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Abstract

In this work we propose the adoption of a statistical framework used in the evaluation of forensic evidence as a tool for
evaluating and presenting circumstantial ‘‘evidence’’ of a disease outbreak from syndromic surveillance. The basic idea is to
exploit the predicted distributions of reported cases to calculate the ratio of the likelihood of observing n cases given an
ongoing outbreak over the likelihood of observing n cases given no outbreak. The likelihood ratio defines the Value of
Evidence (V). Using Bayes’ rule, the prior odds for an ongoing outbreak are multiplied by V to obtain the posterior odds. This
approach was applied to time series on the number of horses showing clinical respiratory symptoms or neurological
symptoms. The separation between prior beliefs about the probability of an outbreak and the strength of evidence from
syndromic surveillance offers a transparent reasoning process suitable for supporting decision makers. The value of
evidence can be translated into a verbal statement, as often done in forensics or used for the production of risk maps.
Furthermore, a Bayesian approach offers seamless integration of data from syndromic surveillance with results from
predictive modeling and with information from other sources such as disease introduction risk assessments.
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Introduction

Syndromic surveillance appeared in the late 1990’s and is

becoming more and more popular in a wide range of human

public health issues such as seasonal disease surveillance [1] and

digital disease surveillance [2]. The wider acceptance of the

relevance of the ‘‘One Health’’ concept [3] amongst public health

practitioners has led to an increased exchange of methodologies

and disease control knowledge between the human medicine and

the veterinary sides. In the last 5 years, researchers in veterinary

medicine have been investigating the application of syndromic

surveillance methods for the early detection of zoonotic and non-

zoonotic diseases [4].

There is no unique definition of ‘‘syndromic surveillance’’ but it

is commonly accepted that it focuses on data collected prior to

clinical diagnosis or laboratory confirmation [5,6]. It is therefore

based on non-specific health indicators which result in a

surveillance system with low specificity but allow the early

detection of outbreaks without a priori considerations. This

constitutes a major advantage over traditional approaches which

focus on a disease, or a list of reportable diseases, and rely on the

ability of clinicians to correctly diagnose cases, which may be

difficult when faced with a rare or emerging disease [4]. Moreover,

the systematic and continuous data collection and analysis

processes reduce the impact of chronic under-reporting observed

in classical passive surveillance systems and also increases the

sensitivity of this method [4]. Syndromic surveillance does not

replace traditional approaches to disease monitoring (e.g. risk-

based, active etc…) but is seen as an interesting and complemen-

tary tool for outbreak detection with a low specificity but with

better sensitivity and timeliness [7].

Current approaches used in syndromic surveillance first seek to

define the normal properties of the syndrome time-series when no
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outbreak of disease is recorded [4,6] in order to be able to detect

abnormal events overlaid on top of the background noise during

an outbreak situation. In traditional aberration detection methods,

an alarm goes off when the observed data exceed the expected

values from the population [4,6]. Such algorithms have an

epidemic threshold and provide a yes/no qualitative output: ‘‘No,

there is no outbreak’’ or ‘‘Yes, something unusual is happening in

the population’’.

This black or white vision of the health of the population of

concern is simple but it may not always be adequate or useful for

decision makers who may often find themselves in grey areas

(indicator values close to the epidemic threshold). Moreover,

binary result can also be difficult to combine with other

epidemiological knowledge such as a probability of disease

introduction or other complex parameters which influence

decision making [8]. The development of syndromic surveillance

quantitative outputs, which are more objective, flexible and easily

interpretable, is a promising area of research.

The art of presenting scientific evidence to decision makers

has been more extensively studied in forensic sciences in which

legal certainty requires statements that clearly specify how

strong the evidence for/against an hypothesis is and how the

expert reached that conclusion. In recent years, the state of the

art in forensic interpretation has been to evaluate forensic

evidence using likelihood ratios in the framework of Bayesian

hypothesis testing. Within this framework, it evaluates the extent

to which results from forensic investigations speak in favor of the

prosecutors or defendants hypotheses [9,10]. The Bayesian

approach has been applied to a wide range of forensic problems

including evidence based on DNA analysis [10], mass spectros-

copy [11], transfer of glass, fibers and paint [10] and microbial

counts [12]. However, although initially developed for the legal

system, the approach has been identified as useful for supporting

decision making in other situations such as the tracing of

Salmonella spp [13].

