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Abstract
Background: Simulation methods can assist in describing and understanding complex networks
of interacting proteins, providing fresh insights into the function and regulation of biological
systems. Recent studies have investigated such processes by explicitly modelling the diffusion and
interactions of individual molecules. In these approaches, two entities are considered to have
interacted if they come within a set cutoff distance of each other.

Results: In this study, a new model of bimolecular interactions is presented that uses a simple,
probability-based description of the reaction process. This description is well-suited to simulations
on timescales relevant to biological systems (from seconds to hours), and provides an alternative
to the previous description given by Smoluchowski. In the present approach (TFB) the diffusion
process is explicitly taken into account in generating the probability that two freely diffusing
chemical entities will interact within a given time interval. It is compared to the Smoluchowski
method, as modified by Andrews and Bray (AB).

Conclusion: When implemented, the AB & TFB methods give equivalent results in a variety of
situations relevant to biology. Overall, the Smoluchowski method as modified by Andrews and Bray
emerges as the most simple, robust and efficient method for simulating biological diffusion-reaction
processes currently available.

Background
Molecular biology is moving to an age where the amount
of data and its complexity challenge our efforts to under-
stand it. Many recent experimental studies have concen-
trated on obtaining accurate protein-protein interaction
maps for genomes, ranging from unicellular organisms to
human. Combining experimental data with modelling
makes it possible to tackle this new wealth of information
and study the way function emerges from protein interac-
tion networks (for reviews of this field see references [1-
3]).

An effective approach to simulating interaction networks,
and one which has been used extensively in building cel-

lular models, is through the use of ordinary differential
equations (ODEs) (see review by Tyson etal [4] and refer-
ences therein). ODEs, however, suffer from two important
limitations.

The first limitation is that they are designed to follow the
bulk concentration of the different molecules. In many
cases, where small quantities of molecules are involved,
the dynamics of the system are known to deviate substan-
tially from the deterministic prediction of the ODEs and
are better described by stochastic laws [5]. This can be
overcome by implementing stochasticity into the models,
which can be achieved in three ways: a first way is to use
ODEs where stochastic perturbations have been added,
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mimicking the way the concentration of molecules fluctu-
ates in time [6]; a second way is to use the method devel-
oped by Gillespie which follows reactions as discreet
events in time [7]; and a third way – the one taken in the
present work – is to explicitly follow the state of all the dif-
ferent molecules in the system independently [8].

A second limitation of the ODE approach, and of subse-
quent stochastic improvements, is that diffusion is not
explicitly taken into account, which means that the effect
of concentration gradients cannot be followed [9-11].
Concentration gradients can themselves be modelled,
however it then becomes problematic to include the sto-
chastic components (Virtual Cell approach [12-14] and E-
Cell [15,16]).

One way of modelling the stochastic as well as the diffu-
sive aspect of the problem is by explicitly modelling the
diffusion and interactions of the individual molecules
contained in the system. Such spatial simulations have
been performed by Franks etal. to study the synaptic cleft
using their software M-Cell [10]. Also, recent simulations
by Lipkow etal. have successfully modelled the individual
molecules and their diffusion to show the presence of a
protein concentration gradient in the motor response in
Escherichia coli using their software SmolDyn [17,18].
Another way is to discretise space on a lattice and to use
extensions of the Gillespie algorithm such as in SmartCell
[11,19] and MesoRD [20,21].

Bimolecular interactions have previously been modelled
by considering a simple local contact criteria, such a
scheme is used in M-Cell [10]. A more formal approach to
modelling these interactions follows the description of
diffusion limited chemical processes published by Smolu-
chowski in 1916 [22]. In this approach a chemical reac-
tion is considered to take place when two chemically
reactive entities A and B come within a certain distance,
σb, from one another. This distance, called the reaction
radius, is determined by the reaction rate and the diffu-
sion constants of the two species, such that the reaction
rate, k, is given by:

k = 4 πD+ σb  (1)

where D+ = DA + DB, and DA and DB are the diffusion con-
stants of A and B.

The Smoluchowski approach requires the diffusion proc-
ess to be followed using very short timesteps as the dis-
tance between the two entities must be precisely
monitored over time. However, since the detailed diffu-
sion process is of little interest in biological terms, this
requirement translates into an unnecessary computa-
tional overhead, as illustrated in Figure 1. In order to cir-

cumvent this problem, Andrews and Bray recently devised
a scheme which corrects σb for longer timesteps, making it
more useful for simulating biological systems [17].

