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Abstract

Renibacterium salmoninarum, a slow-growing facultative intracellular pathogen belonging to the high CþG content

Actinobacteria phylum, is the causative agent of bacterial kidney disease, a progressive granulomatous infection affecting

salmonids worldwide. This Gram-positive bacterium has existed in the Chilean salmonid industry for >30 years, but little or

no information is available regarding the virulence mechanisms and genomic characteristics of Chilean isolates. In this study, the

genomes of two Chilean isolates (H-2 and DJ2R) were sequenced, and a search was conducted for genes and proteins involved in

virulence and pathogenicity, and we compare with the type strain ATCC 33209 T genome. The genome sizes of H-2 and DJ2R are

3,155,332 bp and 3,155,228 bp, respectively. They genomes presented six ribosomal RNA, 46 transcription RNA, and 25

noncodingRNA, and both had the same 56.27% GþC content described for the type strain ATCC 33209 T. A total of 3,522

and 3,527 coding sequences were found for H-2 and DJ2R, respectively. Meanwhile, the ATCC 33209 T type strain had 3,519

coding sequences. The in silico genome analysis revealed a genes related to tricarboxylic acid cycle, glycolysis, iron transport and

others metabolic pathway. Also, the data indicated that R salmoninarum may have a variety of possible virulence-factor and

antibiotic-resistance strategies. Interestingly, many of genes had high identities with Mycobacterium species, a known patho-

genic Actinobacteria bacterium. In summary, this study provides the first insights into and initial steps towards understanding the

molecularbasis of antibiotic resistance, virulence mechanisms andhost/environment adaptation in twoChileanR. salmoninarum

isolates that contain proteins of which were similar to those of Mycobacterium. Furthermore, important information is presented

that could facilitate the development of preventive and treatment measures against R. salmoninarum in Chile and worldwide.
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Introduction

Renibacterium salmoninarum, a slow-growing facultative in-

tracellular pathogen belonging to the high CþG content

Actinobacteria phylum, is the causative agent of bacterial kid-

ney disease, which is a chronic, progressive, and granuloma-

tous infection threatening farmed and wild salmonids

worldwide (Wiens 2011). This Gram-positive microorganism

is one of few that can be transmitted both vertically, via

intraovum infection (Evelyn, Ketcheson, et al. 1986; Evelyn,

Prosperi-Porta, et al. 1986), and horizontally, via a shared wa-

ter supply (Evelyn et al. 1981; Austin and Rayment 1985;

Balfry et al. 1996). The virulence of R. salmoninarum has

been linked to a synergistic interaction between toxins and

enzymes present in extracellular products (Bruno and Munro

1982; Shieh 1988), as well as with iron acquisition mecha-

nisms (Grayson et al. 1995; Bethke et al. 2016). Nevertheless,
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the most thoroughly characterized virulence factor is a 57-

kDa protein (p57) present on the bacterial cell surface and

that can be secreted into growth media and host environ-

ments (Wiens 2011). Renibacterium salmoninarum can be in-

ternalized into macrophages and nonphagocytic cells, such as

in the cell lines CHSE-214 and RTG-2 (McIntosh et al. 1996;

Gonz�alez et al. 1999), where bacteria produce putative viru-

lence factors and replicate. These transmission strategies, to-

gether with an ability to survive phagocytosis and replicate

within macrophages, complicate the prophylaxis and preven-

tion of R. salmoninarum infection (Bandin et al. 1993;

Gutenberger et al. 1997; Sudheesh et al. 2007). In Chile, R.

salmoninarum was initially isolated from chum salmon

(Oncorhynchus keta) reared in seawater cages (Sanders and

Barros 1986), but this bacterium has since been reported in

Atlantic salmon (Salmo salar) and coho salmon

(Oncorhynchus kisutch) farmed across distinct geographical

regions of the country. While this pathogen has been present

in Chile for >30 years, little or no information is available re-

garding virulence mechanisms and genetic characteristics.

Therefore, the general aim of this study was to gain initial

genomic insights into Chilean R. salmoninarum isolates, with

the specific goal of obtaining better understandings on the

virulence and pathogeny activities of proteins other than p57.