The aim of this study is to test the applicability of the

Bayesian likelihood ratio framework to the early detection of

outbreaks in a syndromic surveillance system. Transferability of

the method is demonstrated by using two examples based on

real data coming from RESPE, the French surveillance network

on equine diseases. The first example makes use of data on

French horses presenting nervous symptoms (NeurSy) and aim

to test the ability of our approach to detect simulated outbreaks

of an exotic disease, West Nile Virus (WNV). West Nile disease

is an important zoonotic disease and syndromic surveillance

applied in horses could be used as an early warning system to

protect the human population [14]. The second example focuses

on data on French horses with respiratory symptoms (RespSy)

and is used to detect outbreaks of divergent strains of equine

influenza (New-Influenza), a non-zoonotic disease leading to

vaccine failure [15–18].

Materials and Methods

Background theory and proposed framework
Forensic evaluation of evidence is based on Bayesian hypothesis

testing. In a syndromic surveillance context, this would mean that, in

a particular week, there are two mutually exclusive hypotheses that

should be evaluated, for example: H1 ‘‘There is an ongoing outbreak

of disease x’’ and H0 ‘‘There is NOT an ongoing outbreak of disease

x’’. Without any extra information, the relative probability of the two

hypotheses may be expressed as the a priori odds:

Opri~
P(H1)

P(H0)
ðEq:1Þ

where

P(H1): The a priori probability for hypothesis H1. Typically the

probability of an ongoing outbreak of the disease of interest in a

particular region.

P(H0): The a priori probability for hypothesis H0 which is the

complementary hypothesis to H1. Typically the probability of an

outbreak NOT going on.

In other words, the a priori odds define our prior belief about the

disease status in the region. In a typical situation, the prior odds

would be low (e.g. 1:1000) but under some circumstances, it might

be higher (e.g. if an outbreak is ongoing in a neighboring country).

When we are presented evidence (E) of some kind pointing in favor

(or against) of H1, this will make us update our belief. This

posterior belief is expressed as the a posteriori odds.

Opost~
P(H1DE)

P(H0DE)
ðEq:2Þ

Where:

P(H1|E) is the probability of hypothesis H1, given the evidence

(E).

P(H0|E) is the probability of hypothesis H0, given the evidence

(E).

In syndromic surveillance, the evidence (E) is typically the

number of reported suspected cases in a given time period. The

degree to which the posterior belief differs from the prior belief will

depend on the strength of the evidence. If the evidence is weak, the

posterior odds will be similar to the prior odds whereas strong

evidence in favor of H1 would result in posterior odds being much

higher than the prior odds. At this point, it is important to note

that the hypotheses to evaluate (H1) may differ and that the

interpretation of the same piece of evidence would depend on the

choice of H1. For example 10 reported cases of syndromes in

horses may be a strong evidence that there is something unusual

going on if these are nervous cases (H1 = ‘‘ongoing outbreak of

some nervous disease (i.e. WNV)’’) but only weak evidence in favor

of an equine influenza in the case of a respiratory syndrome (H1 =

‘‘ongoing outbreak of equine influenza’’), since in the latter case

we might have expected far more reported cases.

This intuitive reasoning can be formalized by the application of

Bayes’ theorem:

Opost~V|Opri:
P(H1DE)

P(H0DE)
~

P(EDH1)

P(EDH0)
|

P(H1)

P(H0)
ðEq:3Þ

Where:

E is the number of reported cases of a syndrome in the

particular week.

P(E|H1) is the probability of observing the evidence (E) given

that H1 is true.

P(E|H0) is the probability of observing the evidence (E) given

that H0 is true

In order to estimate P(E|H1) and P(E|H0) we need information

on the probability distribution for the number of reported cases in

a non-outbreak and outbreak situation. The probability of

observing n cases given that H1 is true can be estimated using

statistical modeling of baseline data [19]. When the cases are
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independent (i.e. not clustered), the data can be modeled using a

general dynamic Poisson model [19]. When cases are clustered

(overdispersion), the Poisson model will underestimate the

probability of observing very high or very low number of cases,

and in such cases, the data can be modeled by continuous mixtures

of the Poisson distribution including Negative Binomial (NB)

distribution or Poisson-log-normal (PLN) distribution [19].