The Smoluchowski approach seems to be the most appro-
priate method currently available to study many impor-
tant biological systems, however a potential weakness of
the Smoluchowski approach is the presence of a sharply
defined reaction zone (cf. Figure 1). The aim of the
present study is to investigate the potential benefit of
replacing this reaction zone by a more realistic probability
distribution of interaction between two chemical objects.
In this scheme, the reaction is not automatic when two
reacting objects come within a certain range of each other.
Instead, the decision whether to allow this interaction is
made based on a probability. This probability of interac-
tion is dependent upon – among other factors – the dis-
tance between the objects. Potential benefits of the study
include more accurate results and lower computational
costs, thereby allowing for more complicated systems to
be investigated.

The approach has been implemented into a freely availa-
ble simulation package, SoftCell. In the SoftCell software
cellular membranes are defined by tessellation using tri-
angles and rates of import/export are assigned to each
chemical entity. This tessellation approach makes it possi-
ble to define complicated surfaces and any number of
internal organelles one might wish to include. The pro-
gram is written in C++ and is linked with the scripting lan-
guage, Python, allowing for control and ease of analysis of
the data generated. Files defining protein objects, reac-
tions, and membranes use an XML format.

The model
In the present approach we consider proteins to be freely
diffusing point-like objects. On the scale of a whole cell
which is the scale we are interested in, long range forces
between the objects are shielded by the solvent and can
therefore safely be ignored. Diffusion is formally mod-
elled by Brownian dynamics, taking intermolecular forces
explicitly into account, and integrating over the velocities
of the object [23]. In the absence of long-range forces, the
Brownian dynamics treatment of diffusion reduces to a
random walk process. The random walk process only con-
siders the position of the objects and not their velocities
thereby reducing considerably the computational cost;
this approach was therefore used in this work. It is also
assumed that any differences in reaction kinetics resulting
from the different possible orientations of two reacting
molecules relative to each other at the time of encounter
can safely be integrated into an average reaction kinetic, so
that the objects can be treated as point-like. Interactions
between these point-like objects are governed by a set of
reaction rules (described in detail below) that are
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designed to emulate the biological system of interest as
closely as possible, as illustrated in Figure 2.

Reaction rules
We are interested in the reaction probability: the probabil-
ity that two entities interact during a time step given that
they can interact with reaction rate k, their diffusion rates
are D1 and D2 and they start a distance d apart at the begin-
ning of the time interval Δt. This probability is illustrated
in Figure 1C. The reaction between two diffusing particles
can be considered to occur in two steps: firstly the encoun-
ter of the two entities through diffusion, followed by the

actual chemical reaction. Let us consider two freely diffus-
ing chemical entities, A and B, starting a distance d0 from
each other at time t0. At any time t later the rate κAB (t|d0,
t0) of the reaction between entities A and B can be
expressed as:

where  (t|d0, t0) is the probability of the two entities

coming into contact at time t and  is the rate of the

reaction once in contact, averaged over all possible orien-

κ AB
C
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Comparison of different approaches to modeling chemical reactionsFigure 1
Comparison of different approaches to modeling chemical reactions. Comparison of different approaches to model-
ling chemical reactions: (A) the original Smoluchowski algorithm, (B) the corrected Andrews and Bray approach and (C) the 
present probability-based model. The reaction radii are shown in black in approaches (A) and (B). Probability densities are indi-
cated by the hashed lines for approach (C).
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tations of the two entities relative to each other. Both parts

of this equation:  (t|d0, t0) and  can be estimated

as described below.

The reaction rate κAB (t|d0, t0) can be integrated over a sim-
ulation timestep Δt to provide the probability of at least
one reaction taking place in that timestep. We are inter-
ested in the probability of at least one event taking place
during the time interval Δt, i.e. 1 - P(no event during Δt).
The process under consideration is a Poisson process with
a time dependent rate of the event taking place. Given the
rate κ(t) of an event taking place at a time t, the probabil-
ity, PAB, of at least one reaction taking place during that
time interval takes the general form [24,25]:

PAB (Δt) = 1 - e-I(Δt)  (3)

where

Such that the probability of a reaction taking place during
timestep δt can be expressed as:

where κAB (t) is given in equation (2).

