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Abstract: Cocaine use increases the neurotoxic severity of human immunodeficiency virus-1 (HIV-1)
infection and the development of HIV-associated neurocognitive disorders (HAND). Among the
studied cellular mechanisms promoting neurotoxicity in HIV-1 and cocaine use, central nervous
system (CNS) immunity, such as neuroimmune signaling and reduced antiviral activity, are risk deter-
minants; however, concrete evidence remains elusive. In the present study, we tested the hypothesis
that cocaine self-administration by transgenic HIV-1 (HIV-1Tg) rats promotes CNS inflammation. To
test this hypothesis, we measured cytokine, chemokine, and growth factor protein levels in the frontal
cortex (fCTX) and caudal striatum (cSTR). Our results demonstrated that cocaine self-administration
significantly increased fCTX inflammation in HIV-1Tg rats, but not in the cSTR. Accordingly, we pos-
tulate that cocaine synergizes with HIV-1 proteins to increase neuroinflammation in a region-selective
manner, including the fCTX. Given the fCTX role in cognition, this interaction may contribute to
the hyperimmunity and reduced antiviral activity associated with cocaine-mediated enhancement
of HAND.
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1. Introduction

The development of human immunodeficiency virus (HIV)-associated neurocognitive
disorders (HAND) remains a clinical burden among HIV-1 infected individuals [1]. Com-
bined antiretroviral therapies (cART) do not completely mitigate the impact of HIV-1 on
the central nervous system (CNS) [2]. There is a high prevalence of HIV-1 comorbidities,
including drug addiction, that heighten the risk for HIV-1 infections and the acceleration of
HIV/AIDS [3–7]. For example, cocaine can target immune cells such as macrophages and
lymphocytes to impair the host immune response and enhance HIV viral replication [8–10].
Cocaine presumably enhances the development of HAND via increased neuroimmune
signaling and CNS inflammation [11]; however, the combined impact of cocaine and HIV-1
on heightened immune responses remains unclear.

Despite the control of HIV-1 replication during cART, chronic inflammation per-
sists [12] and is associated with disease progression and neurocognitive disorders in peo-
ple infected with HIV [13,14]. Levels of inflammatory cytokines including interleukin
(IL)-6, IL-1β, tumor necrosis factor (TNF)-α and interferon (IFN)-γ remain elevated in
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HIV-1-infected patients receiving cART compared to age-/sex-matched controls [12,15].
Postmortem findings in the brain of HIV+ patients show astrocyte and microglia activation
(hallmark characteristics of neuroinflammation) and elevated levels of IL-6, IL-1β, and
TNF-α [16–18]. In vitro studies demonstrate that neurotoxic HIV-1 proteins, including Tat
and gp120, can induce neuroinflammation to promote HAND-related neurotoxicity [19–21].
HIV-1 proteins enhance the activation of proinflammatory signal transduction pathways
and translocation of nuclear factor kappa B (NF-kB) and TNF-α signaling, thereby trigger-
ing inflammatory signal transduction pathways [22–24].

Post-mortem brains collected from cocaine users have evidence of microglia and astro-
cyte activation [25]. Cocaine users also have increased circulating levels of IL-6 [26]. Cocaine
activates NF-kB signaling and downstream increases of IL-1β, IL-6, IL-12, and TNF-α via
interactions with toll-like receptors [27,28]. Cocaine self-administering rats demonstrate
increased gene expression of inflammatory modulators in brain reward structures such as
the prefrontal cortex (pfCTX) and striatum (STR) [29–31].