The probability of E (observation of n cases) during an outbreak

is calculated as:

P(EDH1)~
Xn

i~0

Pbase(i)|Pout(n{i) ðEq:4Þ

Where

Pbase(i) = Probability of drawing i cases from the baseline

distribution (e.g. Poisson(l) or NB(mu = mubase, size = thetabase))

Pout(i) = Probability of drawing i cases from the outbreak

distribution (e.g. NB(mu = muout, size = thetaout))

The outbreak distribution may be estimated by fitting an

appropriate probability distribution to data from historical

outbreaks. In the absence of data, the outbreak distribution may

be defined based on expert knowledge about the disease in

question or assumptions about the distribution of a new disease. In

most cases there would be a large uncertainty about the shape of

the outbreak distribution.

The next estimate is the probability of observing the Evidence

(E) that is the actual number of reported cases. In forensics, the

value of evidence (V) is defined as the ratio between the posterior

and prior odds for H1 versus H0. The value of evidence (Fig. 1,

line Log(V)) can be calculated from the two distributions by

dividing the probabilities for each number of observed cases using

equation 5:

V~
P(EDH1)

P(EDH0)
ðEq:5Þ

As illustrated in Fig 1 the value of evidence will depend on the

assumptions about the outbreak. In the examples A to D, 10 cases

are reported from a region where the baseline prevalence is

around 5 cases per week. If it is expected that an outbreak may be

small, resulting in only a small number of extra cases, 10 reported

cases would speak in favor of an outbreak (Fig. 1, A, C). If, on the

other hand, the disease(s) of interest are expected to yield a

relatively large number of cases the evidence would speak against

an outbreak (Fig. 1, B, D).

In addition, the strength of the evidence will depend on the

precision on the estimates for the number of outbreak-related

cases. If the distributions are wide (low theta, Fig 1A, 1B), the

absolute value of log(V) is smaller whereas more narrow

distributions (high theta, Fig 1C, 1D) result in higher values of

log(V). This is intuitive: the more we know about what we expect

to see during an outbreak, the stronger conclusions we will make

from the observed evidence.

Using the value of evidence for decision making
In contrast to traditional outbreak detection algorithms, the value

of evidence approach does not have a built-in decision threshold.

Typically a decision maker would not act upon syndromic

surveillance data alone but rather combine it with other available

knowledge. Cameron [20] proposed several approaches to disease

freedom questions: (1) population or surveillance sensitivity, (2)

probability of freedom from disease, and (3) expected cost of error –

i.e., consequences of false positive and false negative results. All

approaches underline how the value of inspection findings will be

augmented when interpreted in a broader context to complement

other monitoring and surveillance systems (MOSS) activities. One

option for a decision maker would be to set an action threshold for

the posterior odds. We might, for example, want to initiate an

epidemiological investigation if the odds that there is an ongoing

outbreak are larger than 1:1 or 1:100. Ideally the decision maker

would make a cost-benefit analysis taking into account the expected

costs for taking action versus not taking action. For example the

decision maker may initiate control measures (vaccination program

etc) when the odds are such that, on average, the reduced loss from

the early detection of the outbreak would exceed the extra costs

from initiating control measures (or vaccination programs) in

response to false alarms.

The combination of evidence evaluation and decision theory is

discussed in [21]. The expected utility (ū) of action ai is the average

amount of loss that we expect to incur with this action. In the

context of diseases surveillance, an action could be to implement

movement restrictions, vaccination, sampling, control of vectors or

to do nothing. The loss could be the direct financial losses (e.g.

animal infection, disease and production losses) but also the

indirect losses (e.g. surveillance and control costs, compensation

costs, potential trade losses, social consequences). Since an

unmanaged outbreak as well as actions will result in costs, the

expected utility will always be zero or negative. In this framework

the expected utility (ū) of action ai is defined as:

�uu(ai D:)~
X1

j~0

u(Cij)p(Hj D:) ðEq:6Þ

where

H1 = Outbreak

H0 = No outbreak

a0 = No action

a1 = Action

Cij = Different scenarios with respect to hypothesis on outbreak

status (H0, H1) and action (a0, a1) C00 represents the case with no

disease and no action implemented. C01 is no disease but action

implemented, C10 disease but no action and C11 is disease and

action implemented)

p(Hj |?) = probability of hypothesis j given all available

knowledge (Prior probability & evidence)

u(Cij) = expected utility for each possible situation Cij. Since

gain is zero the utility is determined by economical and socio-

economical loss.