The contact probability:  (t|d0, t0)

The probability of contact,  (t|d0, t0), is determined by

the diffusion process of the two entities A and B during the

time interval Δt = t - t0. The interacting bodies follow the

laws of diffusion such that the probability of finding a
given entity in an infinitesimal volume element dV, a dis-

tance d away from its starting position a time Δt later, is
given by the well known Gaussian distribution:

, where D is the diffusion constant

of the entity [26].

The present approach is illustrated in Figure 3. The two
entities diffuse freely starting a distance d0 apart. The prob-

ability of them coming into contact increases with time
and reaches a maximum. Subsequently the two entities
diffuse further and the probability of them coming into
contact decreases with time. A mathematically equivalent
description is given if A is considered to be diffusing with
diffusion constant D+ = DA + DB while B remains station-

ary. It follows that the probability of contact,  (t|r0,

t0), is given by:

where D+ = DA + DB, Δt = t - t0 and δVC is a small contact
volume defined such that if two entities are found to be
within this volume, they are considered to be in contact.
This small contact volume, δVC, will be considered further
below.

The reaction rate: 

In order to get a good first approximation for  (t|d0,

t0), we initially consider the well-mixed limit. In this limit
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Possible applications of the methodFigure 2
Possible applications of the method. An example of the kind of simulation this approach is designed for. This example 
illustrates a simulation of Schizosaccharomyces pombe yeast cell 10 μm long. Different types of proteins are shown in different 
colours, each has its own diffusion, reaction and location (nuclear or cytosolic) characteristics.
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the distribution of the two entities A and B is uniform over
space. This approximation is thus only valid in the long
timestep limit. For short timesteps, the approximations

break down and a correction to the reaction rate, , has

to be introduced. An exact analytical solution has recently
been presented that is also correct for short time steps
[27]. However, the mathematics involved are complex
and difficult to implement; the approach used here,
although approximate, is simpler and is not expected to
alter the findings significantly.

The well-mixed limit

Let us consider the simple reaction:  occur-
ring in a finite volume V. To first order, the rate of change
in the number of molecules Y is:

where nA, nB and nY are the number of molecules of A, B
and Y (respectively), NA is Avogadro's constant and k is
rate of the reaction. The rate of change in nY can also be
expressed as:

where  is here the ensemble average probability of

any two entities A and B being in contact in volume V and

 the rate of reaction if they are in contact.

The objects are considered to be uniformly distributed
over the volume V such that the probability of A and B

occupying the same contact volume δVC, , can be

expressed as:

where δVC is the same infinitesimal volume as in equation
(6). By combining equations (7), (8), and (9), we can
extract the rate of the reaction if A and B are in contact:

Combining equation (10) and  from equation (6)

into equation (2), the rate of the reaction between entities
A and B, starting a distance d0 apart at a time t later, is

given by:

In doing this, notice that the contact volume δVC cancels
out of the equations. This effectively removes any infor-
mation about the size of the particles from subsequent
considerations.

Inserting  from equation (11) into equation (4),

I(Δt) can be solved analytically using the standard inte-
gral:

where Erfc is the complimentary error function defined
by:

such that I(Δt) has the analytical form:

Finally we can express the probability  of a reaction

taking place between entities A and B, starting a distance

d0 apart, during the time interval Δt as:
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Probability density functionsFigure 3
Probability density functions. The diffusion of the two 
entities A and B (red and blue) gives rise to a certain proba-
bility of them coming into contact (green). The two entities 
diffuse freely starting a distance d apart. As time goes by the 
probability of them coming into contact increases and 
reaches a maximum. Subsequently the two entities diffuse 
further and the probability of them coming into contact 
decreases with time (note: this is a 1D projection of the 
probability density profile, in 3D the integral over the proba-
bility density is correctly normalised to 1).

Δt
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The probability of two chemical entities interacting in a
timestep Δt is thus expressed in equation (15) in terms of
the reaction rate k, the sum of the diffusion constants of
the two entities D+ and the time interval Δt. This approach
provides a good description of the interactions in terms of
the underlying diffusion process and reactivity of the two
entities.