Although HIV-1 and cocaine individually modulate host systemic and CNS immune
responses, the relationship between HIV-1 and cocaine in host CNS immunity remains
unclear. Cocaine increases HIV-1 replication through dysregulation of innate and adap-
tive immunity, including the decline of CD4+ T cell counts [32–35]. Systemically, cocaine
modulates levels of inflammatory cytokines and chemokines generated from peripheral
blood mononuclear cells (PBMC), including: regulated upon activation T expressed and
secreted (RANTES), macrophage inflammatory protein (MIP)-1α and MIP-1β [35] or via
involvement of transforming growth factor beta (TGF-β) [8]. Other groups show that co-
caine mitigates HIV-induced immunopathogenesis through downregulation of miRNA-155,
thereby reducing IFN-γ production [36]. Clinical and preclinical in vivo neuroinflamma-
tory studies are less widely available; however, in vitro studies demonstrate that cocaine
enhances HIV-1 replication in brain resident immune cells, including astrocytes and mi-
croglia [37–39]. Proposed mechanisms of cocaine-induced increases of neuroinflammation
include the generation of platelet monocyte complexes, cellular oxidative stress, excitotoxi-
city, and mitochondrial toxicity, which are all linked to activation of inflammatory signal
transduction pathways and increased production of cytokines and chemokines [40–43].
Therefore, cocaine may act synergistically with HIV-1 proteins to enhance neuroinflam-
mation. However, there remains ambiguity in the impact of cocaine on HIV-1 related
neuroinflammation.

It is critical to understand the neuroimmune comorbidity between HIV-1 and co-
caine to provide novel avenues for exploring therapeutics to combat the hyperactive
immune response. Therefore, we utilized a well-established rodent model of HIV-infected
humans, the HIV-1 transgenic (HIV-1Tg) rat. We tested the hypothesis that cocaine self-
administration exacerbates frontal cortex (fCTX)- and caudal striatum (cSTR)-related
inflammation in HIV-1Tg rats. The fCTX and cSTR were evaluated as HIV-1-induced
neuropathological features in these brain regions are related to neurological decline in
HIV-1 patients [44–48]. HIV-1Tg rats are well suited for this study in part because HIV-1
protein and mRNA (Tat, gp120, Nef and Vif) occur in the fCTX [49]. Self-administration
by rats models aspects of human drug-taking, including self-initiation and self-titration,
which demonstrate the desire and willingness to take drugs. The HIV-1Tg rats can be
trained to self-administer cocaine to model cocaine use in HIV-infected humans [50,51].
Here we used male HIV-1Tg or non-transgenic wild-type (WT) Fischer 344 rats (F344) that
self-administered cocaine or were saline-yoked. We measured cytokines levels, described
to be elevated during HIV-1 infection in humans [12,13], in the fCTX and cSTR. Results
from this study provide critical information on immunomodulatory effects of cocaine and
its impact on HIV-1-mediated neuropathogenesis.
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2. Materials and Methods
2.1. Self-Administration

Rat brain tissues, harvested from male HIV-1Tg (n = 15) and (WT) F344 (n = 12) rats,
were obtained from a specimen repository in the laboratory of Dr. T. Celeste Napier
(Rush University Medical Center, Chicago IL). Surgical and self-administration procedures
generally followed previously published protocols [51,52]. In brief, rats were purchased
from Envigo Laboratories (Indianapolis, IN, USA) and housed in genotype- and treatment-
similar pairs; food and water were provided ad libitum. Rats were implanted with custom-
made silastic catheters (0.3 mm ID × 0.64 mm OD; Dow Corning Co., Midland, MI, USA)
inserted into the right jugular vein. The distal end of the catheters extended subcutaneously
over the mid-scapular region and exited through a metal guide cannula (22 gauge; Plastics
One Inc., Roanoke, VA, USA) anchored to a subcutaneously implanted vinyl mesh. The
duration of post-surgery recovery lasted at least 7 days, during which catheters were
flushed daily with 0.1–0.2 mL sterile saline to maintain patency. Self-administration took
place in ventilated, sound-attenuating operant chambers equipped with two ‘nose-poke’
holes, a stimulus light above each hole, an audio tone generator, and a house light (Med-
Associates, St. Albans, VT, USA). Operant sessions were conducted 2 h/day for a total of
14 days on a fixed-ratio 1 (FR1) schedule of reinforcement. A nose-poke in the active hole
resulted in a 6 sec infusion of cocaine (1.0 mg/kg/0.1 mL), delivery of an audio tone, and
illumination of the stimulus light. Nose-pokes in the inactive hole had no programmed
consequence. Control rats were yoked to a cocaine counterpart of the same genotype,
receiving a non-contingent infusion of saline (1.0 mL) each time their counterpart self-
administered cocaine. For saline-yoked rats, nose-pokes in either hole were recorded but
had no programmed consequence. Brain tissues were harvested one day after concluding
the operant task, fast-frozen on dry ice, and stored at −80 ◦C. Rats were handled in
accordance with the procedures established in the Guide for the Care and Use of Laboratory
Animals (National Research Council, Washington DC, USA) as approved by the Rush
University Institutional Animal Care and Use Committee.