According to this framework it is favorable to act when the

expected utility of action (ū(a1|?)) is higher than the expected

utility of no action (ū(a0|?). The relation between posterior

probability (P(Hi|E) and posterior odds (Opost) is defined by:

Opost~
P(H1DE)

1{P(H1DE)
ðEq:7Þ

and

P(H1DE)~
Opost

1zOpost

ðEq:8Þ

Thus equation 6 can be reformulated as

The Value of Evidence from Syndromic Surveillance
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�uu(ai D:)~
X1

j~0

u(Cij)|
opost

(1zOpost)
ðEq:9Þ

For each value of Opost the expected utility for action a1 and ao

is defined by eq. 9. The expected loss for each situation Cij is based

on expert opinion as indicated in table 1. An action threshold for

posterior odds (Opost*) can be defined as the value of Opost where

�uu(a1D:)~�uu(a0D:)

In this work Opost* was determined by numerical optimization.

The derived action threshold for the value of evidence V* is

calculated as:

V�~
O�post

Opri

ðEq:10Þ

where the prior odds for an ongoing outbreak Log10(Opri) is based

on historical experience as well as knowledge about risk factors.

To make a decision, the risk manager would multiply the prior

odds with the value of evidence using eq.3 to obtain the posterior

odds for an outbreak Opost(H1|E). If this odds goes over the action

threshold Log10(Opost*) where the expected utility from acting

exceeds the utility for not acting, a decision would be taken to act.

Performance assessment
Sensitivity, specificity and predictive values of positive and

negative tests are important concepts when planning animal health

monitoring. In the syndromic surveillance context a true positive

(TP) is when the system alerts when an outbreaks is ongoing. A

true negative (TN) is no alert and no outbreak. A false negative

(FN) is when the system does not alert when an outbreak is

ongoing, and, false positive (FP) is when the system alerts in the

absence of an outbreak.

Sensitivity (SE) is the probability that a true outbreak triggers an

alert:

SE~TP= TPzFNð Þ ðEq:11Þ

Specificity (SP) is the probability the there is no alert when no

outbreak is ongoing:

SP~TN= TNzFPð Þ ðEq:12Þ

The positive predictive value (PPV) is the probability of an

indicated outbreak being a true outbreak:

Figure 1. Value of evidence (V) and probability of observing 10 cases during a non-outbreak (Base) and outbreak situation (Out)
with different assumptions about the magnitude of an outbreak. The baseline cases are distributed according to NB mu = 5, theta = 2.55.
The value of evidence, log(V) is calculated as log10(p(n|outbreak)/p(n|baseline)). The distribution during an outbreak (Tot) is the sum of baseline cases
and outbreak cases. In the examples A to D outbreak related cases are distributed according to (A) NB(mu = 10, theta = 2), (B) NB(mu = 30, theta = 2),
(C) NB(mu = 10, theta = 5), (D) NB(mu = 30, theta = 5).
doi:10.1371/journal.pone.0111335.g001
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PPV~TP= TPzFPð Þ ðEq:13Þ

The Negative predictive value (NPV) is the probability that no

signal of outbreak is true absence of an outbreak:

NPV~TN= TNzFNð Þ ðEq:14Þ

The PPV and NPV depend on the (prior) probability of an

outbreak and in the performance assessment PPV was calculated

as:

PPV~
Ppri|SE

(1{Ppri)|(1{SP)zSE|Ppri

ðEq:15Þ

where:

Ppri = prior probability of ongoing outbreak in the week of

interest

Implementation
Models were implemented in R664 version 3.0.2 [22]. TheR-

Scripts are included as part of the material (Script S1, S2, S3, S4).

Dynamic regression was performed with function glm (package

{stats) [22] for Poisson regression and glm.nb (package {MASS})

[23]. The expected number of counts at time 6 were estimated

with the predict function of the respective package. Alternative

regression models were evaluated using the Akaike information

criterion (AIC). In addition adjusted deviance (Deviance/df) was

used as a measure of goodness of fit (GOF).

The receiver operating characteristic (ROC) curve was gener-

ated in R by simulation. Counts for negative weeks were sampled

from a Poisson distribution (function rpois in package {stats}) with

lambda equal to the predicted value for each week in 2011 and

2012 (n = 53000). Counts for positive weeks were generated by

sampling values from the fitted outbreak distribution (function

rnbinom in package {stats}) and adding to the baseline.

SE and SP were calculated for values of Log10(V) between -1

and +3 in steps of 0.01. The expected PPV for each value of V was

calculated as above using the prior odds for outbreak from three

scenarios.

Threshold values for posterior odds (Opost*) were estimated

using the Solver function of Microsoft Excel 2007.