Short timestep correction

The equations above hold for situations where the system
can be considered to be well-mixed. However, this
assumption breaks down for small timesteps: as chemical
entities react over time, there tend to be fewer potentially
interacting partners close to each other so that the distri-
bution of the two entities is no longer uniform. In the
long timescale limit this is not a problem as the system is
well-mixed by each diffusion step and the approximations
hold. At each timestep, the reaction process creates 'dips'
in the probability distribution of the entities, the spatial
extent of these 'dips' is comparable to the spatial extent of
the probability of reaction. In order to remain well-mixed
the distance covered by one step of diffusion must be
greater than the spatial extent of the 'dips' created by the
reaction process. For diffusion constants typical of bio-

molecules, the spatial width at half-maximum of 

(t|d0, t0) goes to ~0.1 μm for Δt of the order of seconds.

Considering this distance as being covered by diffusion,

this gives us a typical timescale of Δt ≥ 0.01 s. The system
can therefore be assumed to be well-mixed for timesteps

of Δt ≥ 0.01 s. For shorter timesteps, this effect can be cor-
rected for, as will be shown below.

Due to the reaction process, the average concentration
around a chemical entity is less than predicted by the uni-
form distribution. The desired rate can be derived by cor-

recting  by a scaling factor as follows:

The procedure we used for doing this is very similar to that
used by Andrews and Bray [17] to correct for the same
effect in the Smoluchowski approach and is outlined
below. More elaborate mathematical considerations of
this process can be found in the recent paper by Zon and
Wolde 2005 [27].

Using the rate of reaction upon encounter from equation
(16), the probability of the reaction taking place after each
diffusion step is now given by:

where Δt is the timestep of the simulation and we use the

substitution .

For the purposes of the correction, we are interested in
average effects, so from now on we consider the average
concentrations of entities A and B and not the positions of
entities A and B. Let us consider the radial concentration
ρB(r, t) of entity B around entity A, with A considered to
be static at r = 0, while entity B has diffusion constant D+
= DA + DB.

The radial concentration ρB(r, t) of entity B around entity
A, at time t is propagated for a simulation timestep, Δt, to
give ρB(r, t + Δt) using a Green's function [28]:

where the Green's function Gs(r, r') is given by:

The entity A is then allowed to interact with entity B such
that the new concentration of B is given by:

where PAB (r) is the probability of A and B interacting in
the following timestep from equation (17).

The reaction step acts as a sink for the concentration of B,
while the concentration of B is assumed to be constant at
r = ∞. The long-distance equilibrium solution for ρB(r) is
known to be of the form [26,29]:

This allows us to solve numerically for ρB(r, t + Δt) around
r = 0 while using an analytical extension for long distances
(long distance was defined as r > rP, rP such that PAB (r) =
10-6). Equation (18) is then split into a numerical and an
analytical part:
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By inserting (21), the analytical extension,  (r, t + Δt),

can be derived and is given by:

where: 

A diffusion step is performed using numerical integration
for the remainder of equation (23). The value of the con-

stant a in  (r, t) is found by fitting the last 10% of

ρB(r, t) relative to rP after each diffusion step. After each

diffusion step the two entities are allowed to interact fol-
lowing the probability given in equation (17). In order to
achieve a steady state, entity A is left unaffected by the
reaction process. The process of diffusion/reaction is

repeated until the radial concentration ρB(r, t) reaches a

steady state: ρB(r, ∞).

The effective rate of the reaction is given by:

The values of keff were determined for a range of values of
the correction factor, C, and variable s. Using this array of
data it is then possible to find the correct value of the cor-
rection factor, C, for any pair of values of the desired reac-
tion rate and simulation timestep: (keff, Δt).

Figure 4 shows examples of the probability distribution
and corresponding reaction radius, σb, using the Smolu-
chowski approach for different timesteps. As can be seen,
at large timesteps, the distribution of B before the reaction
is close to uniform and the correction factor correspond-
ingly small. On the other hand at small timesteps, the
probability distribution of B, before reaction, is far from
uniform and the correction factor, C, is large. For k = 106

M-1s-1 and DA = DB = 1 μm2s-1 the correction factors, C, are
1.12, 1.46, 4.48 and 4.44 103 for timesteps of 10-1s, 10-2s,
10-3s and 10-4s, respectively. Figure 4 also illustrates the
fact that as the timesteps diminish the corrected reaction
probability converges with the Smoluchowski cutoff at σb.
For short timesteps the two approaches appear to be
equivalent.

