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Supercritical water anomalies in the 
vicinity of the Widom line
Konstantinos Karalis1*, Christian Ludwig2,3 & Bojan Niceno1,4*

Supercritical water is used in a variety of chemical and industrial applications. As a consequence, a 
detailed knowledge of the structure-properties correlations is of uttermost importance. Although 
supercritical water was considered as a homogeneous fluid, recent studies revealed an anomalous 
behaviour due to nanoscale density fluctuations (inhomogeneity). The inhomogeneity is clearly 
demarked through the Widom line (maxima in response factions) and drastically affect the properties. 
In the current study the physical properties of supercritical water have been determined by classical 
molecular dynamics simulations using a variety of polarized and polarizable interatomic potentials. 
Their validity which was not available at supercritical conditions has been assessed based on the ability 
to reproduce experimental data. Overall, the polarized TIP4P/2005 model accurately predicted the 
properties of water in both liquid-like and gas-like regions. All interatomic potentials captured the 
anomalous behaviour providing a direct evidence of molecular-scale inhomogeneity.

Supercritical water (SCW) is of extreme importance both for fundamental research and industrial applications. 
SCW is a cheap inorganic and green (non-toxic) solvent as alternative to chemical (organic and toxic) industrial 
solvents, having thus a wide applicability in chemistry processes due to the singular physical and chemical prop-
erties1–3. More specifically, it is a very promising medium for various emerging chemical, biological and geologi-
cal processes including chemical synthesis4, biomass processing5–8, hazardous treatment9 and carbon capture and 
storage10. Consequently, the complete understanding of the SCW behaviour for a wide range of thermodynamic 
conditions is essential.

A fluid can be characterized supercritical when the temperature and pressure are higher than the critical point 
(in the case of water Tc > 647.096 K and Pc > 220.640 bar). Beyond the critical point, no physically observable 
difference between a liquid and a gas exists and hence a single fluid-phase region is considered11–13. However, in 
this region, the correlation length and the thermodynamic response functions which are derivatives of the state 
functions with respect to temperature and pressure (e.g., isobaric heat capacity, isothermal compressibility and 
thermal expansion coefficient) have maxima defining lines emanating from the critical point, termed the “Widom 
lines”13–15. The critical anomalies on the Widom lines demarcates two regions, the liquid-like and the gas-like15–19. 
In the vicinity the critical point, Widom lines merge into a single line and this anomalous behaviour (maxima of 
the response functions) progressively vanish20,21 by creating a deltoid coexistence region16. Usually the locus of 
specific heat maxima is referred as the Widom line22.

In fluids, there is one more line as a dynamical crossover which is termed the Frenkel line15. The Frenkel 
line demarcates two regions in which the fluid behaves as non-rigid (dense gas-like behavior) and rigid-liquid 
(solid-like behavior)15,23. In the gas-like regime atoms have only diffusive motion while in the liquid-like regime 
atoms combine both solid-like quasiharmonic vibrational motion and gas-like diffusive motion24. The most 
convenient way to quantitatively determine the location of Frenkel line in the phase diagram is by calculating 
the velocity autocorrelation function (VAF) of the fluid (the disappearance of oscillation and minima of the 
VAF)15,24,25. In case of pure water at pressures smaller than 380 bar the Widom line can be used as the crossover 
line of dynamical properties while at higher pressures the Frenkel line should be used15.

Due to high SCW compressibility (directly related to microscopic density fluctuations17), by slightly adjusting 
the thermodynamic conditions, the structural, dynamical and transport properties drastically altered allowing 
thus the eclectic dissolution of polar or non-polar solutes3,26–30. This phenomenon is more intense in the vicinity  
of the critical point (1 < T/Tc < 1.1 and 1 < P/Pc < 1.2). The substantial density changes associated with the 
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hydrogen bonding drastically affect the diffusivity, dielectric constant, viscosity and thermal conductivity thus 
influencing the mechanisms and kinetics of chemical reactions28,30. Even the existence of hydrogen bonds in SCW 
was in controversy, now it is generally accepted that hydrogen bonds are formed in supercritical conditions (in 
the non-high density states the hydrogen bonds are below the percolation threshold of 1.58), although hydrogen 
bonded networks do not exist30–35.