Sources of data
As a proof of principle the value of evidence framework was

applied to neurological and respiratory syndromes in French

horses. The associated time series are named NeurSy and RespSy,

respectively. These data are collected through the passive

surveillance system ‘‘RESPE’’, the French network for the

surveillance of equine diseases (http://www.respe.net/). This

system collects the declarations from veterinary practitioners

registered as sentinels who fill online a standardized questionnaire

depending on the syndrome concerned. Along with their

declaration, veterinarians send standardized samples for the

laboratory diagnosis. Tests for equine influenza, equine herpes 1

and 4 and equine arteritis viruses are implemented in the case of a

respiratory syndrome, West Nile and equine herpes 1 viruses in the

case of a nervous syndrome. In our study, we used these weekly

time series.

Data from 2006 to 2010 were used to train our models and

define the background noise of each time series when no outbreak

occurs. We only used the data on the number of cases with no

positive laboratory test result in order to remove the outbreaks

from our datasets and obtain these outbreak free baselines. Then,

different regression models were tested.

No real outbreak of West Nile disease and divergent strains of

equine influenza (New-Influenza) occurred during this time.

Instead fictive test data were used for demonstrating outbreak

detection. The baselines in the test data were based on NeurSy

and RespSy data from 2011 to 2012 where unexplained

aberrations, not related to the diseases of interest, were filtered

out and fictive outbreaks inserted based on historical data. The

weekly counts from several real outbreaks were fitted together to

model the outbreaks of each disease. The prior odds for each

example are based on our knowledge on the epidemiology and risk

factors for transmission of the disease. New-Influenza is supposed

to have the same probability of occurrence over the year and the

Table 1. Expected utility associated with different actions and the derived decision threshold & decision.

Scenario A Scenario B Scenario C Large

Small outbreak in Autumn Medium outbreak in Winter outbreak in Spring

u(C00) Out2 act2 0 0 0

u(C10) Out2 act+ 20. 5 MJ 20. 5 MJ 20. 5 MJ

u(C01) Out+ act2 25.1 MJ 25.3 MJ 210.1 MJ

u(C11) Out+ act+ 23.9 MJ 24.1 MJ 26.3 MJ

Action threshold Log10(Opost*) 20.38 20.38 20.88

Log10(Opri) 20.99 23.03 21.78

Action Threshold Log10(V*) 0.61 2.65 0.9

Weeks w36 w39 w1 w4 w25 w28

Cases observed per week 3 4 5 7 5 7

Log10(V) 0.23 0.67 1.30 2.77 1.77 3.41

Log10(Opost) 20.76 20.34 21.71 20.34 20.01 1.63

Action? V.V* No Yes No Yes Yes Yes

doi:10.1371/journal.pone.0111335.t001
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prior odds is thus considered as constant over time. West Nile

disease transmission is linked to the vector’s level of activity and is

thus a seasonal disease. Different prior odds are set for each season

for this disease.

Data Accessibility
The datasets supporting this article have been uploaded as part

of the Material. The baseline data for NeurSy and RespSy are

included in Table S1 and Table S2 respectively. The outbreak

data for NeurSy and RespSy are included in Table S3 and Table

S4 respectively.

The software R can be freely downloaded from the CRAN

homepage (http://cran.r-project.org/).

Results

Case study – Neurological syndromes and WNV (NeurSy)
Non-outbreak situation. To define the background noise of

the NeurSy time series when no outbreak occurred, we fitted

alternative regression models based on Poisson and NB distribu-

tions from years 2006–2010 on data containing only cases with no

positive laboratory results (figure S1). The models evaluated

including sinod models with 1, 2 and 3 periods/year and season or

month as factorial variables. To account for differences between

years we dynamically calculate the average counts for 53

consecutive weeks (histmean). To ensure that an ongoing outbreak

will not influence the estimate, we used a 10 week guard band [24]

for calculation of histmean. For the Poisson as well as the NB

regression the best fit were obtained with the simplest model:

counts ~ sin 2ptð Þzcos 2ptð Þzlog histmeanð Þ

where t is time in years. For the Poisson regression we obtained:

AIC = 637.8, GOF(adjusted dev) = 1.156. For NB regression the

corresponding parameters were: AIC: 639; GOF = 1.080. The

inverse theta of the NB model was 10.45. Considering that the NB

distribution converges to the Poisson distribution when inverse

theta approaches infinity and that the GOF and AIC for the

Poisson and NB models were very similar we conclude that the

Poisson model adequately describes the random distribution in this

data.