This new information could be vital for the development of

novel management and treatment tools against bacterial kid-

ney disease in both the Chilean and worldwide salmonid

industries.

Materials and Methods

Genomic DNA and Sequencing

Two previously characterized Chilean isolates (H-2 and DJ2R),

obtained from cage-cultured Atlantic salmon with clinical

signs of bacterial kidney disease in southern Chile, were

used (Bethke et al. 2016, 2017). The bacteria were routinely

cultured in KDM-2 agar for 15–20 days at 15�C. For sequenc-

ing, genomic DNA of the two isolates was extracted using the

InstaGene Purification Matrix (Bio-Rad) according to manufac-

turer instructions. The DJ2R genome was sequenced using an

Illumina MiSeq platform with 2 � 250 paired-end reads by

the AUSTRAL-omics Institute, hosted by the Universidad

Austral de Chile (Valdivia, Chile). Using the same technology

and parameters, H-2 genomic DNA was sequenced by the

Central Support Service for Experimental Research (SCSIE,

Spanish acronym) at the University of Valencia (Valencia,

Spain).

Genome Assembly, Annotation, and Analysis

Prior to genome de novo assembly, Illumina reads were ana-

lysed for quality using FASTQC (Brabaham Bioinformatics).

The reads were paired and quality filtered using PEAR

(Zhang et al. 2014). Later, paired reads were assembled to

the R. salmoninarum ATCC 33209 T reference genome (ac-

cession number NC_010168.1) using Genious v10.2.3

(Kearse et al. 2012), and assembly quality was checked by

QUAST (Gurevich et al. 2013). Subsequent rapid annotation

was performed using the Prokka v1.12 prokaryotic genome

software (Victorian Bioinformatics Consortium) (Seemann

2014). Annotation was performed using a genus database

generated from Renibacterium salmoninarum NC_010168.1

proteins and the –usegenus option. The genome maps were

constructed using BRIG (BLAST Ring ImageGenerator), a pro-

karyote genome comparison software (Alikhan et al. 2011). A

search was conducted for possible virulence and antibiotic

resistance factors using crb-blast against the Virulence

Factors Database (VFD) (Chen et al. 2016) and

Comprehensive Antibiotic Resistance Database (CARD) (Jia

et al. 2017), which respectively store information for amino

acids and nucleotides. Since no pathogenic bacteria are

closely related to R. salmoninarum, a 65% identity was

used to filter crb-blast results obtained against the amino

acid and nucleotide databases.

Iron uptake is a known essential factor in the pathogenicity

of several bacteria. Therefore, a search was conducted for

genes possibly involved in iron regelation; this search used

the IdeR/DtxR binding sites of Corynebacterium diphtheria

(Yellaboina et al. 2004) and Mycobacterium tuberculosis

(Prakash et al. 2005), two known pathogenic bacteria from

the Actinobacteria phylum. To evaluate overall relatedness

between isolates and the type strain genomes, an average

nucleotide identity analysis was performed using

EZBioCloud OrthoANIu (Yoon et al. 2017). Further analyses

and a detection of single nucleotide polymorphisms (SNPs)

were performed by aligning genomes using the Mauve

v2.3.1 plugin in the Geneious v10.2.3 software (Kearse

et al. 2012). Additional genes of interest were located using

key words such as toxin, drug, lipoprotein, secretion, iron,

siderophore, heme/hemin, resistance, histidine kinase, and

shock. Further examination of the resulting genes was con-

ducted using Artemis v16.0.0 (Rutherford et al. 2000).

Genome Deposit in Public Databases

This project has been deposited in DDBJ/ENA/GenBank under

Accession PRJNA418717. The FASTA sequences of the

genomes for Chilean isolates H-2 and DJ2R have been depos-

ited in DDBJ/ENA/GenBank under Accessions CP029236 and

CP029237, respectively. The R. salmoninarum ATCC 33209 T

genome, used for comparative genomics, is deposited in

GenBank under Accession NC_010168.1.