It has so far been proven that the physical properties can be resolved via classical molecular dynamics (MD) 
simulations using interatomic potentials (force-fields). The force-fields (FFs) which characterize the strength and 
the nature of interactions between atoms, are categorized in terms of bond rigidity/flexibility and polarizability22. 
EvC FFs, they have been mainly confined to study water at ambient conditions and consequently their validity 
at supercritical conditions needed to be verified. In this work, we extensively analysed (wide range of thermo-
dynamic conditions) the SCW properties using MD simulations. The most widely used polarized (SPC/E and 
TIP4P/2005) and polarizable (BK3 and SWM4-NDP) FFs have been assessed based on their ability to reproduce 
experimental values at supercritical conditions. The Widom line was determined identifying the transition from 
liquid-like (LL) to gas-like (GL).

Results and Discussion
The structural characteristics and physical properties of SCW for a wide range of temperatures (600–700 K) and 
pressures (230–290 bar) were determined by MD simulations and compared with water equation of state (EoS) 
provided by NIST36 and data obtained from IAPWS37. Based on the maximum of the heat capacity, using multiple 
FFs, the Widom line (distinguishing the liquid-like and gas-like SCW behaviour) was determined. Due to the 
fact that all water models fail to reproduce the experimental critical temperature and pressure, an offset for both 
parameters (see the Molecular Dynamics Method subsection) has been applied38–40.

Bulk-density (ρ).  The distribution of mass density along four isobars at different temperatures is shown in 
Fig. 1. The SPC/E model consistently underestimates the experimental data by approximately 10–15% in the low 
temperature regime (600–630 K) and 24–47% in the second half of the temperature range. This is attributed to the 
fact that SPC/E fail to resolve the critical density (273 kg/m3 instead of 322 kg/m3)39. The TIP4P/2005 model accu-
rately predicts the densities and the inflection points across all isobars (provides a good description of the water 
phase diagram41) having almost a near-perfect agreement with the largest discrepancies at high temperatures. 
The BK3 model perfectly predicts the density in the low temperature regime (deviation smaller than 1%) while at 
higher temperatures underestimate the densities with a deviation of 5.5–10%. The higher deviation in the density 

Figure 1.  Supercritical isobars using different interatomic potentials (SPC/E, TIP4P/2005, BKE and SWM4-
NDP) in comparison with experimental results. The filled symbols describe the temperature at which the 
maximum heat capacity line (point in the Widom line) is crossed (Supplementary Information). The Widom 
point signs the change of water behavior from liquid-like to gas-like. The black line refers to experimental data 
obtained using water EoS36.
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calculation at higher temperatures is attributed to the increase of inhomogeneity of SCW in the gas-like region. 
The presence of inhomogeneous patterns in the density is evident mainly in the gas-like phase (see Fig. 2a,b) 
which is in consensus with the absence of the 2nd peak in the radial distribution function (see Fig. 2c) suggesting 
the loss of the tridimensional tetrahedral structure42. The latter was also confirmed by the hydrogen bond distri-
bution analysis. With the increase of temperature the height of the 1st peak increases due to the low density cluster 
formation which start during the destruction of the hydrogen bond networks32.

Hydrogen bonds.  In the current study, a geometric criterion based on the oxygen-oxygen distance 
(dOO < 3.5 Å) and hydrogen-oxygen-hydrogen angle (HOH<30°) has been used to define the hydrogen bonds42–44.  
In the supercritical regime, hydrogen bonds persist (at least up to 800 K) although the hydrogen bonds network is 
substantially altered (percolation threshold below 1.58)30–35. The percolation threshold is a thermodynamic state 
beyond which no connected hydrogen-bonded chains but only small clusters (down to dimers) of water molecules 
exist43,45. Figure 3 portrays the average number of hydrogen bonds per water molecule (〈nHB〉) as a function of the 
temperature for the studied pressures. With increasing temperature, a progressive decrease of the 〈nHB〉 occurs, 
asymptotically approaching zero at higher temperatures30,35. The 〈nHB〉 in temperatures above Tc (647.17 K) are 
always below the percolation threshold indicating the absence of a continuous network of hydrogen bonds30,35,46. 
In the case of TIP4P/2005 at T = 600 K and P = 230 bar, the fraction of water molecules with i hydrogen bonds 
(i = 0, 1, 2, 3, 4) is f0 = 18.4, f1 = 34.4, f2 = 28.9, f3 = 13.9, f4 = 4.4 while at T = 700 K is f0 = 71.4, f1 = 22.3, f2 = 5.4, 
f3 = 0.8, f4 = 0.1 suggesting that even at high temperatures some degree of hydrogen bonding is still present in the 
form of dimers and trimers30. At higher pressures the fraction of dimers and trimers reduces. Based on the distri-
bution function of monomers and oligomers between these two thermodynamic states (600 K and 700 K respec-
tively), a clear distinction in supercritical water between liquid-like and gas-like phase is evident. The increase of 
the average number of unbounded molecules (monomers) and the decrease of the “gel” molecules (〈nHB〉 > 1) 
suggest that SCW forms a inhomogeneous fluid with a sheet-like structure in the gas-like region2,30,31,35,42,46. In 
Fig. 4, the average number of hydrogen bonds per water molecule as a function of density for the studied pressures 
is portrayed. For all water models, a linear decrease of the average hydrogen bonds in respect to density was iden-
tified in both liquid-like and gas-like regions, which allows us to compare the results with data obtained at 