Outbreak definition. Three observed WNV outbreaks were

used to simulated the outbreaks in our model: French outbreaks in

horses in 2000 [25] and 2004 [14] where 76 and 32 confirmed

cases were reported respectively among 131 and 72 horses

presenting nervous symptoms, and the Italian outbreak in 1998

[26] where 14 cases of WNV in horses were investigated by week

of onset.

The weekly counts from these three outbreaks were fitted to the

NB distribution. The resulting outbreak distribution was

NB(mu = 4.45, theta = 0.94). Based on this we predicted a median

number of outbreak-related cases per week during an outbreak to

be 3 with a 95% confidence interval of 0 to 18 cases.

Outbreak detection. Three scenarios were tested. The

probability of an outbreak is not constant over the year, instead

the relative probability of an outbreak occurring in spring (week 10

to 30), summer/autumn (week 31 to 46) and winter (week 47 to 9)

is approximately 1:5:0.04. We chose to test one scenario per time

period. i.e. the scenario A occurs in autumn, scenario B in winter

and the scenario C in spring. For each scenario, the Poisson model

was applied on the test set and one simulated peak/outbreak was

inserted into the baseline (Figure 2). For each week the value of

evidence was calculated using Eq5 where the probability of the

observed number of cases during no outbreak p(E|H1) and during

outbreak p(E|H0) were calculated using the fitted model.

Examples of the calculation of V during a non outbreak (scenario

A) and during outbreaks (scenarios B and C) are shown in

Figure 3.

Decision scenarios
The decision making in the outbreak scenarios for both

examples is summarized in table 1.

The expected utility u(Cij) for each scenario considered are

given together with the action thresholds for posterior odds (Opost*)

and value of evidence (V*) in favor of an outbreak. That is the

situation for which the decision to act and not act have the same

expected utility.

The expected utility of taking action in response to false alert

(u(C01)) represents the costs for increased surveillance and

preventive actions such as mosquito control for WNV. The utility

of not taking action when there is an outbreak (u(C10)) represents

the costs for control and economical and socio-economical

consequences of an outbreak when the response to the outbreak

was delayed. The losses may depend on season and in the example

we have assumed that a WNV outbreak in summer or spring in

the south of France results in extra costs due to its impact on

tourism. Finally the utility of taking action when there is an

outbreak (u(C11)) represents the costs for surveillance plus the

economical and socio-economical impact in case of a timely

response to the outbreak.

For NeurSy (Scenarios A to C), the prior odds in the table are

based on the assumption that an outbreak of WNV is likely to

occur every 3 years over an averageof 5 weeks. The costs used are

fictional but proportional to their expected relative contributions.

During the most at risk season regarding the probability of

disease occurrence (Highest Opri), the alarm threshold is low and 4

cases are sufficient to trigger an action (See Table 1. scenario A).

For the season less at resk, the expected utilities are similar than

during the most at risk season (Opost* are equal), but no action is

implemented even if 7 cases are reported because they are unlikely

due to WNV (Low Opri) (See Table 1. scenario B).

Sensitivity, specificity and receiver operating
characteristics

The sensitivity and specificity of a surveillance system is defined

by the chosen action threshold. The tradeoff between sensitivity

and specificity of a model may be summarized in a receiver

operating characteristics (ROC) curve [27]. The ROC curve

corresponding to the case WNV case study is shown in figure 4A.

Figure 2. Application of NeurSy model on the test dataset. The
vertical lines bounds peaks inserted during Year 1, week 36 to 39
(Scenario A), Year 2, week 1 to 4 (Scenario B) and Year 2, weeks 24 to 28
(Scenario C).
doi:10.1371/journal.pone.0111335.g002
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The values of SE and SP arising from scenarios A to C are

indicated by letters. The PPV i.e. the probability that an alarm

corresponds to a real outbreak [28] depends not only on SE and

SP but also on the prior probability of an outbreak as indicated in

figure 4B.

Case study 2– Respiratory syndromes and equine
influenza (RespSy)