2.2. Dataset

A total of 27 rats were used for this study. From each rat, fCTX and caudal STR were
isolated. Cytokine expressions were measured from brain regions that included the fCTX
and cSTR of 15 HIV-1Tg rats and 12 or 9 WT rats, respectively. Multiplex immunoassay
results that were out of range (not within the linear range of the standard curve) were
removed from the dataset prior to analysis.

2.3. Protein Extraction

fCTX and cSTR brain tissues were homogenized and aliquoted for protein using
the Qiagen Tissuelyser for 30 s in 200–500 µL ice-cold homogenization/extraction buffer,
volume specific to brain region (20 mM HEPES, 200 mM NaCl, 1 mM EDTA, 1 mM DTT,
10 µL/mL phosphatase inhibitor cocktail 2 (Sigma, Cat #P5726, Burlington, MA, USA),
10 µL/mL phosphatase inhibitor cocktail 3 (Sigma, Cat #P0044), RNase inhibitor [53]).
Homogenized protein aliquots were centrifuged at >8000 rpm for 15 min. The pellet was
resuspended in mammalian protein extraction reagent (ThermoFisher Scientific, Waltham,
MA, USA), supplemented with protease inhibitor, 10 µL/mL phosphatase inhibitor cocktail
2 (Sigma, Cat #P5726), 10 µL/mL phosphatase inhibitor cocktail 3 (Sigma, Cat #P0044),
RNase inhibitor) and resuspended by manual pipetting. Protein concentrations were
quantified using Precision Red Advanced Protein Assay (Cytoskeleton, Inc. Denver, CO,
USA) per manufacturers’ instructions.

2.4. Quantification of Brain Innate Immune Proteins by BioPlex

Cytokine levels in rat brain protein lysate were measured using the Bio-Plex Pro
Rat Cytokine Group I Panel 23-plex assay (BioRad, Cat # 12005641, Philadelphia, PA,
USA) following the manufacturer’s instructions and as previously described [53]. Briefly,



Cells 2022, 11, 2405 4 of 12

rat brain lysates were diluted 1:4 in Bio-Plex sample diluent (containing BSA to a final
concentration of 0.5%). Standards were reconstituted and coupled beads were prepared
following manufacturer’s instructions. Approximately 50 µL of coupled beads was added
to each well in a 96-well plate, then washed prior to adding 50 µL of standard and samples
(both assayed in duplicate) to the appropriate well in a 96-well plate. The plate was
incubated and washed following manufacturers’ instructions, then read using a Bio-Plex
200 system. Innate immune protein concentrations were normalized to total protein as
measured by Precision Red Advanced Protein Assay (Cytoskeleton, Inc.). Assay sensitivity
and limit of detection (pg/mL) for each target: G-CSF (0.2), VEGF (0.3), IL-7/M-CSF
(0.4), GM-CSF/GRO-KC (0.6), MIP-1α (0.7), IL-13 (0.9), IFN-γ/IL-1α/IL-4/ (1.0), IL-1β
(2.0), IL-2/RANTES/TNF-α (3.0), IL-18/MCP-1 (4.0), IL-10 (5.0), IL-5 (6.0), IL-6 (10.0), and
MIP-1α (12.0).