Figure 2.  Water molecules and void isosurfaces (represent those points in space which all water molecules 
exhibit a distance more than 3 Å62) portraying the inhomogeneity in (a) the liquid-like phase and (b) the gas-
like phase. The red color presents the oxygen atoms, the gray the hydrogen atoms and the yellow isosurfaces 
the voids inside the supercell. For the visualization the VMD code was used63. (c) Radial Distribution function 
(RDF) of Oxygen-Oxygen interactions in the liquid-like and gas-like phases in respect to different pressures 
using the TIP4P/2005 model.
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different thermodynamic conditions (measurements made at elevated pressures)30,34,46–48. Overall, the average 
hydrogen bonds calculated using TIP4P/2005 have a perfect agreement with the experimental data. In the high 
densities region all FFs are in very good to perfect agreement with the experimental data which is worse in the 
low-density region (due to the over estimation of the respective densities, see Fig. 1). The number of hydrogen 
bonds divided by the density (〈nHB〉/ρ) in respect to density was calculated suggesting a decrease in respect to the 
density (Supplementary Information, Fig. S2). A more inhomogeneous behaviour in the gas-like state is 
observed45.

Static dielectric constant (ε).  One of the most important physical properties for the use of SCW in indus-
trial applications (e.g. in biomass processing) is the dielectric constant which refers to the ability of SCW to 
dissolve polar or non-polar compounds. In comparison with the density, the dielectric constant refers to the 
long-range correlations between molecules49. The dielectric constant at different pressures as a function of tem-
perature is shown in Fig. 5 and compared with the only available experimental data of Fernandez et al.37. The 
simulation results using the polarizable interatomic potentials are in excellent agreement with experimental data 
under all thermodynamic conditions due to its use of multiple polarization sites37. In contrast, the dielectric 
constant is noticeably under predicted by both the SPC/E and TIP4P/2005 potentials (also at ambient conditions 
low static dielectric constants and dipole moments are predicted50), with the SPC/E potential yielding a typical 
discrepancy of approximately 10% in the lower temperature regime. Even the dielectric constant is one of the 
properties that rigid non-polarizable models cannot predict accurately (it is not possible to reproduce both the 
cohesion energy and the polarization of a certain configuration)51, all water interatomic potentials predicted the 
transition from a liquid-like to a gas-like solvent behavior. The small values in the dielectric constant (<5) in the 
gas-like region suggest that SCW is an excellent solvent for non-polar molecules. The increase of the solubility 
of non-polar solutes in SCW (increased ability of SCW to solubilize non-polar compounds) while increasing the 
pressure was correctly captured (i.e. using the SWM4-NDP water model at 700 K, the dielectric constant at 230 
and 290 bar is 1.28 and 2.00, respectively).

Self-diffusion coefficient (D).  The self-diffusion coefficients of SCW using multiple water interatomic 
potentials are compared with the experimental data reported by Lamb et al.52 and Yoshida et al.53 in Fig. 6. By 
comparing the self-diffusion coefficients in respect to temperature (Fig. 6), SPC/E water model consistently over-
estimates the experimental data with the highest discrepancies in the gas-like regime. The drawback of BK3 
model on predicting slightly higher self-diffusion coefficients at ambient conditions50 was also captured in the 

Figure 3.  Average number of hydrogen bonds (HB) per water molecule along the studied isobars as a function 
of temperature. The dashed lines equal to 1.58 indicates the percolation threshold network limit. The *

46 and 
⋆47 symbols correspond to experimental data at a studied pressure of 250 bar. The filled symbols are part of the 
Widom line marking the transition from liquid-like to gas-like behavior.
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supercritical state. In the isobars of 230 and 250 bar, TIP4P/2005 overestimates the diffusion coefficients, while the 
remaining isobars are in perfect agreement. By analyzing the self-diffusion coefficients with respect to density, the 
four isobars collapse in a single curve (in almost excellent agreement with experimental data, see Fig. S3), indicat-
ing that density is the main factor governing diffusion35. Overall, all water models predict accurately the 
self-diffusion coefficient at lower temperatures (liquid-like water behavior) while this agreement is worsened at 
higher temperature (smaller densities) with the temperature and density trend dependence captured. The 
self-diffusion activation energy (e.g. energy required for breaking the hydrogen bonds of pure water at ambient 
conditions, 18.8 kJ/mol54) in both liquid-like and gas-like regions was determined with the use of the Arrhenius 
formula = −D D e E k T

