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Abstract

The relationship between xylophagous termites and the protists resident in their hindguts is a textbook example of
symbiosis. The essential steps of lignocellulose degradation handled by these protists allow the host termites to thrive on a
wood diet. There has never been a comprehensive analysis of lignocellulose degradation by protists, however, as it has
proven difficult to establish these symbionts in pure culture. The trends in lignocellulose degradation during the evolution
of the host lineage are also largely unknown. To clarify these points without any cultivation technique, we performed meta-
expressed sequence tag (EST) analysis of cDNA libraries originating from symbiotic protistan communities in four termite
species and a wood-feeding cockroach. Our results reveal the establishment of a degradation system with multiple enzymes
at the ancestral stage of termite-protistan symbiosis, especially GHF5 and 7. According to our phylogenetic analyses, the
enzymes comprising the protistan lignocellulose degradation system are coded not only by genes innate to the protists, but
also genes acquired by the protists via lateral transfer from bacteria. This gives us a fresh perspective from which to
understand the evolutionary dynamics of symbiosis.
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Introduction

Cellulosic biomass is now regarded as a very exciting candidate
source for bio-fuel. Currently, the use of ethanol as fuel incurs a
cost to the food supply, as ethanol production requires both starch
and sucrose. Woody biomass can be used as an alternative, but
doing so entails the daunting challenge of saccharifying cellulose
with the enzymes from the biomass. The most crucial step is the
treatment of lignin, a component that resists enzymatic degrada-
tion and prevents enzymes from accessing cellulose. The symbiotic
relationship with the protistan community within the termite gut
seems to endow termites with the ability to degrade cellulose from
complex natural ligno-cellulose that is composed of lignin, hemi-
cellulose and cellulose [1-3]. The termite system may thus provide
useful clues for the establishment of an artificial process for
saccharifying woody biomass.

Termites and the protists that reside in their hindguts are a
classic example of symbiosis, and the essential steps of lignocel-
lulose degradation that is handled by symbiotic protists allow the
host termites to thrive on a wood diet. Because of this relationship,
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the termite has a highly efficient cellulose degradation system. This
system draws energy from woody biomass by degrading cellulose
without degrading lignin. The termite selectively incorporates
cellulose, and 80% to 90% of the cellulose incorporated is
exchanged to acetate. Interestingly, termites possess their own
cellulase family but these proteins are insufficient to provide for the
energy needs of the termite. If the symbiotic system is lost, a
termite can not survive under cellulose feeding conditions,
meaning that termites are completely dependent upon their
symbionts for biomass degradation. [1-5]

As of this writing, our understanding of the biochemical process
underlying this saccharification system derives solely from the
estimations of a few biochemical studies and PCR-based analyses
[6-15]. Among the various glycosyl hydrolase families (GHFY)
responsible for lignocellulose degradation, only three families have
been identified from the symbiotic systems of termite, in a limited
number of termite species. Enzymes of families 5 and 7 were found
in the symbiotic system of Coptotermes formosanus, and an enzyme of
family 45 was found in the symbiotic systems of Reticulitermes
speratus and Mastotermes darwiniensis, although these host termites
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were also extensively investigated as the source of the cellulases
(reviewed 1in reference [1]). These findings are too incomplete to
draw up a complete schema of the efficient ligno-cellulose
degradation system of the termite.

Cellulose is generally degraded by several different families of
cellulases. These cellulases efficiently degrade ligno-cellulose
through synergistic mechanisms. A synergistic reaction of enzymes
is very likely to take place in the protistan consortium. This
symbiotic relationship is not between one organism and another,
but between multiple symbionts. And to complicate matters
further, almost all of these protists are difficult to cultivate. The
complexity and inaccessibility of the cellulolytic system of the
symbiotic protistan consortium make it difficult to obtain and
understand whole components of this effective cellulolytic system
[2,3]. This is why only a few cellulase families were found from
limited species of protists and host termites. If we can
comprehensively obtain the cellulase genes from a whole symbiotic
protistan community in the termite gut and reconstruct the
evolutional trail of the cellulolytic system along the termite lineage,
we may be able to identify the actual core components of termite
systems for the efficient degradation of cellulose.