2.5. Statistical Analyses

Cumulative cocaine intake was compared between groups using a two-sample t-test.
Protein expression levels measured in tissue lysates were not normally distributed; we
therefore performed a log2 transformation for all variables prior to performing t-tests and
linear regression analysis. In addition, prior to performing t-tests, the data were stratified by
rat model. Two-sample t-tests with unequal variance were used to compare the difference
in mean expression levels of each cytokine in HIV-1Tg rats that self-administered cocaine
versus saline-yoked rats or WT rats with cocaine self-administration versus saline-yoked
rats. Bonferroni correction was used for multiple testing correction of p-values obtained
from the t-tests. The expression levels of each cytokine/chemokine, stratified by rat model
(WT vs. HIV-1Tg), were described using mean and standard deviation. Additionally, we
performed linear regression analysis to evaluate main and interaction effects of treatment–
cocaine versus saline (reference) and genotype, HIV-1Tg versus WT (reference), on cytokine
and chemokine expression levels. All tests were conducted in R (version 3.6.1) and an alpha
level of <0.05 defined statistical significance and were two-tailed.

3. Results
3.1. Cocaine Self-Administration in WT and HIV-1Tg Rats

The average cumulative cocaine intake in the WT rats and HIV-1Tg rats was
112.2 ± 13.6 mg/kg and 121.3 ± 13.6 mg/kg, respectively. There was no difference be-
tween genotypes with respect to cocaine intake (p = 0.65), which is consistent with our prior
reports on cocaine [51] and methamphetamine [54] self-administration in these rats.

3.2. Cocaine Self-Administration Increases Pro- and Anti-Inflammatory Cytokine Generation in the
fCTX of HIV-1Tg Rats

Multiplex data demonstrated that total protein assayed from fCTX showed expression
of several cytokines (pro- and anti-inflammatory interleukins, chemokines, and growth
factors). Comparisons between HIV-1Tg rats that self-administered cocaine to saline-
yoked HIV-1Tg rats demonstrated significantly higher protein levels of IL-1β (Figure 1A,
** p < 0.01), IL-1α (Figure 1B, ** p < 0.01), IL-2 (Figure 1C, ** p < 0.01), IL-4 (Figure 1D,
** p < 0.01), IL-5 (Figure 1E, ** p < 0.01), IL-10 (Figure 1F, * p < 0.05), IL-7 (Figure 2A,
* p < 0.05), MCP-1 (Figure 2B, * p < 0.05), IFN-γ (Figure 2C, ** p < 0.01), GRO/KC
(Figure 2D, *** p < 0.001), GM-CSF (Figure 2E, ** p < 0.01), G-CSF (Figure 2F, * p < 0.05),
and VEGF (Figure 2G, * p < 0.05). No significant changes were obtained for IL-6
(Supplementary Figure S1A), IL-12 (Supplementary Figure S1B), IL-18 (Supplementary
Figure S1C), TNF-α (Supplementary Figure S1D), M-CSF (Supplementary Figure S1E), or
MIP-3α (Supplementary Figure S1F).
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0.010); GRO/KC (p = 0.001); IFN-γ (p = 0.004); IL-1 (p = 0.004); IL-1α (p = 0.003); IL-2 (p = 
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0.043); and VEGF (p = 0.038) (Table 1). By contrast, no statistically significant differences 
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tion compared with saline-yoked controls in HIV-1Tg rats. Among WT rats, no statistically 
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Figure 1. Cocaine self-administration regulates cortical interleukin levels in HIV-1Tg rats. Equivalent
total protein lysates from the frontal cortex (fCTX) were assayed for interleukin levels from WT
saline-yoked (n = 7), WT cocaine SA (n = 8), HIV-1Tg saline-yoked (n = 6), and HIV-1Tg cocaine SA
(n = 6) male rats. Protein levels for IL-1β (A), IL-1α (B), IL-2 (C), IL-4 (D), IL-5 (E), and IL-10 (F) are
shown. Log2 transformation was performed prior to statistical analyses since some expression levels
were not normally distributed. * p < 0.05, ** p < 0.01.
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IFN−g 2.15 (0.56) 2.08 (0.51) [0.266, 1.15] 0.828 0.830 1.85 (0.33) 2.55 (0.46) [−0.758, 0.620] 0.004 0.040 
IL−1a −1.12 (0.91) −1.39 (0.47) [0.386, 1.53] 0.537 0.540 −1.43 (0.29) −0.47 (0.66) [−1.23, 0.707] 0.004 0.004 
IL−1b −1.04 (0.70) −1.62 (0.25) [0.421, 1.65] 0.102 0.100 −1.62 (0.50) −0.59 (0.60) [−1.31, 0.155] 0.003 0.003 
IL−2 7.19 (0.42) 6.78 (0.41) [0.194, 1.10] 0.123 0.120 6.83 (0.22) 7.48 (0.52) [−0.933, 0.130] 0.01 0.010 