0
/A B  where D is the self-diffusion coefficient EA is the activation energy, kB is the Boltzmann 

constant and T is the temperature18. Table 1 presents the activation energies (kJ/mol) as calculated from the fitting 
of the aforementioned equation. In the formula, the coefficient D0 was equal to the calculated self-diffusion coef-
ficient at ambient conditions (varying between the different FFs). In the gas-like region the pressure increase lead 
to an increase of activation energies which is in consistence with the increase of the number of hydrogen bonds 
while in the liquid-like region the pressure increase doesn’t significantly affect the activation energies. Along 
isobars all water models predict activation energies in the same range; the smaller activation energies in the 
gas-like regime in comparison with the liquid-like regime is attributed to the density decrease.

Conclusions
Classical MD simulations using multiple FFs (polarized and polarizable) have been performed in order to study 
the anomalous behaviour of SCW for a wide range of thermodynamic conditions. The transition from liquid-like 
to gas-like was captured by analysing the structural characteristics and the physical properties. The absence of 
the 2nd peak in the oxygen-oxygen RDF indicated the SCW inhomogeneity which was intensified in the gas-like 
phase. The temperature increase lead to the increase of the 1st peak in the oxygen-oxygen RDF suggesting the 
cluster formation due to the destruction of hydrogen bond network. In higher temperature regimes, an increase of 
the monomers fraction indicated a sheet-like structure which yield to an increased ability of dissolving non-polar 
compounds. The collapse into a single curve of the number of hydrogen bonds and self-diffusion coefficients in 
respect to density indicated that the main factor governing diffusion is the density. The latter gave the ability to 
compare the aforementioned results with available experimental data from other thermodynamic conditions. 
Only the polarizable models (BK3 and SWM4-NDP) estimated with high-accuracy the dielectric constant due to 
use of multiple polarization sites.

Figure 4.  Average number of hydrogen bonds (〈nHB〉) per water molecule as a function of density. The dashed 
lines equal to 1.58 indicates the percolation threshold network limit. The filled symbols denote the Widom 
points. The symbols correspond to experimental result which correspond to the specific density but in different 
pressure range (from 250 to 1000 bar). The symbols *

46, ⋆47 and ×48 refer to a pressure of 250 bar while ◆30 and 
+34 refer to 1000 bar.
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Methods
Molecular dynamics simulations.  Molecular Dynamics simulations of supercritical water at different 
thermodynamic conditions (state points) were performed using GROMACS v.2016–4 code55. The supercell was 
consisting of 2048 water molecules. Four different isobars (230, 250, 270 and 290 bar) were examined with a 
temperature range from T = 600 K to T = 700 K with ΔT = 5 K. The equilibrium runs were performed in the 
isothermal-isobaric (NPT) ensemble and the sampling runs were performed in both NPT and canonical (NVT) 
ensembles. The length of each sampling run was 10 ns. The equations of motions have been integrated using the 
leap-from algorithm with an integration time step of 1 fs, to ensure energy conservation. The temperature was 
controlled using a Nosé-Hoover thermostat with a relaxation time of 1 ps and the pressure was controlled using 
an isotropic Parrinello-Rahman barostat with a relaxation time of 1 ps. The particle-mesh Ewald method has been 
used to evaluate the long-range electrostatic interactions with a cut-off of 1.4 nm. The water interatomic potentials 
are not able to reproduce the critical temperature and pressure (associated with the under/over estimation of the 
vaporisation enthalpy); consequently an offset in the temperature and pressure was applied (i.e. in the case of 
TIP4P/2005 water model the simulated temperature of 640 K corresponds to the experimental 647.1 K – offset of 
approximately 7.1 K). The critical parameters of the water models are presented in Table 2.

Water interatomic potentials.  MD simulations of supercritical water have been performed using 
non-polarizable SPC/E56, TIP4P/200557 and polarizable SWM4-DP58 and BK340 interatomic potentials. The 
intermolecular pair potential used for all force-fields, has two contributions, a 12-6 Lennard-Jones term and an 
electrostatic interaction term. In the BK3 force-field, a charge-on-spring model using Gaussian charges has been 
implemented while in the remaining force-fields constant charges were used. The non-electrostatic interactions 
were described using a Buckingham term.

