), and the optimal plan achieving the
joint goals (πs). For the three algorithms that we compare, the baseline algorithm, CFM
and ICFM, Time denotes elapsed wall clock time. Lower time to termination is preferable.
C+s denotes the cost to supervisor, which is the sum of cost increases to C0. We prefer a
lower increase to C0; hence, a lower C+s is better.

|Πs| and |Πw| denote the amount of possible supervisor and worker plans smaller or
equal to C∗, respectively. As CFM must iterate through all Πw before finding the optimal
plan, this number correlates with the difficulty of the particular problem instance. πi
denotes number of plans that were computed in ICFM before πs. ICFM is an iterative
algorithm, requiring a new plan to be computed at each iteration. Hence, πi is the number
of iterations that ICFM required before identifying a good plan. πi is also the number of
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plans in Πw that ICFM considered. Recalling that CFM must check all plans in Πw, πi is an
indication of the efficiency of ICFM.

Table 1. Baseline and Incremental Cost Function Modification (ICFM) performance for different domain difficulty (H,L),
and costs and plan lengths for πw and πs.

Cost Length Baseline CFM ICFM
Size (T) πw πs πw πs Time C+

s |Πs| |Πw| Time C+
s Time C+

s πi

Grid

3 × 4 (L) 1 14 1 3 0.84 52 1 6 1.96 24 4.31 30 5

3 × 4 (H) 1 25 1 9 0.45 215 8 253 7.44 91 13.87 91 19

3 × 4 (L) 13 16 5 5 0.37 79 2 5 4.3 6 2.67 12 3

3 × 4 (H) 13 18 5 7 0.43 124 2 18 1.57 16 4.83 22 6

3 × 6 (L) 11 20 7 9 1.03 212 2 505 36.76 31 24.51 46 24

3 × 6 (H) 11 22 7 11 1.1 255 2 1454 64.07 42 54.15 62 49

3 × 8 (L) 17 29 9 17 1.4 517 BFS timeout 86.34 79 51

3 × 8 (H) 17 38 9 15 1.21 642 BFS timeout 184.41 253 110

Blocks

2,5 (L) 9 12 7 9 1.07 132 10 2 4.6 4 7.36 6 4

2,5 (H) 9 18 7 13 2.25 272 14 143 82.67 27 141.02 39 39

4,7 (L) 13 16 11 13 6.59 227 3 5 56.99 6 41.8 6 3

4,7 (H) 13 19 11 15 9.23 305 BFS timeout 184.35 19 17

Logistics

2,2,6 (L) 4 6 3 5 0.96 59 5 4 3.24 6 7.08 6 4

2,2,6 (H) 4 15 6 10 1.23 322 5 51 26.71 16 16.62 16 9

3,3,9 (L) 15 19 4 8 2.42 430 BFS timeout 462.04 39 67

3,3,9 (H) 15 21 4 14 9.54 756 BFS timeout 591.31 63 86

During the experiment, ε was set to 1, i.e., modifications to the cost function are in
units of 1. The BFS component of CFM was terminated if it did not enumerate all needed
plans within 10 min.

As shown in the table, for all domains, the cost to the supervisor C+s is significantly
lower for CFM and ICFM than the baseline but requires much more computation time. For
many domains, such as logistics-2,2,6 (H), CFM and ICFM produce an order of magnitude
improvement of supervisor’s cost over the baseline. For small instances, CFM returns
an equal or better supervisor cost C+s than ICFM, requiring less computation time. This
is because ICFM must solve multiple LPs, and compute multiple plans. However, the
computational time of CFM is growing with |Πs| and |Πw|, making CFM infeasible for
bigger instances, such as grid-3 × 8(L). When the additional effort for achieving the
supervisor goals is high (T = H), ICFM requires more replanning and constraints than
when additional effort is low (T = L).

8. Applying SWOPP in the Classroom

We now describe a user study applying SWOPP to an e-learning application in which
students solve math problems. The setting includes a teacher, a student, a set of math skills,
a set of questions such that each question is associated with a skill, and a partial ordering
over the skills representing the set of prerequisite skills that are necessary for acquiring a
new skill. A student acquires a skill after successfully solving a set of problems associated
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with the skill. Our goal is to show that, although students can choose which math questions
to solve, SWOPP directs students to solve math skills that their teacher assigns them. Thus,
student practice math skills that they need to improve, even though they can choose to
practice other skills.