Figure 2. Cocaine self-administration regulates cortical interleukin and growth factor levels in HIV-
1Tg rats. Frontal cortex (fCTX) brain tissue was collected, and equivalent total protein lysates were
assayed for innate immune markers from WT saline-yoked (n = 7), WT cocaine SA (n = 8), HIV-1Tg

saline-yoked (n = 6), and HIV-1Tg cocaine SA (n = 6) male rats. Protein levels for IL-7 (A), MCP-1 (B),
IFN-γ (C), GRO-KC (D), GM-CSF (E), G-CSF (F), and VEGF (G) are shown. Log2 transformation was
performed prior to statistical analyses since some expression levels were not normally distributed.
* p < 0.05, ** p < 0.01, *** p < 0.001.
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Among the 23 cytokines assayed, IFN-γ, IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7,
IL-10, IL-12, G-CSF, GM-CSF, GRO/KC, M-CSF, MCP-1, MIP3α, RANTES, TNFα, VEGF
and IL-18 were expressed in the STR of WT male rats that were saline-yoked or that self-
administered cocaine, but no differences were obtained between genotype or treatment
groups (Supplementary Table S1).

In HIV-1Tg rats, cocaine elevated expression levels of G-CSF (p = 0.011); GM-CSF
(p = 0.010); GRO/KC (p = 0.001); IFN-γ (p = 0.004); IL-1β (p = 0.004); IL-1α (p = 0.003); IL-2
(p = 0.010); IL-4 (p = 0.005); IL-5 (p = 0.008); IL-7 (p = 0.023); and IL-10 (p = 0.044); MCP-1
(p = 0.043); and VEGF (p = 0.038) (Table 1). By contrast, no statistically significant differences
were detected in the expression of IL-6, IL-12 or IL-18 following cocaine self-administration
compared with saline-yoked controls in HIV-1Tg rats. Among WT rats, no statistically
significant difference in mean expression levels of any cytokine/chemokine was observed
between saline-yoked and cocaine self-administration.

Table 1. Frontal cortex (fCTX) cytokine level summary statistics stratified by rat model WT vs.
HIV-1Tg. Student’s t-tests with unequal variance were used to compare the difference in mean
expression levels (and SD) of each cytokine, chemokine, or growth factor in WT (saline-yoked (n = 7)
and cocaine SA (n = 8)) and HIV-1Tg (saline-yoked (n = 6) and cocaine SA (n = 6)) in the fCTX. The
95% CI, overall p value and cumulative replicates are given in the table. Bold cytokines, chemokines,
or growth factors indicate targets that were significantly increased in HIV-1Tg rats compared to WT.