Figure 4 also shows the radial probability distribution of
the reactants for the different timesteps. These distribu-
tions are continuous throughout the reaction region. In
contrast, those reported by Andrews and Bray show a
strong discontinuity due to the sharply defined reaction
radius [17].

The challenge of long timesteps
Relation (15) holds only for a pair of interacting mole-
cules. In the more general context of an actual chemical
reaction, the number of potential reactive partners at any
one time can be much higher. The assumption is that dur-
ing a time step Δt the probability of an entity interacting
with its closest neighbour, Pclosest, is much higher than the
probability of it interacting with its next nearest neigh-
bour, Pnext nearest: Pclosest Ŭ Pnext nearest.

This condition will clearly be fulfilled if the average dis-
tance, dtravel, travelled by an entity during the time interval

Δt is less than the average distance between particles, d.

The average travel distance is: dtravel = ,

where D is the diffusion constant. The average interparti-

cle distance given by: , where V is the volume

and N is the number of particle, can also be expressed in

terms of the concentration as: d ∝ C-1/3. where C is the

concentration. For typical biological situations, C � μM

ml-1 and D � μm2s-1, such that the condition reduces to Δt
<~0.002 s.

When this condition is not fulfilled, a given entity can in
principle interact with several other entities at any given
timestep. This will affect the probability of the reaction
with any given particle as reactions are considered mutu-
ally exclusive. In principle these probabilities can be cal-
culated at each timestep during the simulation so that the
correct statistics are reproduced. However, it was decided
that the resulting extension to the code would introduce
extra computational overhead, without significant bene-
fit, and was not implemented. On the other hand, simply
assuming that entities can interact with at most one other
entity in the following timestep, when in fact they can
interact with several, leads to the simulated reaction tak-
ing place at a rate greater than the expected rate.

Another problem which emerges for long timesteps con-
cerns boundaries: for reactions, the algorithm assumes
free diffusion in the space around the entities. This
assumption is mostly correct when the timestep is small
but at large timestep, the chance of encountering a bound-
ary during that timestep become significant. At that point
the free diffusion assumption assumed in the previous
equations breaks down leading the reaction happening

ρ ρ π ρB B
r

s Br sr t t r t G r r r r r t GP

P
( , ) ( , ) ( , ) ( , ) (+ = ′ ′ ′ ′ + ′∫ ∫

∞
Δ

0
24 d ana rr r r r, )′ ′ ′ ( )4 222π d

ρ ρ π ρB B
r

s Br t t r t G r r r r r t tP( , ) ( , ) ( , ) ( , )+ = ′ ′ ′ ′ + + ( )∫Δ Δ
0

24 23d ana

ρB
ana

ρ
πB s Pr t t

s

r
G r r E E

a

r
E Eana( , ) ( , ) ( ) ( )+ = + + + − ( )+ − − +Δ

2

1
2 2

24

E
r r

s
P

± = ±⎛
⎝⎜

⎞
⎠⎟

Erfc
2

ρB
ana

k P r r r rAB
Beff d= ∞ ( )∞

∫0
24 25( ) ( , )ρ π

d D ttravel = 6 Δ

d
V

N
= ( ) /1 3
Page 7 of 11
(page number not for citation purposes)



Algorithms for Molecular Biology 2006, 1:25 http://www.almob.org/content/1/1/25

Page 8 of 11
(page number not for citation purposes)