The user study was run in collaboration with the teachers and school management
towards the end of the academic year. We received access to the students’ grades in the
various math topics. The study was conducted in the school’s computer lab during regular
school hours, under the teacher’s supervision.

8.1. E-Learning Game

We created an e-learning game framed as an amusement park in which the goal is to
reach a castle by traversing paths that include carnival rides and gates (Figure 2) (A demo
of this game can be seen at https://www.youtube.com/watch?v=GbaotmVRsOA.). Each
carnival ride represents a skill. To acquire the skill, the student needs to open the gates
leading to the ride. There is a repository of questions from a specific skill for each gate.
When failing to answer a question correctly, the student can skip to an alternative question
from the same skill. A gate is opened only after correctly solving a predetermined number
of questions associated with the skill. A gate can be accessed by the student only if the
student has the relevant prerequisite skills.

Figure 2. SWOPP (Supervisor-Worker Problem with Partially Overlapping goals)-induced map for carnival game for a
given student in the study. The intended goal of the teacher for the student to practice the properties of quadrilaterals
(leftmost path). The cost of the first skill in all other paths was increased by the algorithm.

Each student receives a personally tailored map, consisting of 8 possible paths leading
from the entrance of the park to the castle. The gates along each of the paths in the map
contain questions belonging to 3–5 skills. Paths differ in the skills that they practice for
the student, and the number of questions to solve (gates to open). Students can reach the
castle by traversing any path and opening all of the gates in the path. An example map
from the study is shown in Figure 2. The student avatar (a bull) is at the starting point. The
leftmost path includes 4 skills in the core topic of geometry, such as computing areas of
various shapes, and properties of quadrilaterals.

We created an SWOPP formalization for this e-learning game, providing a personal-
ized map for each student. The map included multiple paths for core topics that students
cam practice. For example, when a student practices geometry, there are two possible

https://www.youtube.com/watch?v=GbaotmVRsOA
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paths: one path practicing quadrilateral properties, and another path practicing areas and
perimeters of polygons. In each path, different rides represent the skills the student need
to practice in that topic. Skills must be practiced in the correct order, such students first
practice perquisites to later skills. For each skill, there is at least one gate that the student
must open to progress in the path. To open the gate, the student needs to practice the skill
and solve a predetermined number of questions on that skill. When the gate is open, the
student can continue to the next gate in the path. When practicing the last skill in the path,
the student reaches the castle and the game is over. Figure 3 shows this game flow.

Figure 3. Schematic representation on the game flow.

8.2. Mapping the e-Learning Game to SWOPP

Mapping this game to SWOPP, each skill is represented as a node. We set the edges
between the nodes (skills) to represent perquisites, as in the map. We define an action
solve(s) for each skill s in the map. The cost of solve(s) is personalized given the student’s
preferences over which math skills she prefers to practice.

The SWOPP worker is the student, and the SWOPP supervisor is the teacher. The
goal of the student (worker) is to reach the castle node. The teacher’s (supervisor) goal is
for the student to acquire a specific needed skill, i.e., to reach a specific node. The worker
cost function represents the personalized effort required for that particular student for
solving the questions associated with the gate leading to that skill. We set the supervisor
cost function to be proportional to the increase in the student cost function, representing
the decrease in perceived student freedom to choose as more questions are added. We
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decided not to use a time-based cost function because we suspected that students would
find it confusing that gates appear and disappear while playing.

8.3. Construction of the Personalized Cost Function

Eliciting an appropriate cost function for humans is a difficult task [29]. In this study,
as a first step, we create the cost function based on the student’s stated pairwise preferences,
e.g., Reference [30]. In many cases, the student’s preferences is in correlation with the
student’s performance (grades). However, as we have seen in our data, this is not always
the case. Hence, we choose to use a subjective self-reporting method instead of using the
students grades. Of course, in some cases, the student’s perception of their preferences is
inaccurate. More complex elicitation methods may produce more accurate cost functions.
For example, if we were running a game over a longer period of time, including multiple
sessions, we could perhaps use the earlier choices that student make within the game to
elicit their preferences, and use this information to shape their personalized experience
later on. We leave such more complex elicitation methods to future research.

The cost function for each student is based on a pairwise preference questionnaire,
conducted a week before the study. In the questionnaire, we presented 3 different choices
between 2 questions to solve, each question from a different skill. We emphasized to the
students not to solve the questions, only to tell us which question they preferred to solve.
Table 2 shows an example of a student response.

Table 2. An example student’s preferences over skills.