Results

General Genomic Features

The H-2 and DJ2R genomes were assembled into

3,155,332 bp and 3,155,228 bp, respectively. The two
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Chilean isolate genomes presented six ribosomal RNA (rRNA),

46 transcription RNA, and 25 noncodingRNA, and both had

the same 56.27% GþC content described for the type strain

ATCC 33209 T. A total of 3,522 and 3,527 coding sequences

were found for H-2 and DJ2R, respectively. Meanwhile, the

ATCC 33209 T type strain had 3,519 coding sequences. All

these results were similar to and in concordance with the

sequence of the ATCC 33209 T type strain, as reported by

Wiens et al. (2008) (fig. 1). In this regard, nucleotide identities,

on average, showed high similarities, with 99.99% similarity

found between the type strain ATCC 33209 T and the two

Chilean isolates. Nevertheless, coverage percentages varied.

The H-2 and DJ2R isolates, respectively, showed 96.28% and

98.35% coverage with the type strain. Between the two iso-

lates, however, there was 94.69% coverage, suggesting dif-

ferences between genomes.

Antibiotic Resistance

Regarding antibiotic resistance, crb-blast results against the

amino acid database showed ten proteins with identities be-

tween 65.7% and 80.2%. Some of these putative resistance

proteins corresponded to ABC transporters of Paenibacilus sp.

LC231, including tetracycline tetA (80.2%), tetA (65.7%),

and tetB (74.3%). Also related to resistance was a mutation

in the rpsL 30S ribosomal protein S12 (82.9%) of M. tuber-

culosis CDC1551. Similarly, a DNA-binding response regulator

evidenced 71.8% identity to mtrA of M. tuberculosis H37Rv

and other proteins conferring resistance to the antibiotics ri-

fampicin, para-aminosialicylic acid, and aminocoumarin. The

crb-blast against the CARD for nucleotides showed that the

two 16S rRNA of R. salmoninarum had 88.7% identity with a

16S rRNA mutation that confers resistance in Mycobacterium

smegmatis MC2155, as well as two 23S rRNA with 83.9%

identity for a 23S rRNA mutation from Streptomyces ambo-

faciens (supplementary table 1, Supplementary Material

online).

Virulence Factors

Results of the crb-blast against the amino acid database of

virulence factors returned 14 proteins associated with viru-

lence, the identity percentages of which ranged from

65.9% to 84.3%. Of these, 13 were proteins of

Mycobacterium species. Notable among these were HSP60

(i.e., GroEL, with the highest identity [84.4%]), sigma factors

(sigA, sigH), a sugar transporter (sugA), a sensory transduction

protein (regX3), and an iron-cofactored superoxide dismutase

(sodA), among others. Notably, a capsular polysaccharide syn-

thesis (capE) protein was found that belonged to the non-

related Staphylococcus haemolyticus JCSC1435 bacterium

(66.8% identity; supplementary table 1, Supplementary

Material online). A number of other known virulence factors

related to resistance, secretion systems, toxins, lipoproteins,

histidine kinase sensors, and shock were found

(supplementary table 2, Supplementary Material online).

Additionally, 274 SNP events were found in the Chilean iso-

lates, as compared to the type strain ATCC 33209 T genome

(supplementary table 3, Supplementary Material online).

Some SNPs were located in genes coding for virulence factors,

such as p57, which is the most characterized virulence factor

of R. salmoninarum. A SNP was present in the Chilean H-2

isolate, specifically where the msa gene is located (i.e., be-

tween nucleotides 945,101 and 946,777). This included a

change from thymine to cytosine in the gene sequence at

nucleotide 677. This modification would involve a valine226

to alanine modification in the amino acidic sequence.

Iron Acquisition

Iron acquisition mechanisms are an essential virulence factor

in many pathogenic bacteria. These bacteria need such mech-

anisms to cope with host nutritional immunity (Cassat and

Skaar 2013). In Gram-positive bacteria with a high CG con-

tent, such as Actinobacteria, iron-acquisition related genes are

regulated by IdeR/DtxR. Therefore, a search was conducted

for IdeR binding sites. A total of ten IdeR/DtxR binding sites

were found (supplementary fig. 1, Supplementary Material

online), and, as expected, iron acquisition-related genes

were present next to these binding sites. Some of the

detected genes encoded proteins related to iron transport,

siderophores interaction, siderophores exportation, haeme

acquisition, and bacterioferritin, among others. Other genes

with no downstream IdeR-binding site, but with involvement

in iron acquisition, were also found.