Radial probability densities and the correction factor CFigure 4
Radial probability densities and the correction factor C. The radial probability distribution, ρB, before interaction with A 
(green), and after (blue). The blue distribution evolves to the green distribution after one step of diffusion. The probability of 
interaction is shown in black. The probability of interaction as given by the corrected Smoluchowski approach of Andrews and 
Bray is also shown in red (P(r) = 1 for r <σb). Four timesteps are shown: Δt = 0.1s, 0.01s, 0.001s, 0.0001s. The correction fac-
tors and corrected Smoluchowski binding radii, σb, corresponding to the different timesteps are also shown, k = 106 M-1s-1, and 
DA = DB = 1 μm2s-1.
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too fast in the simulation. Simply put, entities close to
boundaries have less volume in which to diffuse and,
therefore, a higher chance of encounter than entities far
from any boundary. We can expect this effect to become
important when the scale of the system becomes compa-
rable to the typical distance travelled during a timestep.
For biological systems on the μm scale, and chemical enti-
ties diffusing with diffusion constants ~μms-1, this sets an
absolute upper limit on the timesteps at ~0.1 s. Properly
taking into account these boundary effects is beyond the
scope of the present work. However, boundary effects are
not expected to play an important role as the timescale for
these effects is ~0.1 s, which is a much longer timescale
than the limit previously set by single particle interaction
at ~0.002 s.

Validation of the model
The model was tested in a number of ways. The first test
was performed by simulating an enzymatic reaction: A +
E → B + E. 1000 molecules of A were simulated with 10
molecules of E and the effective reaction rate was meas-
ured by fitting the change in the concentration of A over
time. We ran 4 sets of simulations with the following
parameters for the diffusion rate d of the chemical objects
and timestep Δt: 1) d = 1, Δt = 0.01; 2) d = 1, Δt = 0.001;
3) d = 5, Δt = 0.01; 4) d = 5, Δt = 0.001. For each set of d
and Δt, the reaction rate k was successively set to 106.0,
106.2, 106.4 and 106.6 M-1s-1. For comparison purposes,
these 4 sets of runs were performed using both the present
model and the Andrews and Bray model. The corrected
binding radius used in the Andrews and Bray approach
was calculated using the code provided by the authors.

As has been pointed out by Andrews and Bray [17], in
such simulations the measured rate of the reaction varies
with time. This is due to the fact that the simulation starts,
the local concentration gradient is not yet established, and
the initial reaction rate is, therefore, higher than the
desired rate as the local concentration gradient is not yet
established. Subsequently, the system tends towards a
steady state, and the reaction rate is correctly predicted by
both methods with 99% accuracy when using the correc-
tion term. The two methods were statistically indistin-
guishable over the four sets of runs (slope and intercept of
kmeasured = f (kdesired) were identical with p > 0.55).

The model was also tested for reactions at low numbers of
reactants (nA = 10) where the effective rate of the reaction
becomes subject to significant stochastic fluctuations.
10000 runs were performed using both the present and
corrected Smoluchowski approaches; the reaction rate was
determined for each run. Again four sets of runs were per-
formed using the same diffusion constants and timesteps
as described above. The reaction rate used was 106 M-1s-1.
The distribution of the reaction rates at low concentra-

tions produced by the present and corrected Smolu-
chowski approaches were compared and found to be
indistinguishable (p > 0.2 on t-test).

Finally, the present and corrected Smoluchowski
approaches were also compared in a situation containing
a concentration gradient. The concentration gradient was
produced by a point source of a molecule A (k = 2 s-1)
which reacts with an enzyme E ([E] = 40 nM) with kE = 106

M-1s-1. The diffusion constants and timestep parameters
where again varied as previously. The gradient generated
were found to be identical (p > 0.9 on U-test). All statisti-
cal analyses were performed using the R package [30].

Example
In a typical cell, the concentration of a given protein
inside the nucleus depends on the balance between the
rate at which it is being translated from mRNA in the
cytosol, the rate at which it is being transported into the
nucleus and the rate at which it is being degraded. In turn,
the amount of mRNA present in the cytosol depends on
the rate at which the gene is being transcribed in the
nucleus, the rate at which it is being exported and the rate
at which it is being degraded. This mechanism enables the
concentration of protein in the nucleus to be tightly con-
trolled.

As an illustration of the versatility of the present approach
this simple system was simulated. Our model system,
illustrated in Figure 2, consisted of a rod-shaped cell with
a nucleus at its centre. Inside the nucleus, a gene is
switched on at time t = 0, for 20 minutes. Transcription
events then take place, generating mRNA molecules.
These mRNA molecules diffuse out of the nucleus and
encounter ribosomes which translate them into proteins.
These proteins are considered to be tagged for the nucleus
and therefore are allowed to pass through the membrane
and accumulate in the nucleus. Both the mRNA and the
protein have ubiquitination/destruction pathways that
regulate their lifetime inside the cell such that the system
reaches a steady state with a finite concentration of mRNA
and protein. At time t = 20 min the gene is turned off and
the concentration of mRNA and protein drops rapidly.