Skill Preference Skill

1 2 3 4 5

Fractions Natural numbers

Geometry Natural numbers

Geometry Fractions

Using the stated pairwise preferences, we create a personalized cost function for
each student, that assigns higher costs for questions in skills that are less preferred by the
student. Specifically, the student’s cost function set a cost for solving 5 questions from
a given skill (opening a gate in the game). As shown in Table 2, each student had to
specify preferences over 3 pairwise questions, for the following pairs f-nn, g-nn, g-f, where
f denotes fractions, g denotes geometry, and nn denotes natural numbers. Let ps1,s2 be the
preference on a scaled of 1 to 5 for the pairwise preference between skills s1 and s2. We
compute the following personalized cost for each skill:

c f = p f ,nn + (6− pg, f ),

cg = pg,nn + pg, f ,

cnn = (6− p f ,nn) + (6− pg,nn).

For example, in Table 2, we have that p f ,nn = 1, pg,nn = 5, pg, f = 4. Hence:
c f = 3, cg = 9, cnn = 6.

We set the teacher’s goal to be the skill where the student received the lowest grade
during the academic year. We increase the cost of the skill that was chosen to be the
teacher’s goal by 2. This is done to mitigate the subjectivness of the student’s cost function.
In particular, students often overestimate their ability to handle certain skills, compared to
the teacher’s grades [31].

Once we set the student personalized cost function, we solve SWOPP using the ICFM
algorithm. The solution to the SWOPP problem is a personalized cost function for the
student that considers the goals of the student, to reach the castle, as well as the teacher’s
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goal, for the student to acquire a specific skill. The resulting cost function induces a
personalized map for the student by specifying the number of gates required for reaching
each skill. The added gates are deduced from the increase in the edge cost in the SWOPP
solution. That is, the higher SWOPP increased the original cost of traversing an edge, the
more gates where added on the path corresponding to that edge.

8.4. Elements of Gamification

Our e-learning application above is a type of serious game, where the goal is to
improve the learning experience [32]. Many other serious games were suggested in educa-
tion [33]. The main difference between previous e-learning games and ours is in focusing
on guiding students towards skills they need to practice, while maintaining the the freedom
to choose their activities. We also allow for personalization, providing a particular game
map based on the specific student’s preferences and difficulties.

To maintain interest in the game, we use several well known elements of gamifications [34]:

• Levels/Milestones: Each gate on the map represents a milestone. When the student
answers correctly the related questions to the gate, the gate is opened and the milestone
was achieved. In addition, each carnival ride is also a milestone that can be achieved
after opening all the gates in the path. The gates and rides are originally grayed out
and become colored only after the milestone was achieved.

• Points: When enabling a carnival ride, the student receives a point. Points are shown
on the top left corner of the map.

• Avatar: In the beginning of the game, each student can choose an avatar from 6
different choices: a human student, and 5 animals—a giraffe, an elephant, a tiger, a
bull, or a deer.

• Visual elements: We use many visual elements to represent concepts in the e-learning
domain. Carnival rides represent skills, and each ride is accompanied by a flag
providing a visual cue for the skill. Gates represent questions. Colored rides or gates
represent already achieved skills, and so forth.

8.5. User Study

The study included 75 K5 students from three heterogeneous classes in a public
elementary school. The study was conducted during regular school hours with the teachers
support. IRB approval was obtained to run the study. When asked to rank their familiarity
with math e-learning software (Figure 4), 35% of the students said that they were not
familiar at all with e-learning software (score 1). Only 16% of the students reported they
were familiar e-learning (score 4–5). When asked what is preferable, traditional learning
from a book or using an e-learning software (Figure 5), only 13% reported that a book
was preferable (a score of 1–3), while 87% reported that e-learning was more preferable
(score 4–5).

Figure 4. Previous familiarity with math e-learning software. Ranking from 1 (none) to 5 (experienced).
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Figure 5. Student preferences over traditional learning using a book (1) or using an e-learning
software (5).

The study included questions from 20 different skills, spanning three core topics from
the K5 curriculum: fractions, geometry, and natural numbers. We obtained prior grades
(for each skill) for the students from the school, independent of the experiment. For each
student, we set the teacher goal to practice the skill associated with the lowest grade for
the student.