To circumvent this difficulty, in this current report, we did not
rely on an ordinary one-by-one cloning strategy to elucidate the
complete system of the multi-organism consortium. Instead, we
constructed a ¢cDNA library from a mixed protistan population
and performed a comprehensive set of expressed sequence tag
(EST) analyses of cDNA libraries. Recently, we published a similar
analysis about the symbiotic system of Reticulitermes speratus [16].
Here, we attempt to understand the evolutionary history of the
cellulolytic system of the termite lineage by using phylogenetic
analyses in addition to the previously established meta-transcrip-
tome strategy to investigate the termite symbiotic system. For this
purpose, cDNA libraries were constructed from four termite
species representative of the overall lineage of lower termites, and
from Cryptocercus punctulatus, a wood-feeding cockroach thought to
be a sister taxon to the termite lineage.

Our results showed that all of the symbiotic systems investigated
here share the two families of cellulase genes, GHF5 and 7, and
some more enzyme genes, GHF10, 11 and 45, may help this “core
enzyme set” in several species of investigated symbiotic systems.
Interestingly, our result indicates that a core gene, GHF5, was
laterally transferred from bacteria to the protistan symbiotic
system of the termite lineage at the most ancient stage of their
evolution.

Results and Discussion

We investigated the trends in lignocellulose degradation during
the evolution of the host lineage using four representative termite
species from four families of wood-feeding termites (Reticulitermes
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speratus  (Rhinotermitidae), Hodotermopsis sjostedti (Termopsidae),
Neotermes koshunensis (Kalotermitidae), and Mastotermes darwiniensis
(Mastotermitidae)) and Cryptocercus  punctulatus, a wood-feeding
cockroach that is a member of a genus thought to be in a sister
clade to the termite lineage [17].

In total, we obtained 910 clones (R. speratus), 920 clones (H.
sjostedtr), 1056 clones (N. koshunensis), 1021 clones (M. darwiniensts),
and 868 clones (C. punctulatus) as ESTs from the cDNA libraries
constructed from the symbiotic protistan communities of the host
insects. The ESTs of the data sets were annotated by homology
searches with fastx analysis [18] using the DDBJ web site (http://
fasta.ddbj.nig.acjp/) and clustered into 752, 839, 716, 711, and
762 possibly orthologous clusters. All of the sequences obtained
were screened for potential contaminants. Instead of detecting the
bacterial structural genes by homology analysis, a difficult
challenge in light of the high diversity of the sequences, we tried
to detect the ribosomal RINA sequences in the library using blast
analysis [19]. Our screening by this method revealed the following
contaminant ratios of ribosomal RNA: 0.40%, 4.89%, 0.42%,
0.84%, and 0.79%, respectively. We concluded, based on these
results, that our cDNA library was almost completely constructed
by the poly T and CAP selection method. The foregoing
homology analyses revealed that homologues of glycosyl hydro-
lases responsible for lignocellulose degradation were predominant-
ly expressed in each host-symbiont system (Table 1). The glycosyl
hydrolases have been classified into more than 80 families based
on amino acid sequence similarities [20,21]. Among these,
homologues of GHFs 5, 7, 10, 11, and 45 are found within these
symbiotic systems. According to blast analysis, the e-values of these
homologues ranged from 1.00e-117 to 2.00e-9 against the top
known cellulase gene hit for each.

Next, we conducted a preliminary phylogenetic analysis using
one-pass sequences homologous to GHF), 7, 10, 11, and 45 based
on the EST analysis and selected representative clones of each
GHF. We then determined 154 full-length sequences of these
representatives for a further phylogenetic analysis (GHF5 =45
clones, GHF7 = 39 clones, GHF10 = 38 clones, GHF11 =8 clones,
GHF45 =24 clones). All of the 154 GHF sequences contained a
poly A sequence on the 3" end, as well as the initial and terminal
codons. In the case of cDNAs from bacteria, which may also have
a poly A tail, we would not expect to see start and terminal codons
as the poly A tail is a signal that targets the transcript for
degradation by endonucleases. Therefore, any cDNAs in our
samples transcribed from bacterial mRINA that possessed a poly A
sequences can be expected to not contain the complete functional
domain sequence and terminal codon [22]. This, coupled with the
low overall contamination rate based on 16S ribosomal RNA
(above) confirms that all of the GHFs obtained were retrieved from
symbiotic protists but not bacteria.
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Table 1. The number of GHF clones from EST analysis.