WT HIV-1Tg

Cytokine
(log2 Trans-

formed)

Saline Cocaine
95% CI

p-
Value

Adjusted
p-Value Saline Cocaine

95% CI
p-

Value

Adjusted
p-Value

Mean (SD) Mean (SD) (Bonferroni) Mean (SD) Mean (SD) (Bonferroni)

G−CSF −1.33 (0.45) −1.79 (0.47) [0.218, 1.23] 0.114 0.110 −1.71 (0.16) −0.99 (0.60) [−1.04, 0.131] 0.011 0.011

GM−CSF 1.32 (0.40) 0.88 (0.44) [0.216, 1.55] 0.097 0.097 0.93 (0.14) 1.62 (0.56) [−1.80, 0.097] 0.01 0.010

GRO/KC −2.14 (1.06) −2.24 (0.86) [0.505, 1.48] 0.852 0.850 −2.46 (0.29) −1.46 (0.55) [−1.35, 1.14] 0.001 0.001

IFN−γ 2.15 (0.56) 2.08 (0.51) [0.266, 1.15] 0.828 0.830 1.85 (0.33) 2.55 (0.46) [−0.758, 0.620] 0.004 0.040

IL−1α −1.12 (0.91) −1.39 (0.47) [0.386, 1.53] 0.537 0.540 −1.43 (0.29) −0.47 (0.66) [−1.23, 0.707] 0.004 0.004

IL−1β −1.04 (0.70) −1.62 (0.25) [0.421, 1.65] 0.102 0.100 −1.62 (0.50) −0.59 (0.60) [−1.31, 0.155] 0.003 0.003

IL−2 7.19 (0.42) 6.78 (0.41) [0.194, 1.10] 0.123 0.120 6.83 (0.22) 7.48 (0.52) [−0.933, 0.130] 0.01 0.010

IL−4 −1.21 (0.49) −1.63 (0.48) [0.327, 1.42] 0.169 0.170 −1.59 (0.32) −0.72 (0.61) [−1.04, 0.209] 0.005 0.005

IL−5 1.19 (0.98) 1.31 (0.39) [0.259, 1.42] 0.784 0.780 0.92 (0.46) 1.76 (0.58) [−0.906, 1.15] 0.008 0.008

IL−6 0.84 (0.88) 0.87 (0.65) [−0.275, 1.30] 0.95 0.950 0.71 (0.77) 1.22 (0.59) [−0.978, 1.04] 0.18 0.180

IL−7 1.90 (0.26) 1.55 (0.49) [0.058, 0.673] 0.155 0.150 1.83 (0.23) 2.20 (0.31) [−0.879, 0.168] 0.023 0.023

IL−10 1.99 (0.43) 1.82 (0.53) [0.024, 1.30] 0.565 0.560 1.77 (0.66) 2.43 (0.37) [−0.790, 0.458] 0.044 0.044

IL−12 0.14 (0.77) 0.05 (0.88) [−0.117, 1.40] 0.857 0.860 0.16 (0.80) 0.81 (0.40) [−1.16, 0.978] 0.088 0.088

IL−18 2.57 (0.08) 2.65 (0.38) [−0.671, 1.31] 0.711 0.710 2.44 (0.81) 2.76 (0.40) [−0.510, 0.667] 0.449 0.450

M−CSF −2.97 (0.35) −3.15 (0.39) [−0.261, 0.418] 0.425 0.430 −2.98 (0.34) −2.90 (0.24) [−0.656, 0.300] 0.618 0.620

MCP−1 2.70 (0.39) 2.56 (0.56) [0.018, 0.927] 0.608 0.610 2.64 (0.46) 3.11 (0.31) [−0.781, 0.484] 0.043 0.043

MIP−3α −1.28 (0.27) −1.81 (0.52) [−0.188, 0.614] 0.059 0.059 −1.24 (0.34) −1.02 (0.37) [−1.08, 0.026] 0.272 0.270

TNF−α 5.23 (0.16) 4.95 (0.39) [−0.032, 0.477] 0.137 0.140 5.19 (0.18) 5.41 (0.27) [−0.697, 0.120] 0.081 0.081

VEGF −0.46 (1.17) 0.41 (1.08) [0.144, 3.24] 0.366 0.370 −1.45 (1.04) 0.24 (0.56) [−1.48, 3.24] 0.038 0.038

Footnote: For WT rats, each variable had 12 observations except IL−18 (8 observations) and VEGF (7 observations).
For HIV−1Tg, each variable had 15 observations except IL−18 (13 observations) and VEGF (10 observations).