Discussion

The present study provides the first genomic insights for two

R. salmoninarum isolates from fish farmed in Chile. The

genomes of the two Chilean isolates were de novo assembled

and compared to the type strain ATCC 33209 T, showing high

sequence similarity. This similarity was expected due to the

genetic homogeneity described for this fish pathogen

(Grayson et al. 1999, 2000; Rhodes et al. 2000; Alexander

et al. 2001). Nevertheless, some differences in coverage per-

centages were found by ANIu analysis, as expected. Multiple

proteins that could be related to antibiotic resistance were

found, indicating that R. salmoninarum could have different

strategies for coping with antibiotics. On-going research will

soon allow us to clarify this hypothesis.

The detected resistance-related mechanisms included the

tetracycline resistance proteins tetA and tetB (supplementary

table 1, Supplementary Material online). A response regulator

(mtrA) showing 71.8% identity with Mycobacterium spp. was

also found. This response regulator is part of the MtrAB signal

transduction system that participates in multiple processes

related to growth and cell wall homeostasis in

Mycobacterium spp. This signal transduction system is
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associated with the lipoprotein LpqB, which is located directly

downstream MtrAB and directly affects the phosphorylation

of MrtA. Prior research supports that LpqB mutants with

transposon insertion are multidrug sensitive (Nguyen et al.

2010). This particular lipoprotein was also found directly

downstream the MtrAB two-component system in R salmo-

ninarum, indicating that LpqB might play a role in drug

resistance in this bacterium. High identity percentages were

also found for 16S (88.7%) and 23S (83.9%) rRNA-mutated

genes, a finding that suggests some mutation(s) in these

genes may confer antibiotic resistance, such as in

Mycobacterium species.

The detected proteins that may play important roles as

virulence factors evidenced high identity percentages with

FIG. 1.—Genomic map of Renibacterium salmoninarum ATCC 33209T compared to those of the R salmoninarum Chilean isolates H-2 and DJ2R. From

inside-out, the concentric circles denote the following: R. salmoninarum ATCC33209T genome with coordinates (Chromosome region, black circle), GC

content, genome alignment with Chilean isolate H-2 (green circle), genome alignment with Chilean isolate DJ2R (orange circle), and in the outer circle,

genomic features including tRNA (fuchsia), rRNA (red), misc_RNA (grey), and the IdeR binding sites found (blue). The map constructed using blastx

alignment.
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Mycobacterium spp., a related pathogenic genus. The protein

with the highest identity (84%) was the GroEL chaperone

(Hsp60) of M. tuberculosis H37Rv. This immune-dominant

antigen plays essential roles in virulence, disease develop-

ment, and survival under stressful conditions (Goulhen et al.

1998; Neckers and Tatu 2008). The location of the GroEL-like

protein seems to depend on the organism and has been

reported in compartments other than the cytoplasm (Scopio

et al. 1994; Esaguy and Aguas 1997; Frisk et al. 1998) and in

association with the cell surface (Gillis et al. 1985; Ensgraber

and Loos 1992; Phadnis et al. 1996). Indeed, M. tuberculosis

Hsp60 has various “moonlighting” functions and can act as

secreted signalling molecules, modulators of host immunity,

surface-located bacterial ligands, and bacterial cell-wall compo-

nents, leaving the cytosol to function extracellularly or at the

surface of the bacterial cell wall (Henderson 2017). Interestingly,

GroEL also actively participates in cell adherence for Clostridium

difficile (Hennequin et al. 2001) and Legionella pneumophila,

playing a key role in supporting intracellular behaviour through

host–cell contact and internalization (Fernandez et al. 1996;

Gardu~no, Faulkner, et al. 1998; Gardu~no, Gardu~no, et al.