Cellulase Xylanase
Host GHF5 GHF7EG GHF7CBH GHF45 GHF8 GHF10 GHF11 GHF43 GHF62 +# GHF’'s Total
R. speratus 8 21 41 4 1 0 6 3 1 85 910
H. sjostedti 19 19 43 0 10 7 0 0 106 920
N .koshunensis 16 54 20 0 1 72 0 0 1 164 1056
M. dawinensis 5 15 20 44 1 23 0 0 0 113 1021
C. punctulatus 12 1 17 1 0 14 0 0 0 98 868
doi:10.1371/journal.pone.0008636.t001
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Figure 1. Multiple alignments of symbiotic protist cellulase and catalytic domains of the members of the glycoside hydrolase
family 7. Rs, Reticulitermes speratus symbiotic protists; Hs, Hodotermopsis sjostedti symbiotic protists; Nk, Neotermes koshunensis symbiotic protists; Md,
Mastotermes darwiniensis symbiotic protists; Cp, Cryptocercus punctulatus symbiotic protists; Numbered clones (for example SM2038A27) are clone
names of cellulase genes identified in this study from the symbiotic protists of termites; CBH, cellobiohydrolase; EG, endoglucanase; TrCel7A, a
cellobiohydrolase component, Trichoderma reesei Cel7A [Uni Prot. P00725]; PgCBH-homo, Pseudotrichonympha grassii PgCBH-homo1 [Q95YH1];
TrCel7B, an endo-f-1,4-glucanase (EG) component, T. reesei Cel7B [P07981]; FoCel7B, an EG component, Fusarium oxysporum Cel7B [P46237]; HiCel7B,
an EG component, Humicola insolens Cel7B [P56680]. The alignments were performed using CLUSTAL_W and subsequent manual refinement based
on the three-dimensional structures of reference sequences. Arabic numerals denote the number of residues from each N terminal end. Solid and
open circles under the column indicate the sites of putative proton donors and general acids/bases, respectively. Shaded columns represent
conserved positions within the sequences. White letters with black shading denote cysteine residues composing the disulfide bond of T. reesei Cel7A.
The asterisks represent the putative protistan GHF7 CBH homologue cysteine residue sites corresponding to the cysteine residue sites of T. reesei
Cel7A. The underlined sequences in TrCel7A indicate the loop-forming regions covering the catalytic tunnel [22,23].
doi:10.1371/journal.pone.0008636.9001
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In relation to the characteristics of the GHF homologues, the
residues corresponding to the putative catalytic nucleophile (Glu)
and general acid/base (Glu) were completely conserved among the
homologues of GHF5 [23]. Likewise, the putative catalytic
nucleophile and general acid/base among the homologues of
GHEF7, 11, and 45 were completely conserved [24-26]. In the
analysis of GHF10, the catalytic nucleophile (Glu) and general
acid/base (Glu) were conserved in 35 homologues but unassign-
able in 3 [27]. However, the sequences of these three unassignable
homologues and Clostridium acetobutylicum xylanase GHF10 (Uni-
Prot accession number Q97TP5) showed 71.2-71.6% amino acid
similarity.

Seventy-seven full-length sequences homologous to GHF7
cellulase were identified. The clone Rs38B27CBH (DDBJ
accession number AB274538) homologous to GHF7, for example,
included the putative catalytic nucleophile (Glu221) and general
acid/base (Glu226) (Fig. 1). These homologues of GHF7 could be
divided into two groups, namely, those with insertion sequences
and those without them. The GHF7 cellulases take the form of

Cellulolytic System of Termite

either cellobiohydrolases (CBHs) or endoglucanases (EGs) The
CBHs are known to include insertion sequences that make up a
tertiary cellulose binding tunnel structure [28,29]. As shown in
Fig. 1, the regions corresponding to the insertion sequences i 7.
reeset Cel7A were conserved in homologues of GHF7 CBH. Their
sequences also shared the 16 cysteines forming the disulfide bonds
found in 7. reesec Cel7A. Disulfide bonds are essential for
stabilizing the GHF7 CBH tertiary structure. These results
strongly suggest that the genes obtained from the cDNA libraries
encode the active enzymes of each GHF.