We designed a between-subject study by randomly assigning students to one of three
conditions: First, students who receive a default map with no supervisor intervention
(D), which included a single gate for each of the skills. Second, students who receive a
personalized SWOPP map (SWOPP), that varies the number of gates to open for different
skills. Third, students who receive a no-choice map (NC) in which only the teacher’s goal
path is active. In contrast, for both D and SWOPP, students were able to freely choose any
path in the game.

For SWOPP, the student goal was to reach the castle; the supervisor goal was for
the student to acquire skills in the weakest skill for the student, as determined by the
teacher’s grades. A personal map for each student was generated, following our approach,
by increasing the cost (adding gates to paths) to some of the skills. All students received a
brief explanation about the e-learning software and were told to reach the castle. The study
was limited to 45 min. A post-study user experience survey was conducted.

8.6. Experiment Protocol

We obtained from the teachers all students’ grades for the various geometry skills in
the study. A week before the study, all students filled the pairwise preference elicitation
questionnaire, and were given a consent form to be filled and signed by their parents.

Given the pairwise preferences and the teacher’s grades, we construct for each student
a personalized cost function. We define an SWOPP problem and solve it for each student,
as explained above. We construct a personalized map for each student using the solution
of the SWOPP problem. We also split the students randomly to the three conditions (D,
NC, SWOPP).

The students played the e-learning game in the school’s computer lab. As the lab did
not have enough computers for all students, when a student finished the study, another
student took her place. Students entered at an arbitrary order, defined by the teachers.

Each student received a personal code and logged into the system to receive their
personalized map. The student entered the game and chose an avatar.The student then
began the game, receiving the game map matching to the specific condition and personal
goal and cost function.

The students played the game without any time limitation until they reached the
castle. Nine students decided in the middle of the game that they do not wish to continue.
After finishing the game (whether successfully or not), the students were asked to fill a
post-study questionnaire. After filling the questionnaire, the students were rewarded with
an ice cream.
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8.7. Study Results

Table 3 lists the number of students in each condition, and the number of times
students in each group reached the teacher’s goal (GS, practicing their weakest skill) and
the student’s goal (GW , getting to the castle). As shown in the table, 65% of students using
the SWOPP map achieved the teacher’s goal, while only 17% of the students using the
D map achieved the teacher’s goal (χ2(1, N = 45) = 13.612, p < 0.0005). Unsurprisingly,
all of the students who finished the game in the NC (no choice) condition achieved the
teacher’s goal. The number of students who chose to quit and did not reach their goal (3)
was the same in all conditions.

Table 3. Goal performance (achieved GS, not achieved GS, and number of users in each condition).

Map GS ¬GS ¬GW Participants

SWOPP 15 5 3 23

NC 21 0 3 24

D 5 20 3 28

In the post-study survey, we asked students to self report on how much choice they
felt they had in the game (Likert scale from 1 to 5). The average perceived level of choice
in the SWOPP condition, 4.08, was significantly higher than that in the NC condition,
1.62. (χ2(1, N = 41) = 20.2567, p < 0.0005). The average reported perceived level of
choice in the D condition, 3.66, was also significantly higher than that in the NC condition
(χ2(1, N = 44) = 15.4795, p < 0.0005). There was no statistical significant difference
between the reported choice level in the SWOPP and D conditions (χ2(1, N = 41) =
0.7738, p < 0.1). We can conclude that students in SWOPP and D reported that their
choice of questions was unconstrained, while users in the NC did not. Participants in all
conditions reported that they enjoyed playing the game.

Table 4 analyzes task performance in the three different conditions. As shown in
the table, the number of total questions solved in average in the SWOPP (50.09) and D
conditions (60.25) was higher than that of the NC condition (40.9). That is, students with a
higher level of choice solved more questions. The average portion of correct answers in
the SWOPP condition (40%) was higher than that of the NC condition (35%), and students
solved more questions in SWOPP than in NC (50.09 vs. 40.9). This demonstrates that using
SWOPP allowed students to practice their necessary skill set, as determined by the teacher,
without deterring their perceived level of choice or their motivation.

Table 4. Question level performance.

Map # Solved % Correct # Skipped
Questions Answers Questions

SWOPP 50.09 40% 15.22

NC 40.9 35% 18.53

D 60.25 38% 15.23

To summarize, our user study shows that SWOPP can be used in real world problems.
We were able to formalize the e-learning task as an SWOPP instance and use our algorithms
to rapidly produce cost functions and, hence, personalized maps, in a real scenario. Most
students who used received the SWOPP map, although they could choose which path to
follow, completed the teacher’s goals. This shows that SWOPP indeed guides students to
practice their assigned skills, even though they could have chosen to practice other skills.

