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ABSTRACT

Summary: High-throughput technologies have led to an explosion of

genomic data available for automated analysis. The consequent pos-

sibility to simultaneously sample multiple layers of variation along the

gene expression flow requires computational methods integrating raw

information from different ‘-omics’. It has been recently demonstrated

that translational control is a widespread phenomenon, with profound

and still underestimated regulation capabilities. Although detecting

changes in the levels of total messenger RNAs (mRNAs; the transcrip-

tome), of polysomally loaded mRNAs (the translatome) and of proteins

(the proteome) is experimentally feasible in a high-throughput way, the

integration of these levels is still far from being robustly approached.

Here we introduce tRanslatome, a new R/Bioconductor package,

which is a complete platform for the simultaneous pairwise analysis

of transcriptome, translatome and proteome data. The package in-

cludes most of the available statistical methods developed for the

analysis of high-throughput data, allowing the parallel comparison of

differentially expressed genes and the corresponding differentially en-

riched biological themes. Notably, it also enables the prediction of

translational regulatory elements on mRNA sequences. The utility of

this tool is demonstrated with two case studies.

Availability and implementation: tRanslatome is available in

Bioconductor.

Contact: t.tebaldi@unitn.it

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

High-throughput (‘-omics’) measurements of macromolecule

variations in the cell offer the possibility to comprehensively

understand how the cellular processes are regulated and to

reveal how different layers of control are coordinated in produ-

cing a physiologically coherent response. These measurements

are also invaluable to understand how the loss of this coordin-

ation contributes to disease origin. The establishment of high-

throughput technologies and the consequent explosion of avail-

able data allow us to reach a ‘systems’ understanding of the
variations in gene expression only when a parallel evolution of

algorithms and data mining techniques is achieved. This eventu-

ally enables to suggest and prioritize potential mechanistic

processes. Nonetheless, the integration of ‘-omics’ data, ranging
from epigenetic chromatin remodeling to the dynamics of tran-

scription, translation and protein activities, still requires consid-

erable experimental and computational developments.
In this context, the low correlation observed between messen-

ger RNA (mRNA) and protein levels is an unsolved issue (Vogel

andMarcotte, 2012). Recently we showed that the analysis of the
translatome, an intermediate level between the transcriptome and

the proteome formed by mRNAs engaged with polysomes, pro-

vides substantial and somewhat surprising new information

(Tebaldi et al., 2012). This and other examples (Colman et al.,
2013; Schwanhäusser et al., 2011; Vogel et al., 2010) show how

the integration of ‘-omics’ data can provide a biologically rele-

vant outcome.
Here we present tRanslatome, a new Bioconductor package

for the analysis of differential profiles coming from transcrip-

tome, translatome and proteome studies. tRanslatome will help
to study mRNA and protein variations in an exhaustive way,

providing specific tools for the comparison of polysomal mRNA

with total mRNA or protein data.

2 DESCRIPTION AND USAGE

tRanslatome is a complete platform for the analysis and pairwise

comparison of two ‘-omics’ levels implemented as a

Bioconductor package. It is developed to compare translatome

data with transcriptome and/or proteome data. A general
overview of the functions offered by tRanslatome is given in

Figure 1A. The package is conceptually organized in three mod-

ules, described as follows:

2.1 DEGs detection

The only input required by tRanslatome is an expression matrix

containing either read counts (from next-generation sequencing

data) or normalized signals (from microarray or proteome

experiments). To select differentially expressed genes (DEGs),
the package offers, in the same computational environment,

the integrative analysis of established and emerging statistical

methods: (i) DEseq (Anders and Huber, 2010) and edgeR
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(Robinson et al., 2010), specifically implemented for the analysis

of next-generation sequencing data; (ii) significance analysis of

microarrays (SAM) (Tusher et al., 2001), developed for the ana-

lysis of microarray data; (iii) t-test, RankProd (Breitling et al.,

2004), linear models and moderated t-test (Smyth, 2004), suitable

to deal with general quantitative data; and (iv) methods dealing

specifically with the comparison of translatome and transcrip-

tome data, e.g. ANOTA (Larsson et al., 2011) and translational

efficiency, derived from the ratio of polysomal and subpolysomal

signals (Powley et al., 2009) or the ratio of ribosome protected

fragments and RNA-seq reads (Ingolia et al., 2011). These tech-

niques are described more exhaustively in the documentation and

in the Supplementary Material.
To study all the relevant differences arising from the two

‘-omics’ levels, tRanslatome offers a variety of graphical outputs,

helping the quality assessment and interpretation of the results.