The homologues of GHF5, 7, and 45 were previously found to
be of a symbiotic protist origin [6-8,11,12]. These earlier
demonstrations did not, however, include any inferences on the
evolutionary roots of lignocellulose degradation in termites. In
contrast, this current study clearly indicates that a degradation
system with multiple enzymes was established at the ancestral stage
of termite-protistan symbioses. According to our results, GHF 5
and 7 were obtained from all symbiotic systems investigated.
GHF10 was absent in Reticulitermes, while GHF11 was obtained
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Figure. 2. Phylogenetic tree of GHF5. Numbered clones (for example SM2030B48) are cellulase genes identified in this study from
the symbiotic protists of termites. Letters in parentheses after each clone denote host termite species (Rs = Reticulitermes speratus, Nk =

Neotermes koshunensis, Hs Hodotermopsis sjostedti, Md

= Mastotermes darwiniensis, Cp

Cryptocercus punctulatus). Accession numbers of

reference sequences are denoted after species names. SF are indicated the sub-family (21) and SSFs are indicated sub-sub families that were used in
Fig. 3. In sub-family 1 and 2, gray boxed sub-sub-family indicated that composed by symbiont’s sequences and other sub-sub-families composed by

bacterial sequences.
doi:10.1371/journal.pone.0008636.9g002
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Figure 3. Tree topologies for the SH test of GHF5. Tree 0 is the
original topology that was inferred by RAXML. From 1-1 to 2-7
were indicated the sub-sub-families that were showed in Fig. 2 (SSF1-1
- SSF2-7). SSF1-6 and 2-7 were composed with the symbiont
sequences of sub-family 1 and 2, respectively. Cross marks and open
circles indicate that the topology can be rejected or not, respectively.
doi:10.1371/journal.pone.0008636.g003

only from the subterranean termites Reticulitermes and Hodotermopsis.
GHF45 was absent only in Neotermes.

This result clearly indicates that GHF5 and 7 predate or evolved
concomitant with extant termite symbiotic systems and that these
genes existed during the whole evolutionary history of these systems.
It also implies that these two GHIF's are core enzymes of the highly
efficient cellulolytic system in termites. In the case of GHFs 10, 11
and 45, if we hypothesize that our EST analysis has enough
coverage, GHF10 was secondarily lost at or just after the node that
branches Reticulitermes from the main termite lineage and GHI45
was secondarily lost in Neotermes after branching from the main
termite lineage. Also, GHF11 was obtained from a subterranean
termite (Table 1). To clarify this attractive hypothesis, we are now
undertaking a high throughput EST sequencing project using
massive pyrosequencing technology.

Phylogenetic analyses of the homologues of the GHFs were
performed by the maximum likelihood method with wide taxon
sampling. We used a rooted topology for phylogeny reconstruction
of GHF)5 and 7 because the sub-family structures were known. In
the case of the other phylogenies, we have no information that
allows us to root the trees. Therefore we used star shape topologies
for those phylogenetic reconstructions.

@ PLoS ONE | www.plosone.org
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Table 2. Results of the SH test of phylogenetic trees for GHF5
endoglucanase.

Significantly
Tree Likelihood D (LH) SD Worse
Original tree —23656.138725 0.000002 0.003925 No

Sub-family 1 (SF1)

Tree: 1 —23661.508283 —5369557 5259180 No
Tree: 2 —23664.186747 —8.048020 6056825 No
Tree: 3 —23660.184360 —13.045633 7.034359 No
Tree: 4 —23672.529571 —16.390844 7.795750  Yes
Sub-family 2 (SF2)

Tree: 5 —23656.224424 —0.085698 5.196696 No
Tree: 6 —23664.193831 —8055104 8352466 No
Tree: 7 —23685.341415 —29.202688 13.402450 Yes
Tree: 8 —23693.223915 —37.085188 15.092283 Yes
Tree: 9 —23694.477411 —38.338684 15.109157 Yes

doi:10.1371/journal.pone.0008636.t002

Based on our results GHF5 can be divided into 5 sub-families,
as shown by a previous study [23]. Our phylogenetic tree only
showed a difference in that while sub-families 3 and 4 are also here
each inferred as independent monophyletic clusters, this inference
is without high supporting values. The sequences obtained here
from the symbiotic systems of termites and cockroaches were
mainly assigned to sub-families 1 and 2. Interestingly, as shown
highlighted by gray boxes in Fig. 2, both these symbiont clusters
(“sub-sub-families (SSF)”) located inside the nodes basal to sub-
families 1 and 2. Both of these sub-families are composed of
bacterial sequences and these results indicate that our symbiont
sequences formed a cluster nested within these bacterial clusters.
These nested clusters were not supported by ML bootstraps or
Bayesian posterior probabilities. Therefore, we performed the
Shimodaira-Hasegawa (SH) test for these nested topologies (Fig. 3
and Table 2). The results showed that both of the nested
topologies inside the bacterial cluster can not be rejected
statistically (Table 2). This topology and unexpected nested/sister
taxonomic relationship between the eukaryotic symbiont genes
and prokaryotic genes suggests that lateral gene transfers from
bacteria to symbiotic protists have occurred. These termite
symbiont clusters contained homologues from Cryptocercus and all
four of the host termite species. On this basis, we speculate that
two gene transfers may have occurred during the early stages of
the evolution of the symbioses.