The same approach was successfully applied to the RespSy

dataset. However, in this case the analysis indicated a significant

degree of overdispersion in the weekly counts. Using the same

regression model (counts , sin(2p t) + cos(2pt) + log(histmean)) the

NB model had lower AIC (1141 vs 1284) and GOF closer to one

(1.14 vs 2.54) compared to the Poisson model. The theta

parameter for the NB distribution was 1.78, and resulting in a

much wider confidence interval for the expected number of cases

in a non-outbreak situation (Figure S2) compared to the Poisson

model (Figure S3). When the NB and Poisson models are applied

to the same test dataset (Figure S4, S5) the latter will report a value

of evidence for the inserted peaks (D, E) that is several orders of

magnitude higher than does the NB model. The Poisson model

also reports peaks with Log(V) close to 2 several times per year

(Figure S5). An underlying assumption in the Poisson model is the

absence of overdispersion and, when this assumption does not

hold, the Poisson model underestimates the probability of

obtaining a large number of reported cases in the non-outbreak

situation. Consequently it overestimates the value of evidence in

favor of an outbreak. The overdispersion may be due to clustering

in reporting. In the surveillance protocol veterinarians are

encouraged not only to declare the diseased horse but also 1 to

3 additional horses (from the same stable), suspected to be in the

incubation phase of influenza.

Discussion

In this work we have demonstrated how the value of evidence

concept may be incorporated in a decision support system for

syndromic surveillance and how the output may be used for risk

assessment and informed decision making. According to the OIE -

Terrestrial Animal Health Code [29] the decision to take action

involves balancing costs for activities against economical and social

consequences of a delayed response to an outbreak is the

responsibility of the risk manager and should be separate from

risk assessment.

Thus, although it is perfectly possible to build a system that

outputs a best decision, the proposed approach is in concordance

Figure 3. Value of evidence (V) and probability of observing n cases of neurological syndromes in a week during a non-outbreak
(Base) situation and during a WNV outbreak (Out). Out is the distribution of outbreak related cases and Tot is the total number of observed
cases per week during an outbreak. (A) Scenario A, year 1 week 36, l= 1.08, (B) Scenario B, year 2 week 1. l= 1.08, (C) Scenario C, year 2 week 27,
l= 0.81.
doi:10.1371/journal.pone.0111335.g003

Figure 4. (A) ROC curve for outbreak detection of WNV based on neurological symptoms. Letters A–C indicate the decision threshold for Log(V*) in
scenario A–C respectively (B). Positive Predictive Value (PPV) for different thresholds of Log10(V*) given the prior probabilities of scenario A, B and C.
The position of the letters indicate the action threshold for the respective scenario.
doi:10.1371/journal.pone.0111335.g004
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with the risk analysis framework [29] by offering explicit

separation of assumptions (Pprior), scientific evidence (V) and

criteria for decisions and a transparency of how the evidence is

evaluated. In forensics, the value of evidence is typically presented

to the court as a qualitative statement in which fixed verbal

expressions correspond to specified intervals for V [10,30]. This

approach may be useful also when presenting epidemiological

results. For example a value of Log10(V) in the range 1–2 may be

expressed as ‘‘results provide moderate evidence to support that an

outbreak is ongoing’’. Alternatively intervals for V and/or Opost

could be expressed using a color scale to produce maps

representing the results from surveillance and risk of ongoing

outbreaks of different diseases.

The model presented here is intended as a proof of concept and

when setting up an operational syndromic surveillance system it

will, as usual, be necessary to perform a careful evaluation of the

baseline model to ensure that the regression model does not overfit

to the baseline data. When designing the current model it was

evident that high dimensional regression models were prone to

find artefactual seasonal patterns that could severely bias the

estimated probability of observing a number of counts in a

particular week (results not shown). In the current implementation

the model learns seasonal patterns and distribution of residuals

(Inverse theta parameter of NB distribution) from manually

curated data whereas the expected yearly average (histmean) is

continuously updated from outbreak-filtered weekly data. Natu-

rally the value of evidence concept may also be applied to a system

where the baseline model is automatically retrained on new data.

However, since the distribution parameter (theta) of the NB

distribution would determine the cutoff in the filtering algorithm

we argue that it is safer not to use the filtered data for estimation of

the same parameter without prior inspection of the data. The same

conclusion holds for seasonal patterns.

The overdispersion in the RespSy dataset is largely due to

veterinarians sampling several horses in a stable upon suspicion.

Thus, in this special case it might be possible to handle the

overdispersion by pre-processing the data to remove redundant

cases, provided that the same pre-processing is applied to new data

on weekly basis. However, when the mechanism behind over-

dispersion in baseline counts is not so transparent that automatic

filtering out redundant cases is possible the NB model will support

a correct interpretation of the value of the peak in the count data.