1998). Therefore, the detected R. salmoninarum GroEL protein

is most likely involved in different processes, as in other bacterial

pathogens. The intracellular behaviour of GroEL could have key

functions in infection and disease development (McIntosh et al.

1996; Gonz�alez et al. 1999). Nevertheless, further studies are

needed to identify the location and function of GroEL as a vir-

ulence factor in R. salmoninarum.

The sigma factors SigA and SigH were also among the

feasible virulence factors detected in R. salmoninarum.

These factors are critical in regulating different cellular

responses that sustain multiple stages of the host–pathogen

interaction. For example, SigA is indispensable for

Mycobacterium spp. growth, while SigH is a central regulator

of the oxidative and heat stress responses induced during

macrophage infection (Sachdeva et al. 2010).

Another possible virulence factor in R. salmoninarum was

sodA, an iron-cofactored superoxide dismutase. These dismu-

tases are ubiquitous metalloenzymes that catalyse the conver-

sion of superoxide anions to hydrogen peroxide, thus playing

a key role during infection. Prior research has found that su-

peroxide dismutase-attenuated strains of Mycobacterium are

less resistant to hydrogen peroxide and have a poorer survival

outlook in mouse models (Edwards et al. 2001).

Also crucial for bacterial multiplication and, therefore, the

pathogenicity of several bacteria is the ability to uptake iron

during infection (Skaar 2010; Saha et al. 2013). In Gram-

positive bacteria with high CG content, such as

Actinobacteria, iron acquisition-related genes are regulated

by IdeR/DtxR. Ten IdeR binding sites were found upstream

of important iron acquisition-related genes in R. salmonina-

rum. Some of these genes may be inactivated by point muta-

tions or frame shift; however, IdeR binding sites were found in

relation to clusters associated with siderophores transport

(Rsal33209_1684 to Rsal33209_1681) (supplementary fig.

1A, Supplementary Material online), the intact coding se-

quence of a fepG homolog (RSal33209_3347) (supplemen-

tary fig. 1B, Supplementary Material online) (Wiens et al.

2008). Also, two IdeR binding sites related to a haemin uptake

cluster were found (supplementary fig. 1C, Supplementary

Material online). It has been demonstrated that R. salmonina-

rum can synthesizes siderophores (shown by a CAS assay) and

has the ability to use a variety of iron sources, including hae-

min (Bethke et al. 2016). These data would indicate that R.

salmoninarum may have different strategies to confront nu-

tritional immunity in the host.

Regarding the detected SNP event (i.e., thymine to cyto-

sine), it is worth highlighting that changes in certain virulence-

related proteins may affect function during infection. Such is

the case of the p57 virulence factor, where the valine226 to

alanine change may impact protein function in ways similar to

those reported by Wiens et al. (2002); namely, a single Ala139

to Glu substitution enhances the binding capacity of p57 to

Chinook leukocytes, but further experiments are needed to

corroborate this. Likewise, other SNPs could have significant

functional repercussions, thereby influencing the virulence

and pathogenicity of the different R. salmoninarum isolates.

Some of these detected SNPs included: Arg242 to Leu in the

cold shock protein; Ser273 to Arg in the LipO lipoprotein; Thr99

to Lys in the MFS transporter; and cysteine to thymine in nu-

cleotide 391 of the type II secretion protein F, a change that

generates the TAA stop codon and, consequently, a truncated

protein. Therefore, the variety of proteins that could be in-

volved in antibiotic-resistance and virulence found for R. sal-

moninarum may vary due to SNP events. This would mean

that virulence and pathogenic competence could vary among

R. salmoninarum isolates, but further experimentation is

needed to corroborate this.

In conclusion, while R. salmoninarum has existed in the

Chilean salmon industry for >30years, this is the first report

to provide a more detailed insight into the genomic character-

istics of Chilean isolates of this pathogen. Crucial genomic in-

formation was obtained in regards to possible genes involved in

virulence and pathogenicity of two Chilean R. salmoninarum

isolates. This foundation of knowledge will be of aid in the

future as a starting point to develop new preventive and treat-

ment measures applicable against this pathogen worldwide.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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