We also identified an isolated homologue from Hodotermopsis
(NT0287A89) in sub-family 4 within the bacterial cluster (Fig. 2).
In this cluster, several rumen fungal sequences also co-located.
Although high resolution was not obtained, there is the possibility
that sub-family 4 may also have been laterally transferred from
bacteria to termite symbionts and rumen fungi. Further extensive
research will clarify this interesting phenomenon.

On the other hand, as shown in Fig. 4, the members of GHF7
could be divided into two large clades, one corresponding to the
EGs and the other to the CBHs. According to our result, these two
main sub-families were well supported by high bootstrap values.
Interestingly, the GHF7 homologues from our ¢cDNA libraries
formed monophyletic clusters within each clade with high
supporting values (Fig. 4).

The symbiont clusters in both the CBH and EG clades consisted
of homologues from the cDNA libraries of all of the host termite
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Figure 4. Phylogenetic tree of GHF7. Numbered clones (for example SM2734B07) are cellulase genes identified in this study from
the symbiotic protists of termites. Letters in parentheses after each clone denote host termite species (Rs = Reticulitermes speratus, Nk =

Neotermes koshunensis, Hs Hodotermopsis sjostedti, Md
reference sequences are denoted after species names.
doi:10.1371/journal.pone.0008636.g004

species and Cryptocercus. Those clusters also include several
published sequences from termite symbionts that are hosted by
Coptotermes ~ formosanus, and grouped separately from fungal
sequences in both cases. Thus, this result suggests that the
GHF7 homologues of symbiotic protists in lower termite can be
defined as an independent sub-clade of enzymes within the GHF7
cellulase sub-family.

The topology of the GHF?7 tree is completely different from the
GHF’ tree. The result of the GHF7 phylogeny showed that eukaryotic
sequences and prokaryotic sequences clearly divided into independent
clusters in each of the subfamilies of GHF7. This suggests that the
GHF'7 gene does not originate from lateral gene transfer from bacteria
but that it evolved along with organismal evolution.

None of the termite symbiont sequences for GHF10, 11 or 45
made monophyletic groupings that were supported in their
respective analyses even though on the maximum likelihood trees
each group did cluster together. The symbiont GHF10 sequences
did however group with high support with a cellulase from the

@ PLoS ONE | www.plosone.org

Mastotermes darwiniensis, Cp

Cryptocercus punctulatus). Accession numbers of

bacterial species Rhodothermus marinus (Fig. 5). The GHFI11
sequences made a highly supported cluster with rumen fungal
sequences and a bacterial sequence (Fig. 6) and GHI45 made a
highly supported cluster with fungal (including rumen fungi)
sequences (Fig. 7) with high supporting values. Although the
evolutionary traits are difficult to infer, in the case of GHF10 and
11, the symbiont sequences are relatively closely related to each
other in each tree. These results suggest that these genes possibly
share a most recent common ancestor. In the case of GHF45,
there are three well supported nodes observed in the symbiont
sequence cluster. The first node contains sequences from
symbionts of Hodolermopsis and Reticulitermes, the second contains
Hodotermopsis and  Cryptocercus symbionts and the third contains
Mastotermes symbionts, respectively. Interestingly, the Hodotermopsis
- Cryptocercus node contains the two insect cellulase genes included
in this analysis [30,31].

Our results of phylogenetic analyses with the rooted tree
topologies GHFS and 7 revealed that the lignocellulose degrada-
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Figure 5. Phylogenetic tree of GHF10. Numbered clones (for example SM2735A22) are cellulase genes identified in this study from
the symbiotic protists of termites. Letters in parentheses after each clone denote host termite species (Rs = Reticulitermes speratus, Nk =
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tion systems consist of two different evolutionary histories. The
first one includes the innate functions of the protists as in GHF7.
The second includes functions derived from bacteria via lateral
gene transfers, such as the functions of GHF5. The former is a
conventional outline of symbioses, in which a combination of
distantly related organisms increases the fitness of individual
organisms. The latter, a system by which the symbioses undergo
dynamic processes via lateral gene transfers, can further our
understanding of symbiotic relationships. Our results also
indicated that the cellulolytic system was adjusted in evolutionary
time by lateral gene transfers from bacteria. These aspects may
open the way to a new understanding not only of symbioses, but
also the interactions between diverse organisms in various
evolutionary contexts.