As indicated in Figure 4 the tradeoff between SE and SP differs

between seasons. This is natural since in case the (prior)

probability of an outbreak differs between seasons the average

sensitivity SEavr and specificity SPavr will be given by:

SEavr~

Pn
i~1 (di|SEi|Pi)Pn

i~1 (di)
ðEq:16Þ

SPavr~

Pn
i~1 (di|SPi|(1{Pi))Pn

i~1 (di)
ðEq:17Þ

where:

SEi = sensitivity in season i

SPi = specificity in season i

Pi = (prior) probability of outbreak in season i

di = (relative) duration of season i

Thus, by incorporating prior knowledge about the seasonality of

the diseases of interest it is possible to achieve a high average

sensitivity without sacrificing the PPV and SP. Another important

attribute of outbreak detection is timeliness. Whereas there is no

general measure of timeliness [28] the number of cases are often

small in the first week(s) of an outbreak, increasing the sensitivity

(i.e. lowering the threshold for V and thus n) in the high risk season

will result in improved timeliness as well as average sensitivity.

In this work we have introduced the framework using models

that evaluate evidence from each week independently. Although

this simple approach is suitable for presenting the framework and a

reasonable choice for an early warning system, the evaluation of

evidence from one week at a time is not a fundamental limitation

of the approach. A model accounting for accumulation of evidence

over several weeks may, for example, be constructed by

considering, for each week in the interval [0…j] the conditional

probability

P E DHt-ið Þ

Where

t is the week of interest

Ht-i is the hypothesis that an outbreak started i weeks before t

Et-n is the number of reported cases in week [t-i… t]

The probability of observing n outbreak-related cases will not be

uniform throughout the outbreak but depend on whether the

outbreak is in its first, second or third week etc. When accounting

for evidence from several weeks the value of evidence in favor of

the hypothesis H1 ‘‘An outbreak is going on’’ against H0 ‘‘An

outbreak is not going on’’ will be dependent on the prior

probability of an outbreak starting in any of the preceding weeks.

This is due to the fact that H1 is composed of several sub-

hypotheses:

H1 i = o: An outbreak started in week t

H1 i = 1: An outbreak started in week t-1

..

H1 i = j: An outbreak started in week t-j

Consequently p(H1) depends on the relative probability of these

sub-hypotheses. The value of evidence in favor of an outbreak

going on in week of interest (V) can be calculated as the Bayes

factor (B):

V~B~
Opost

Opri

ðEq:18Þ

where

Opost is the posterior odds of an outbreak going on in week of

interest

Opri is the prior odds of an outbreak going on in week of interest

Although in the more complex models the calculation of the

value of evidence would depend on the prior probability of

outbreak, the framework is still applicable for communicating the

evidence to decision makers. Essentially any Markov Chain model

could be applied in the evaluation of evidence framework and the

choice of complexity is a tradeoff between on the one hand realism

and on the other hand simplicity and transparency. However, we

anticipate that in most situations there will not be sufficient data to

support very complex models.

Supporting Information

Figure S1 Fitted baseline and one sided 95% confidence
interval for weekly counts for case NeurSy Years 2006–
2010. Poisson regression using model: counts , sin(2p t) + cos(2p
t) + log(histmean).

(TIF)
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Figure S2 Fitted baseline and one sided 95% confidence
interval for weekly counts for case RespSy Years 2006–
2010. NB regression using model: counts , sin(2p t) +
cos(2p t) + log(histmean).
(TIF)

Figure S3 Fitted baseline and one sided 95% confidence
interval for weekly counts for case RespSy Years 2006–
2010. Poisson regression using model: counts , sin(2p t) + cos(2p
t) + log(histmean).

(TIF)

Figure S4 Application of RespSy NB-model on the fictive
test dataset. The vertical lines bounds peaks inserted during

Year 1, week 36 to 39 (D), Year 2, week 24 to 28 (E). The gray

points indicate historical data used to calculate the historical

average (histmean).

(TIF)

Figure S5 Application of RespSy Poisson-model on the
fictive test dataset. The vertical lines bounds peaks inserted

during Year 1, week 36 to 39 (D), Year 2, week 24 to 28 (E). The

gray points indicate historical data used to calculate the historical

average (histmean).

(TIF)

Table S1 NeurSy baseline 2006–2012.
(CSV)

Table S2 RespSy baseline 2006–2012.
(CSV)

Table S3 NeurSy outbreak distribution.

(CSV)

Table S4 RespSy outbreak distribution.

(CSV)

Script S1 Script used to analyze time series data.

(R)

Script S2 Script used to illustrate the calculation of V in
figures 1 and 3.

(R)

Script S3 Script used to prepare ROC and PPV plots.

(R)

Script S4 Script used to remove aberrations from
baseline when preparing fictive test data.

(R)
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