The minus-average plots aid the identification of intensity-de-

pendent patterns, whereas the standard deviation plot can help

the selection of the best method for DEGs identification (see

Supplementary Figs 4 and 5). The graphics also include scatter-

plots, displaying changes in the expression of genes in terms of

fold changes at both levels (Fig. 1B), and histograms, showing a

detailed representation of all the DEGs classes (Supplementary

Figs 2 and 3).

2.2 Gene Ontology enrichment comparison

One of the most frequent applications of the Gene Ontology

(GO) is enrichment analysis, i.e. the identification of significantly

overrepresented GO terms in a given gene set (Ashburner et al.,

2000). tRanslatome includes the detection and comparison of

GO terms, resuming information about cellular components,

molecular functions and biological processes associated to

DEGs detected from the two ‘-omics’ levels. Multiple choices

are offered for the overrepresentation test, which exploits the

GO ‘tree’ structure by means of the Bioconductor package

‘topGO’: these choices can satisfy the need for either more gen-

eral or more specific biological themes. To simplify the inspec-

tion of the results and to effectively represent the differences in

the enrichment of ontological terms, the corresponding radar

plots and heatmaps can be produced (Fig. 1C and Supplemen-

tary Figs 7 and 8). tRanslatome also provides methods for a

sensitive comparison of the similarity between enriched GO

terms, including the semantic similarity scores (Wang et al.,

2007) between terms at each level, and the global similarity

score between the two levels.

2.3 Enrichment analysis of post-transcriptional regulatory

elements

As tRanslatome focuses on the study of global translational con-

trols, enrichment analysis of RNA binding proteins and

microRNA binding sites or other RNA regulatory motifs (e.g.

AU-rich elements) can be performed on the lists of DEGs. This

analysis allows the user to identify possible regulatory factors

responsible for the translational regulation of genes in the experi-

ment under consideration (Fig. 1D). The list of genes regulated

by each post-transcriptional element is obtained from the

Fig. 1. Outline of tRanslatome workflow and graphical outputs. (A) General overview of the three modules provided by tRanslatome. (B) Scatterplot of

fold changes. Each gene is mapped according to the fold change in the transcriptome and the translatome. Different classes of DEGs are color labeled.

The Spearman correlation coefficients are displayed for all genes and for all DEGs. (C) Radar plot of the top enriched GO biological process terms for

the transcriptome and the translatome DEGs. (D) Heatmap of the top enriched post-transcriptional regulators for the transcriptome and the translatome

DEGs. The color scale is based on the -log10 of the enrichment P-value, calculated with a Fisher test
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recently established Atlas of UTR Regulatory Activity (AURA)
database (Dassi et al., 2012). The method computes a Fisher test
P-value indicating whether binding sites for each regulator are
significantly enriched in the DEGs lists. The annotations from

AURA will be updated on every release of tRanslatome. Users
can also specify a custom annotation file in place of the one
provided by default.

3 EXAMPLES

A worked example, derived from data on differentiated versus
undifferentiated human hepatocytes (Parent et al., 2007) is used

to generate the panels contained in Figure 1. Detailed explan-
ations of this example, along with a second example dealing with
the comparison of the proteome and the transcriptome between
two human cell lines (Stevens and Brown, 2013), are provided in

the Supplementary Material.

4 CONCLUSION

tRanslatome allows a user-friendly comparison and integration
of data generated from two ‘-omics’ measurements, empowering
the discovery of regulatory mechanisms underlying the uncou-
pling processes among the transcriptome, the translatome and

the proteome.
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