These results clearly indicate the validity of the SWOPP model, and the usability of
the ICFM algorithm, for tackling real world problems.
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8.8. Case Study

Finally, we review a specific case study of a fifth grade student, who was assigned
randomly to the SWOPP condition. The grades (strengths) of the student obtained from
the teacher were 100 in fractions, 81 in geometry, and 100 in natural numbers. According
to the student’s grades, the student masters fractions and natural numbers computations
but needs to practice geometry skills and, more specifically, to practice the properties of
squares (leftmost path in Figure 2).

The student ranked the skills by preference (Table 2). The supervisor goal is set to
practice the least preferred skill, that of quadrilateral properties in geometry. We compiled
the student’s preferences into a cost function, assuming that questions associated with
preferred skills require less effort. The cost to open a gate with a question practicing the
natural number skill was set to 6, the cost to open a gate practicing the fraction skill was
set to 3, and the cost of opening a gate practicing the geometry skill was set to 11.

Figure 2 shows the SWOPP tailored map for this student. For example, the algorithm
increased the cost of the rightmost path by adding two additional gates to this path. The
algorithm did not add any gates to the intended path (leftmost path). The student chose the
intended path (leftmost path) and practiced the quadrilateral properties skill as required
by the teacher. In the post-study survey, this student reported a high perceived level of
choice (4 out of 5). When asked about playing the game, this student reported counting the
number of gates in each path and following the path with the minimal amount of gates.

9. Conclusions and Future Work

We present the supervisor-worker problem where a supervisor must guide a worker
towards achieving the supervisor’s goals, while allowing the worker to choose between
several possible actions. We suggest that this approach is appropriate for the educational
domain, where it is preferable for a teacher to allow a student to choose, while ensuring that
the student will learn the necessary skills. We provide a formal definition for this setting,
and then suggest an algorithm, ICFM, which is sound and complete, and optimal from
the worker’s perspective. We apply our approach to a real world problem of generating
math questions to students, showing we can guides students to practice skills that are
challenging for them, while maintaining the perception of choice and motivation. The
user study demonstrates the ability of SWOPP to personalize learning paths for students
in a way that allows them to learn necessary skills without deterring their motivation. For
teachers, this is a way to easily define gaming environments for their students to allow
them to learn necessary skills, all that is needed is to provide their preferences over skills,
which can be inferred from their performance in class.

Hence, the contributions of this work are:

• We define the supervisor-worker setting and show its applicability interesting real
world problems. The e-learning game that we developed attends to the usefulness of
SWOPP in real world applications.

• We suggest an optimal algorithm for solving SWOPP problems (CFM), and an ap-
proximate efficient algorithm (ICFM), that is able to solve real world problems. The
empirical results over artificial problems show the power of ICFM to scale up, while
maintaining a reasonable cost for the supervisor. The formalization of the e-learning
problem as SWOPP shows that ICFM can solve real world problems.

• We demonstrate the usefulness of SWOPP in an e-learning game. Conducting a user
study, we evaluated the game with K5 children in a public elementary school. This
shows that SWOPP can be used in a real world application, providing value to people.

A limitation of our user study is that we had limited ability to conduct thorough
surveys with the K5 students, uncovering, e.g, deeper insights about their view of the
choices given to them. Conducting such surveys is left for future work. One limitation
of the SWOPP model requires a worker cost function which may be hard to obtain. Our
method for obtaining the student cost function using preferences reported by students is,
at best, crude. An obvious extension of this work is to start without knowing the student
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cost function, learn from the student choices their true cost function, and replan to revise
costs accordingly.

There are many possible extensions to SWOPP: First, an interesting extension is to
adapt the system behavior online by, e.g., analyzing the time spent on earlier questions,
as in some advanced intelligent tutoring systems [35]. Second, we choose a fixed number
of questions to be a proof of knowledge of a skill. An interesting future direction can be
to use a better adaptive criterion. For example, we could have allowed students to solve
only a few difficult questions to open a gate, with a fall back to additional easier questions
should they fail. Third, it can be interesting to investigate different types of cost functions
for the supervisor. For example, in our education settings, we assume that the teacher
incurs a higher cost for larger modifications. Incurring a constant teacher cost for each
modification is an interesting alternative to our teacher cost function. Finally, it can be
interesting to study settings in which teams of workers work together; hence, a joint cost
function is needed.
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