Figure 5 presents the average concentrations of protein in
the nucleus and mRNA molecules in the cell over the time
course of the simulation. Data obtained using the Smolu-
chowski approach as modified by Andrews and Bray are
virtually indistinguishable from the ones produced using
the present approach and are not shown. As expected, a
delay occurs before the protein concentration in the
nucleus increases. The mRNA concentration quickly
reaches a maximum value of ~0.06 nM over the first 2
minutes. The nuclear protein concentration increases
sharply over the first 10 minutes and then starts to plateau
Page 9 of 11
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at values of ~13 nM. At t = 20 min the gene is turned off
and the mRNA concentration quickly falls off (half-life ~1
min) with the protein concentration quickly following
(half-life ~5 min) due to degradation. Figure 5 also shows
the timecourses of an individual run. As expected, individ-
ual runs present stochastic behaviour characteristic of
such biological systems. These dynamics are typical of
what one would expect of such a system [31].

Discussion & conclusion
We have presented a formal, theoretically sound frame-
work that provides reliable and accurate simulations of
the diffusion-reaction process for biological systems. We
compared it with the methods of Smoluchowski [22] and
its extension by Andrews and Bray [17]. Figure 1 illustrates
the different approaches compared in this study. The first
case (A) is the original Smoluchowski approach. In this
approach, at each short timestep δt in the diffusion proc-
ess the distance between the chemical entities is checked
and if they come into close proximity (distance d <σb) the
two entities are said to have reacted together. The down-
side of the approach is that many diffusion steps need to
be computed to simulate the reaction kinetics accurately.
The second approach (B) is that of Andrews and Bray [17].
In their scheme, the reaction radius, σb, is adjusted so that
the correct reaction kinetics are reproduced for timesteps
Δt ≥ 100 × δt. This approach produces an efficient algo-
rithm that yields the correct reaction kinetics while using
larger timesteps. Finally, (C) illustrates the present
approach where the reaction radius is replaced by a
smooth interaction probability. The two entities are con-
sidered to diffuse freely during the timestep Δt thereby
producing a probability PAB (d, Δt) of interaction.

Although differences were expected to appear between the
Andrews and Bray and the current approach in certain cir-
cumstances (such as low reactant concentrations, or in the
presence of concentration gradients), the results indicate
that the reactions rates produced by both methods con-
verge. This is thought to be essentially due to the averag-
ing that takes place as the number of interactions
increases. Hence the two methods are for practical pur-
poses equivalent (p > 0.55). It cannot be ruled out, how-
ever, that differences will appear for more complex
systems. For example, in the context of reversible reac-
tions, recombination effects might be best modelled using
a probability based method. Overall, the Andrews and
Bray method for simulating diffusion-reaction processes
appears robust at low concentration and gradient effects.
However, a possible improvement on this method would
be the analytical derivation of the radius of reaction for
long timesteps, in place of its present approximation. The
Andrews and Bray method was consistently computation-
ally more efficient, running up to ~15% faster depending
upon the system being simulated.

An in depth theoretical analysis of the diffusion-reaction
approach in the context of event driven simulations has
recently been published by Zon and Wolde [27]. Here
again the aim is to increase the reach of present simula-
tions by using longer timesteps. Using event driven simu-
lations, the timestep can be increased substantially when
reactive species are far apart or present at very low concen-
trations. However, as in the present work a limit on the
length of the timestep is set by the requirement that they
have to be short enough to ensure that an object can only
interact with one other object during a timestep; this sets
an upper limit to how large a timestep can be, and it
remains to be shown whether they offer any clear compu-
tational advantage.

We have shown that the modified Smoluchowski method
provides results that are indistinguishable from those pro-
duced using the much more elaborate and realistic model
presented here, at a lower computational cost. The
Andrews and Bray, radius-based, method thus appears to
be the most simple, robust and efficient method for sim-
ulating diffusion-reaction processes currently available.
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Example timecourseFigure 5
Example timecourse. Concentrations of protein in the 
nucleus (red) and mRNA in the cell (blue), the scatter plots 
show the data of a single simulation, black lines are averages 
over 10 runs.
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