Interaction effects were observed. Specifically, we adjusted for HIV-1 protein, and
compared HIV-1Tg saline with HIV-1Tg cocaine, given that we found neither WT cocaine
nor HIV-1Tg saline (after adjustment) to independently result in statistically significant
differences in cytokine expression when compared to WT saline. We observed that co-
caine synergized with HIV-1 to increase expression (Table 2) of G-CSF (interaction effect:
p = 0.003), GM-CSF (interaction effect: p = 0.002), IFN-γ (interaction effect: p = 0.042),
IL-1α (interaction effect: p = 0.017), IL-1β (interaction effect: p = 0.001), IL-2 (interaction
effect: p = 0.003), IL-4 (interaction effect: p = 0.003), IL-7 (interaction effect: p = 0.010), IL-10
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(interaction effect: p = 0.046), MIP-3α (interaction effect: p = 0.021), and TNF-α (interaction
effect: p = 0.019). Neither WT cocaine nor HIV-1Tg saline (after adjustment) independently
resulted in statistically significant differences in expression of each of these cytokines when
compared to WT saline.

Table 2. Linear regression results for frontal cortex (fCTX) cytokine, chemokine, or growth factor
levels with interaction effect. Linear regression analysis was performed to evaluate main and
interaction effects of treatment–cocaine versus saline (reference) and genotype, HIV−1Tg versus WT
(referent) on cytokine, chemokine, or growth factor levels in the fCTX. Bold type indicates targets
with significant interactions.

Variable (log2
Transformed)

HIV-1Tg Cocaine Interaction (WT:
Saline Referent) Estimate p-Value 95% CI

G−CSF 1.18 0.003 [0.45, 1.91]

GM−CSF 1.14 0.002 [0.46, 1.81]

GRO/KC 1.1 0.06 [−0.05, 2.25]

IFN−γ 0.78 0.042 [0.03, 1.52]

IL−1α 1.23 0.017 [0.24, 2.22]

IL−1β 1.62 0.001 [0.74, 2.49]

IL−2 1.05 0.003 [0.39, 1.71]

IL−4 1.29 0.003 [0.50, 2.08]

IL−5 0.72 0.155 [−0.29, 1.78]

IL−6 0.48 0.397 [−0.67, 1.64]

IL−7 0.72 0.01 [0.19, 1.25]

IL−10 0.83 0.046 [0.01, 1.64]

IL−12 0.73 0.201 [−0.42, 1.88]

IL−18 0.24 0.6 [−0.71, 1.19]

M−CSF 0.26 0.322 [−0.27, 0.78]

MCP−1 0.62 0.076 [−0.07, 1.31]

MIP−3α 0.74 0.021 [0.12, 1.36]

TNF−α 0.51 0.019 [0.09, 0.93]

VEGF 0.81 0.393 [−1.17, 2.80]
Footnote: Each variable had 27 observations except IL−18 (21 observations) and VEGF (17 observations).