Interestingly, both GHFs were well conserved among the lower
termite lineage. This clearly reveals that these two families of
enzymes work as core factors and that GHF10, 11 and 45 help
these core factors for the efficient cellulose degradation of the
lower termite. It also indicates that these enzyme genes are
potentially useful for the construction of artificial, novel and
highly efficient saccharification system without additional lignin
degradation.

Materials and Methods

Termites and Cockroaches

Reticulitermes  speratus was collected from the Tanzawa range
(Kanagawa Japan), Hodotermopsts sjostedti was collected from Yaku-
shima island (Kagoshima Japan), Neotermes koshunensis was collected
from Iriomote island (Okinawa Japan), Mastotermes darwiniensis was

@ PLoS ONE | www.plosone.org

Hodotermopsis sjostedti, Md = Mastotermes darwiniensis, Cp =

Cryptocercus punctulatus). Accession numbers of

collected from Darwin Australia, and Cryptocercus punctulatus was
collected from Bear Trap Gap (North Carolina, USA). All insects
were maintained in the dark with wood.

EST Analysis

The ¢cDNA libraries were constructed by either the biotinylated
CAP trapper method [16] (Reticulitermes speratus) or oligo CAP-
PING method [32] (Hodotermopsis sjostedir, Neotermes koshunensis,
Mastotermes darwiniensis, and Cryptocercus punctulatus).

Total RNA was purified from the symbiotic protists of 1,000 R.
speratus workers using ISOGEN (Nippon Gene, Toyama, Japan)
according to the manufacturer’s instructions. The symbiotic
protists were enriched by low-speed centrifugation (100 g,
3 min), lysed directly by ISOGEN reagent, and taken through
the purification procedure. The total RNA obtained was further
purified by Oligotex-d'T super (JSR Corporation, Tokyo, Japan), a
poly dT sequence conjugated latex resin, according to the method
recommended by the manufacturer. mRNA was purified from the
symbiotic protists of 20 H. sjostedti pseudergates, 50 N. koshunensis
pseudergates, 50 M. darwiniensis pseudergates, and 1 specimen of C.
punctulatus. directly by Oligotex-dT super. The ¢cDNA libraries
were constructed with purified mRNA using either method.

A method of 5'-end one-pass sequencing was performed with 910
clones (R. speratus), 920 clones (H. sjostedts), 1056 clones (N. koshunensts),
1021 clones (M. darwiniensis), and 868 clones (C. punctulatus), all
randomly picked, using a big dye terminator sequencing kit with
primer “M4” (5’-GTT TTC CCA GTC ACG AC-3"). The resulting
sequences were processed manually and analyzed twice: first by
FASTX against a non-redundant protein sequence database provided
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reference sequences are denoted after species names.
doi:10.1371/journal.pone.0008636.g007

by the DNA Databank of Japan (version 3.2t09) without an e-value
cutoff; then by blast against a merged DNA database provided by the
DNA databank of Japan (release 71.0). Obtained GHF clones were
sequenced by using of primer walking method. Whole length
sequences were deposited into DDBJ. Accession numbers of these
sequences are AB274529-AB274720. Annotation of obtained se-
quences was performed by fastx [18] and blast [19] analysis.

Phylogenetic Analysis

Obtained sequences were translated to amino acid sequences
and aligned with ClustalW 2.0.11 and manually inspected.
Sequence alignments were analyzed using ProtTest 2.2 [33] to
obtain appropriate substitution models. According to the results of
ProtTest analysis, WAG+G+I+F was selected for GHF5 and 7,
LG+G+F was selected for GHF10, LG+G+I+F was selected for
GHF11 and WAG+G was selected for GHF45. Phylogenetic trees
were inferred using the appropriate substitution model in
RAxML-7.2.1 [34]. In each analysis, 4 categories of rate variation
were used. To obtain supporting values, bootstrap re-sampling was
performed 100 times and analyzed with the same conditions.

To obtain additional supporting values, we also performed
Bayesian analyses. Phylobayes 3.1 and the CAT substitution
model [35] was used for these analyses. Two independent chains
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