Determination of physical properties.  Bulk-density (ρ).  The density ρ at constant pressure 
(isothermal-isobaric ensemble, NPT) follows from the mass, m of the system divided by its mean volume V

ρ =
m
V

where the bracket denotes time averaging over the simulation period59.

Figure 5.  Static dielectric constant along the studied isobars as a function of temperature (standard 
deviation ± 0.2). The experimental data refer to data obtained by Fernandez et al. (1997) which are valid for 
temperatures and pressures up to 873 K and 10000 bar respectively37. The filled symbols describe the Widom 
points (temperature at which we have maximum of the heat capacity.
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Static dielectric constant (ε).  The expression of the static dielectric constant (relative static permittivity), ε, is 
given by

ε ε
Μ Μ

ε
= +

−
∞ Vk T3 B

2 2

0

Figure 6.  Self-diffusion coefficient of water at different isobars in respect to temperature. Based on 
experimental data fitting, Lamb et al.52 managed to correlate the self-diffusion coefficient with the temperature 
and the density using the equation D = 2.24 · 10−6 · T 0.763/ρ where D is the self-diffusion coefficient (cm2/s), T is 
the temperature (K) and ρ is the density (g/cm3). Yoshida et al.53 use a function based on the scaling to the hard-
sphere model. The Widom points are described by filled symbols.

Model

Liquid like Gas like

230 bar 250 bar 270 bar 290 bar 230 bar 250 bar 270 bar 290 bar

SPC/E 31.5 31.7 31.7 32.0 24.6 25.8 27.1 28.1

TIP4P/2005 31.2 31.3 31.5 31.6 23.7 25.1 26.5 27.5

BK3 31.8 32.0 32.0 32.0 25.2 26.0 26.8 27.6

SWM4-NDP 33.0 33.1 33.2 33.2 26.0 26.9 27.7 28.4

Table 1.  The self-diffusion activation energies (kJ/mol) in the liquid like and gas like regions along all isobars 
studied with maximum statistical uncertainty of 0.2%.

System Tc (K) Pc (bar) ρc (g/cm3)

SPC/E 638.6 139 0.27

TIP4P/2005 640 146 0.31

BK3 634 214 0.32

SWM4-NDP 576 199 0.32

Experiment 647.1 220.6 0.32

Table 2.  Critical parameters (temperature, pressure and density) of the water models and of experimental 
water.
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where the angle brackets denote time averaging over the simulation period, ε∞ is the dielectric constant at optical 
frequencies (in rigid non-polarizable molecules it is equal to unity, 129), V is the volume, T is the temperature and 
M is the total dipole moment Μ µ= ∑( )i

N
i

60.
In the case of polarizable molecules

ε
ε

πα−
+

=∞

∞ V
1
2

4
3

where α is the polarizability α = q k( / )D D
2 ) and V  is the mean volume. The spring constant (kD) was assumed 

equal to 1000 kcal/mol/Å2 which ensures that the point-dipole limit is valid61.

Self-Diffusion Coefficient (D).  The self-diffusion coefficients were obtained from simulations in the NVT ensem-
ble. For each atomic constituent, the mean square displacement (MSD) - which indicates the average displace-
ment of a tagged atom during a fixed time t, calculated by summing the square of distance over all the atoms and 
dividing by the number of atoms, N, as follows59

∑= Δ = −
=

MSD r t
N

r t r( ) 1 [ ( ) (0)]
i

N

i i
2

1

2

where ri(t) is the position of atom i at time t. The angular brackets indicate an average over the positions of the 
atoms at time t = 0. The coefficient of self-diffusion of a particle may be obtained from the MSD for sufficiently 
long simulation times (over 10 ns) by use of the Einstein equation

=












ΔD
t

r t1
6

( )2

Isobaric heat capacity (cp).  By using the enthalpy fluctuation formula, the isobaric heat capacity was computed 
according

=



ϑ
ϑ



 =

−
c H

T
H H

k Tp
p B

2 2

2

Pair correlation functions.  The short-range order of water molecules was described via the Radial Distribution 
Function (RDF), symbolized as g(r) and expressed as59

∑ρ π
= =

Δ
g r n r

V
V

N N
n r
r r

( ) 1 ( ) ( )
4ij

i j j
2

where gij denotes the partial RDF of the ith and jth atom species, Ni and Nj are the numbers of the species i and j, 
V is the volume of the system, and n(r) denotes the average number of the ions j surrounding ion i in a spherical 
shell defined by radii n(r) ± Δr/2.
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