4. Discussion

The contribution of inflammation in the CNS likely plays a significant role in the
development of HAND, which is exacerbated during drug addiction [3,4]. Findings from
clinical studies are not always consistent likely reflecting the heterogeneity of patient pop-
ulations and differences in use history. To help control these factors, we used an HIV−1
rodent model and implemented operant self−administration protocols to elucidate the im-
pact of cocaine self−administration on HIV−1 related neuroinflammation. The HIV−1Tg
rat is a noninfectious rodent model of HIV infection that allows for chronic lifelong ex-
posure to viral proteins including Tat and gp120 and develops characteristic immune
deficiencies [52,55–57]. This may pose some limitations to this model, given that it does
not recapitulate cART−induced suppression of viral gene expression as seen with treated
HIV−infected patients. We demonstrated that cocaine−self−administration negatively
impacted particular factors for HIV−1 related CNS inflammation, within brain regions
that are involved in the development of HAND. These outcomes point to mechanisms of
hyperinflammation and reduced antiviral activity that may occur during HIV−1 infection
and cocaine comorbidity.
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In the absence of cocaine, we did not find any differences in inflammatory markers
between the WT and HIV−1Tg groups. This was an unexpected outcome, as lifelong
exposure to viral proteins in HIV−1Tg rats are associated with neurological and behavioral
deficits that are characteristic of human HIV−1 infections, and because viral proteins can
activate host immune responses [58,59]. Repunte−Canonigo et al. reported increased
expression of astrocyte and microglia activation markers, GFAP and Iba1, in the brains of
HIV−1Tg rats compared to WT controls, which indicates activation of neuroinflammatory
processes [60]. However, they did not find pro−inflammatory genes to be differentially
expressed except for the antiviral gene, interferon stimulated gene (ISG)15 [60]. Gene
expression levels of the chemokine monocyte chemoattract protein−1 (Mcp−1/Ccl2) are
significantly increased in the hippocampus of HIV−1Tg rats compared to WT, but no sig-
nificant differences in gene expression levels of Il−1β, NF−kB or Tnf were detected [61].
Reid et al. showed an age−dependent loss in reactive phenotypes of microglia and as-
trocytes in the STR and corpus callosum of HIV−1Tg compared to WT controls [62], but
these authors did not measure inflammatory responses. Our findings are also consistent
with reports demonstrating no differences in cytokine/chemokine levels measured for
STR and hippocampal tissue lysates of 3−month−old and 9−month−old male WT and
HIV−1Tg rats [63]. Thus, changes in cytokine levels in the brains of WT and/or HIV−1Tg
rats following cocaine self−administration strongly implicate neuroimmune activation
following cocaine exposure.

In humans, cocaine increases the onset and severity of HAND (reviewed in [64]).
This likely reflects the impact of cocaine on CNS inflammation, given that chronic low
levels of neuroinflammation exacerbate neurotoxicity [65,66]. Levels of pro−inflammatory
cytokines, IL−1β, TNF−α and IL−6, are elevated in humans with cocaine use disor-
der [26,67–69]. In rats non−contingently exposed to cocaine (i.p.), elevated levels of IL−1β
are measured in the pfCTX and nucleus accumbens [27]. In rats that self−administered
cocaine, IL−1β and TNFα are increased in the ventral tegmental area (VTA) [70]. An-
other study demonstrated that inflammatory markers, including IL−1β, IL−1α, IL−2,
IL−4, IL−6, IL−10, IL−12, and IFNγ, are enhanced in the pfCTX, STR, and VTA of rats
that self−administered cocaine, but only in the presence of traumatic brain injury [71].
Although we did not observe an effect of cocaine on fCTX or STR neuroinflammatory
mediators in WT rats, we found that cocaine−self−administration resulted in a hyperim-
mune response in the fCTX of HIV−1Tg rats, with higher levels occurring in 13 cytokines,
chemokines, and growth factors. Our results indicate an interactive effect of HIV−1 toxic
proteins (e.g., Tat, gp120) and cocaine on neuroinflammation. There are limited clinical
and preclinical studies demonstrating the impact of cocaine and HIV−1 on the neuroim-
mune response; however, there is evidence that drug dependency enhances HIV−1 related
cognitive impairments [72], which is negatively impacted by inflammation [73].

Taken together, our results demonstrate that in this HIV−1Tg rat model of cocaine use
disorder, HIV−1 proteins or cocaine alone are not enough to initiate a neuroinflammatory
response in the fCTX or cSTR. However, in the fCTX, the hyper−neuroimmune response
during combined exposure of cocaine and HIV−1 indicates that rather than an additive
effect of cocaine on HIV−1 related neuroinflammation, there is a synergistic relationship
between cocaine and HIV−1 on the neuroimmune response.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11152405/s1, Figure S1: Cytokines with no significant differ-
ence in the fCTX of WT and HIV−1Tg rats; Table S1. Caudal striatum (cSTR) cytokine level summary
statistics stratified by rat model WT vs. HIV−1Tg.
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